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A Analytic constrained-unconstrained model

In the biomorphs model [1, 2], each integer in the genotype either affects the vectors from which the figure is
built or the number of developmental stages after which the developmental process terminates, as illustrated
in Fig 2 in the main text. The assumption we make when modelling the GP map analytically is that a
mutation changes the phenotype if and only if it either affects a vector that is used in the final figure or if it
changes the number of developmental stages. As discussed in the main text, this is accurate in an extremely
detailed representation of the biomorphs, where the biomorphs are drawn with a fixed length scale on a very
large high-resolution screen, lines that are generated multiple times in the developmental process are drawn
as thicker lines and length-zero lines are somehow represented in the figure, for example as a dot. Otherwise,
our assumption is simply a well-motivated approximation that we will use in the following to determine
analytically whether two arbitrary genotypes share the same phenotype.

With this ansatz, we can build an analytic model similar to previous analytic GP map models, which
rely on a division of sequences into constrained and unconstrained parts (for example in [3–5]): for a given
phenotype, there are some positions in the genotype, where any mutation leads to a phenotypic change
(constrained positions). Other positions can mutate without changing the phenotype (fully unconstrained
positions). These definitions allow us to investigate the GP map analytically.

In our analytic treatment of the biomorphs GP map, we have the following division into constrained
and unconstrained parts: g9 is always constrained since mutations in the value of g9 change the number of
recursions, or developmental stages, and thus always lead to a phenotypic change. Since g9 is constrained for
all phenotypes, all genotypes in a given neutral set have the same value of g9. The remaining eight genes, g1 -
g8, which define the vectors in the biomorphs construction process, are constrained only for some phenotypes:
whether the vector(s) encoded by a certain genotype position gi appear in the final figure, depends on the
value of g9. If the vector(s) appear in the figure, any mutation to gi changes the phenotype, and gi is fully
constrained. If the vector(s) do not appear in the figure, mutations to gi have no effect on the phenotype in
the analytic model and gi is fully unconstrained. Thus, we can deduce the number of constrained positions
nu by studying Fig 2 in the main text and counting, how many genotype positions only appear in vectors
that are not used in the final figure. This only depends on the number of developmental stages and thus on
the value of g9 in the neutral set of the given phenotype:

nu(g9) =

{
9− 2× g9 if 1 ≤ g9 ≤ 4

0 if 5 ≤ g9
(1)

Thus, g9 sets the number of unconstrained positions in a genotype and plays a similar role to the ‘stop codon’
in existing analytic constrained-unconstrained models (for example refs [3, 5]).

A.1 Neutral set sizes

The neutral set size can be computed following ref [4] if we know the number of unconstrained positions: in
the neutral set of a given phenotype, each constrained genotype position is the same for all genotypes and
each unconstrained position can take on any value. In our case, the values in the ‘vector’ part of the genotype
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are restricted to integers between −3 and 3, so unconstrained positions can take one of k = 7 values. Thus,
there are knu(g9) possible sequences for the unconstrained part of the genotype.
Hence, there are knu(g9) different genotypes that give the same phenotype, based on the constrained-
unconstrained calculations. In addition, the biomorphs system has an axial symmetry that applies even
to the constrained parts of the genotype1: flipping all x-coordinates in the figure does not change the phe-
notype. We approximate this by including a factor of two in our neutral set size estimates. This is only an
approximation since the factor of two should not be applied if a genotype had zeros at all x-coordinates, but
it gives the following simple expression for the neutral set size Np(g9):

Np(g9) ≈ 2knu(g9) ≈

{
2k9−2×g9 if 1 ≤ g9 ≤ 4

2 if 5 ≤ g9
(2)

A.2 Neutral set sizes and rank

For our plot in the main text, we also need to compute the rank, i.e. the number of phenotypes with greater
or equal neutral set size. We can deduce the rank as follows: since neutral set size decreases monotonically
with g9 (eq 2), we can express the rank as a sum over g9. Since there are k8 different genotypes for each
fixed value of g9 and Np(g9) genotypes per phenotype, there should be k8/Np(g9) different phenotypes for a
fixed value of g9. With this, we can simply sum over all values of g9 with greater or equal neutral set size
to compute the rank. Because the neutral set size is the same for all 5 ≤ g9, we need to handle this case
separately:

r(g9) =

{∑g9
h=1 k

8/Np(h) if 1 ≤ g9 ≤ 4∑4
h=1 k

8/Np(h) + (b− 4)× k8/Np(5) if 5 ≤ g9
(3)

Here, b is the number of different values g9 can take (we assume that one is the lowest allowed value for g9):
in our case, g9 can take any value from 1 to 8, so we have b = 8 and b− 4 = 4.
We can simplify the rank calculation in eq 3 by noting that the terms with the smallest neutral set sizes
dominate the sums and putting in the expressions for Np from eq 2. This means that we can approximate
the full expression as:

r(Np) ≈

{
k8/Np if Np > 2
(b−4)

2 × k8 if Np = 2
(4)

Thus, for a range of neutral set sizes, the rank is proportional to N−1
p , and conversely, the frequencies

are proportional to 1/r(Np) and so the distribution follows Zipf’s law. This relationship is reminiscent of the
power laws found in other GP maps, such as the Fibonacci model [3], for which the constrained/unconstrained
approach was first developed. However, note that while eq 3 is exact for the analytic model, the reductions of
the sums to their largest terms, which gave eq 4, are only an approximation that will lead to underestimates
of the true sums, and thus the true ranks.

1In the context of previous models based on constrained/unconstrained approaches, this is equivalent to having multiple
neutral components (NCs) per neutral set, for example in ref [6]: in that case, the constrained-unconstrained calculations give
the size of a single connected NC, but the final result has to be multiplied by the total number of NCs to obtain the neutral set
size.
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A.3 Complexity estimates

In our analytic calculations, we do not draw the biomorphs figures in 2D and so it is not possible to estimate
their complexities from drawn images. However, it is possible to derive an upper bound on the complexity of
a biomorph phenotype without drawing the corresponding figure as follows: one way of describing a biomorph
phenotype is by recording one corresponding genotype as well as the instructions on how to generate the
figure from the genotype. As in previous applications of AIT arguments to GP maps [7], we will ignore the
second part, which is a constant term that is the same for all phenotypes. The genotypes, however, are
different for different phenotypes: since only the constrained genotype positions are required to fully define
the phenotype, the length of the essential part of the genotype varies from phenotype to phenotype. The
length of this essential part is proportional to the number of constrained positions per genotype. This is one
upper bound on the complexity since the complexity is defined as the shortest possible description length
and the genotype is one way of describing the phenotype. Thus, we have an upper bound on complexity K̃
as:

K̃ ≤ a× (9− nu(g9)) (5)

where a is the constant of proportionality that is set by the description length per encoded phenotype
position. In our analysis, sites g1 to g8 can take one of seven discrete values and g9 can take one of eight
discrete values - thus any genotype position can be encoded in a = log2 8 = 3 bits. Using eq 2 to express nu

in terms of neutral set sizes then gives a log-linear upper bound:

K̃ ≤ 3× (9− log2(Np/2)/ log2(k)) (6)

Rearranging for Np gives:
Np ≤ 2k × 29−K̃/3 (7)

A.4 Genotype and phenotype robustness

In order to find the robustness of a genotype ρg, we need to compute the fraction of mutations that leave
its phenotype unchanged. By definition, all mutations at unconstrained sites leave the phenotype intact,
whereas all mutations at constrained sites change the phenotype. Thus, we only need to know the number
of constrained sites and the number of possible mutations at each site. The number of possible mutations
at each site is two (changing the value at the site by +1 or -1) if we neglect the fact that in our model, the
values are confined to fixed ranges (for example −3 is the lowest value g1 can take and cannot be decreased
further). With this assumption, we have:

ρg ≈ 2/18× nu(g9) (8)

This only depends on g9 and all genotypes in the neutral set of a phenotype share a single value of g9, all
genotypes in a neutral set have the same robustness. Thus, the average robustness of a phenotype is simply:

ρp ≈ 1/9× nu(g9) (9)

So far, we have written phenotypic robustness ρp as a function of g9. We can rewrite this as a function of
phenotypic frequency using eq 2 and relying on the fact that the phenotypic frequency is simply the neutral
set size normalized by the total number of genotypes, which is bk8:

ρp ≈ 1/9× logk(Np/2) = 1/9× logk(k
8 × b× fp/2) (10)
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A.5 Genotype evolvability

If we start with a given initial genotype, each distinct mutation in a constrained site changes the phenotype
in a distinct way and so there are ϵ̃g ≈ 2×(9−nu(g9)) distinct phenotypic changes (again assuming there are
always exactly two mutations at each site). Using Eq 9, we have the following relationship between genotype
robustness and evolvability:

ϵ̃g ≈ 18× (1− ρg) (11)

A.6 Phenotype evolvability

Calculating the phenotype evolvability is a little more complex: for this, we need to compute how many
distinct phenotypic changes are possible from the entire neutral set of the initial phenotype p, a task similar
to calculations in ref [5]. This can be higher than the evolvability of an individual genotype if different
phenotypic changes are possible for different genotypes in the neutral set of p. In our biomorphs model, this
is the case for mutations that raise g9 by +1: since such a mutation adds one recursion in the construction
process, the mutation can cause additional vectors to appear in the figure. This means that there can be
sites, which were unconstrained before the mutation, but play a determining role for the phenotype after
the mutation. Thus, a single mutation - raising g9 by +1 - can generate several distinct phenotypic changes
when applied to different genotypes in the neutral set of p.

The number of distinct phenotypic changes that can be achieved from a given initial phenotype by raising
g9 by +1 can thus be computed by identifying the number of sites that switch from being unconstrained
to constrained, (9 − nu(g9 + 1)) − (9 − nu(g9)), and the number of values each of these sites could take,
k = 7. Thus, we have knu(g9)−nu(g9+1) distinct phenotypic changes that can be achieved from a given initial
phenotype by raising g9 by +1.

All other non-neutral mutations - lowering g9 or changing a constrained ‘vector component’ site - have
the same phenotypic effect regardless of which genotype in the neutral set of p they are applied to. The
number of such non-neutral mutations is 2× (9−nu(g9))−1. Thus, we can add both contributions to obtain
an expression for the phenotypic evolvability of p:

ϵp ≈ 2× (9− nu(g9))− 1 + knu(g9)−nu(g9+1) (12)

The first term of this expression scales like the genotype evolvability and is anti-correlated with robustness.
It is therefore the last term that gives us a positive correlation between robustness and evolvability on the
phenotypic level. As postulated in previous theoretical work [5], this term is due to mutations that change
the sequence constraints. This role corresponds to mutations in the ‘stop codon’ [5], and thus to mutations
in g9 in the biomorphs model.

So far, eq 12 is only a parametric equation. However, we can put in values of 1 ≤ g9 ≤ 8 and use
equations 1 & 9 to get the following cases, depending on the value that nu(g9)− nu(g9 + 1) can take:

ϵp ≈


18 if ρp = 0

15 + k if ρp = 1/9

18× (1− ρp)− 1 + k2 if 2/9 ≤ ρp

(13)
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A.7 Mutation probabilities

Mutation probabilities ϕpq quantify the likelihood that a new phenotype p is generated by a random mutation
applied to a random genotype in the neutral set of an initial phenotype q [8]. Both mutation probabilities
and evolvability values capture phenotypic changes and thus our calculations of mutation probabilities ϕpq

will use the same arguments as in the previous paragraphs: most mutations bring about the same phenotypic
change for all genotypes in the neutral set. Phenotypic changes produced by such mutations are generated
by one in every eighteen mutations since there are eighteen mutations for each genotype (again ignoring
boundary effects) and only one mutation gives the specific phenotypic change. The one exception is again a
mutation that raises the value of g9: since there are knu(g9)−nu(g9+1) different phenotypic changes produced by
this type of mutation in a given initial neutral set, each of these occurs with ϕpq ≈ 1/(18× knu(g9)−nu(g9+1)).
To sum up, the possible phenotypic changes have the following likelihood:

• Decreasing g9 by one: this gives a new phenotype p with ϕpq ≈ 1/18. The neutral set size of p is given
by Np(g9 − 1).

• Increasing g9 by one: this gives a new phenotype p with ϕpq ≈ 1/(18× knu(g9)−nu(g9+1)). The neutral
set size of p is given by Np(g9 + 1).

• Mutating any other non-neutral site: this gives a new phenotype p with ϕpq ≈ 1/18. The neutral set
size of p is given by Np(g9).

These three combinations of ϕpq and neutral set size give the analytic prediction plotted in the main
text (where the initial phenotype has g9 = 3). It is important to note that not all phenotypic changes are
possible: even if q and p share the same value of g9, there is no way of mutating from q to p if one of the
constrained sites differs by ≥ 2 since constrained sites are constant in an entire neutral set by definition
and can only change by ±1 in a single non-neutral mutation. Thus, the analytic model predicts that most
phenotypic changes cannot be achieved in a single mutation (i.e. ϕpq = 0).

Thus, frequent phenotypic changes occur with ϕpq ≈ 1/18 and correspond to changes in the vector part
of the genotype or to changes in g9 that lower the number of developmental stages, i.e. broadly examples
of heterometry or a specific type of heterochrony if we follow the classification of developmental changes in
ref [9] (depending on how we assume that the developmental stages in the biomorphs system are controlled
by gene-regulatory events). Rarer phenotypic changes occur with ϕpq ≈ 1/(18× knu(g9)−nu(g9+1)) and corre-
spond to changes in g9 that increase the number of developmental stages, i.e. to a specific type of heterochrony.

B Shape space covering property

In the main text, we performed many analyses that have been applied to a range of molecular GP maps.
For completeness, we include one further aspect here, the concept of ‘shape space covering’: this concept
postulates that when we start with a given initial genotype and consider all genotypes within a mutational
distance of at most d from that genotype, then most high-frequency phenotypes exist among this set of
genotypes, even when the value of d is small [10]. Other authors use a slightly different definition of ‘shape
space covering’ that is not limited to high-frequency phenotypes, but includes all phenotypes [11]. However,
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Figure A: Test of the shape space covering concept: For ten randomly selected initial genotypes, all
genotypes within a mutational distance of d are enumerated and their phenotypes recorded. We evaluate, what
fraction of high-frequency phenotypes are found within this set for a given value of d (blue). For reference, we
also show, what fraction of all genotypes are contained within this set (orange). The plot shows the mean and
standard deviation of the values for the ten different initial genotypes. Note that the fraction of all genotypes
that are contained within a distance d depends on the initial genotype due to our definition of the biomorphs’
genotype space: if the initial value at a given site is −3, then it can take up to six mutations to reach every
value in the valid range [−3, 3], whereas this would only take up to three mutations if the initial value was 0.

here we work with the original definition.

Here, we test the hypothesis of ‘shape space covering’ by following the methods in ref [10]: we start with
a randomly selected genotype and evaluate the fraction of phenotypes found within at most d mutations from
that genotype. This analysis is repeated for several initial genotypes and the results are shown in Fig A:
we find that the number of high-frequency phenotypes covered within d mutational steps increases rapidly
with d and that about 50% of these frequent phenotypes are found after around d ≈ 15 mutations, even
though the maximum distance between two genotypes is 55 if each integer value had to change from the
lowest permitted value (−3 for [g1, ..., g8] and 1 for g9) to the highest permitted value (3 for [g1, ..., g8] and
8 for g9). In this analysis, we have followed the definition by Grüner et al. [10] and considered a phenotype
to be among the high-frequency phenotypes if its phenotype frequency is higher than the average phenotype
frequency of all phenotypes.

Two reasons are given in the literature for why the ‘shape space covering’ property is found in many GP
maps: first, the set of genotypes within a mutational distance of at most d grows rapidly with mutational
distance d due to the many ways in which d mutations can be combined along the genotype (i.e. because the
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mutational space is high-dimensional) [12]. Secondly, high-frequency phenotypes are often so frequent that
they are likely to be found among even a small set of random genotypes [13]. We can investigate the first
aspect by recording the fraction of all valid biomorph genotypes that are found within d mutations of an
initial genotype (orange line in Fig A). We find that this fraction increases quickly in only a few mutational
steps, as expected. However, we also find that for a given d, the fraction of high-frequency phenotypes
within d is even higher than the fraction of all genotypes. Therefore, the second argument also applies:
high-frequency phenotypes are likely to be found in a relatively small set of genotypes, simply because there
are many genotypes mapping to each of these phenotypes.

C Robustness of GP map properties to changes in the phenotype defini-
tion

In the methods section of the main text, we describe, how we convert each 2D biomorphs figure into a
discrete phenotype for our computational analysis. This process relies on two parameters: the grid size and
the threshold above which a pixel is set to one. In our analysis, we used a 30× 30 grid and set a pixel to one
if the total length of all unique line segments within that pixel equaled at least ≥ 20% of the width/length
of the pixel. In this section, we vary these two parameters and repeat key aspects of the GP map analysis,
in order to test how robust our results are to the details of the phenotype definition.

C.1 Grid size

GP map data for different values of the grid size are shown in Figs B-C: a lower resolution of 20 × 20 is
used in Fig B and a higher resolution of 40× 40 is used in Fig C. We find that the qualitative results of the
analysis are unchanged: we still find phenotypic bias over several orders of magnitude, this bias is towards a
subset of the simple phenotypes, phenotype robustness is correlated with the logarithm of the neutral set size,
mutation probabilities (if non-zero) tend to be higher for higher-frequency phenotypes and the relationship
between robustness and evolvability is negative on a genotypic level, but (weakly) positive on a phenotypic
level. All these results continue to be in agreement with the simple analytic model, and the simplicity bias
remains consistent with the log-linear upper bound predicted by Dingle et al. [7].
While the qualitative trends and results are all robust to different parameter choices, the quantitative data
does show differences: for example phenotypic evolvability values tend to be higher when using a more
coarse-grained treatment on a 20x20 grid than when choosing a more fine-grained treatment on a 40x40
grid (Fig BF compared to Fig CF). This observation can be explained as follows: in a more coarse-grained
treatment, more sequences belong to a given neutral set and thus neutral set sizes are higher. Such changes
can have a big effect on evolvability since a single transition from p to a new phenotype q from a single
genotype in the neutral set of p is sufficient to raise the evolvability by one for the entire neutral set.

C.2 Discretization

Similarly, the analysis was repeated for different values of the discretization threshold: this threshold t
determines whether a pixel, which contains a number of line segments with a total length of l, is set to zero
or one: it is set to one if l ≥ t and zero otherwise. Here, we repeat the GP map analysis with values of

8



10% of the pixel size (Fig D) and 50% of the pixel size (Fig E). Again, we find that the qualitative GP map
characteristics, as well as the agreement with the analytic model and the predictions from [7], are unaffected.
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Figure B: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: Here, a 20 × 20 grid is used (instead of 30 × 30). The analysis shows the GP map data (blue)
as well as the predictions from the analytic model (red) for the following quantities: (A) Neutral set
size vs frequency rank. (B) Neutral set size vs estimated complexity. The black line indicates
an approximate log-lin upper bound to guide the eye, as predicted in [7]. (C) Phenotype robustness vs
phenotype frequency fq. The black line (ρq = fq) shows what we would expect in the null model from
ref [14]. (D) Phenotype mutation probability ϕpq vs. phenotype frequency fp for one specific
initial phenotype q. The black line (ϕpq = fp) shows what we would expect in the null model from refs [8,
14]. Data points with ϕpq = 0 are excluded on this log-scale. (E) Genotype evolvability vs genotype ro-
bustness. (F) Phenotype evolvability vs phenotype robustness. Only the computational data depends
on the grid size; the analytic data is included just for reference.
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Figure C: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: same as Fig B, but here a 40× 40 grid is used.
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Figure D: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: same as Fig B, but here the threshold is different from the one in the main text: 10% instead of
20%. The grid size, 30× 30, is the same as in the main text.
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Figure E: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: same as Fig B, but here the threshold is different from the one in the main text: 50% instead of
20%. The grid size, 30× 30, is the same as in the main text.
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C.3 Analytic model results for different range of allowed genotypes

Figure F: Predictions from the simplified analytic model for a larger range of permitted values
at each genotype position: here, a larger range of values is permitted at each position of the genotypes
than in the main text: nine values for each of the ‘vector genes’ (−4 ≤ gi ≤ 4 for i ∈ [1, .., 8]) and nine
values for the ninth gene (1 ≤ g9 ≤ 9). With these parameters, there are 99 ≈ 4×108 genotypes and so a full
computational analysis is no longer feasible. However, approximate predictions from the analytic model can
be made and these are shown in this figure. The plots show: A) Neutral set size vs. frequency rank (Eq 4).
B) Phenotype robustness vs. phenotype frequency (Eq 10). C) Genotype evolvability vs. genotype robustness
(Eq 11). D) Phenotype evolvability vs. phenotype robustness (Eq 13).

With our analytic model, we can allow an arbitrary range of values in the genotypes, without computational
difficulties. Here we consider a GP map, where the genotypes can take on a wider range of values: nine values
for each of the ‘vector genes’ (−4 ≤ gi ≤ 4 for i ∈ [1, .., 8]) and nine values for the ninth gene (1 ≤ g9 ≤ 9).
The data in Fig F indicate that permitting a wider range of integers in the genotype would not affect our
qualitative results.

14



D Additional data on phenotype complexities

D.1 Examples of phenotypes and their estimated complexities

In order to visualize the data in Fig 4C of the main text, we focus on phenotypes with different combinations of
complexity values and neutral set sizes: Fig G shows examples of simple phenotypes with low neutral set sizes,
simple phenotypes with high neutral set sizes and complex phenotypes with low neutral set sizes (complex
phenotypes with high neutral set sizes do not exist since we have observed simplicity bias in this GP map).
While the analytic model cannot be compared directly to this data, which is based on the computational
phenotype treatment, we can still use insights from the analytic model to guide our interpretation: we find
that, as we might expect from the analytic model, phenotypes with few lines (and hence low g9 and high
neutral set sizes) are simple. Phenotypes with many lines (and hence high g9 and low neutral set sizes) can
have high complexity, but they can also have low complexity in the coarse-grained computational model, for
example, if each vector is used exactly once or if some vectors overlap.

D.2 Alternative method of estimating phenotypic complexity

Since Kolmogorov complexity cannot be measured exactly, just estimated, we repeated the analysis in the
main text for a different method of estimating complexity: we use a compression-based method, the Lempel-
Ziv approach, relying on the implementation from ref [7]. This implementation takes a binary string as an
input, but our phenotypes are 2D binary grids. Therefore, we concatenated the rows of our grid before
passing it to the complexity estimator. Since Dingle et al. [7] argue that the complexity of a string is best
estimated as the mean of the estimated complexity of the string and the estimated complexity of its reverse,
we performed an analogous calculation on our 2D array: we took the transpose of the binary grid and in-
cluded it in the estimate. This means that we did not only take a mean of the estimated complexity of the
string and its reverse, but also the corresponding concatenated string of the transposed array and its reverse.
The results from this compression-based complexity estimator are shown in Fig H: we still find that there are
no complex phenotypes with high neutral set sizes. As before, the data approximately falls below a log-linear
line, derived theoretically in ref [7].

D.3 Alternative method of estimating phenotypic complexity in the analytic model

In the analytic model, we have a clear criterion for when two genotypes fall into the same neutral sets,
formulated in terms of constrained and unconstrained sites, but we do not have a visual description of each
corresponding phenotype. Thus, we estimated phenotype complexities using the information that needs to
be encoded in the genotype (section A.3). However, there is one way of approximating the visual complexity
of each phenotype: if we simply assume that each line in a phenotype drawing takes the same amount
of information to encode, then the number of lines in the biomorphs figure is a good proxy for the total
description length, i.e. the complexity. This is only an approximation since a set of parallel lines can
be encoded more efficiently than a set of arbitrary lines (in the same way that repeating strings can be
compressed, but arbitrary strings cannot). However, if we use the number of lines nl that are drawn in the
biomorphs image, whether they are overlapping or not, as a first approximation, we get:

nl = 2g9 − 1 (14)
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Since we also have an expression for the neutral set size as a function of g9 (eq 2), we can use this parametric
relationship to obtain the data in Fig I. We find that the qualitative trend is the same: more complex
phenotypes with a higher number of lines tend to have lower neutral set sizes. However, this relationship
no longer follows the log-linear relationship predicted in ref [7]. This is because the number of lines in the
biomorphs figure can exceed the number of distinct vectors (which is eight). Then the same vectors appear
with different scaling factors multiple times in the figure and so the number of lines increases more rapidly
than the amount of genotypic information needed to encode them.

D.4 Distribution of phenotypic complexities for arbitrary genotypes

In the main text, we found that a phenotype with a large neutral set is likely to be simple. Thus, a given
simple phenotype is more likely to have a high phenotype frequency and appear in a small random sample of
genotypes than a given complex phenotype. However, there may be many different simple phenotypes and
many different complex phenotypes, so it is not clear, how many simple phenotypes we expect to find overall
in a random sample of genotypes. Arguments in the SI of ref [16] imply that while the neutral set size of
an individual complex phenotype is small, the number of distinct complex phenotypes is much larger than
the number of distinct simple phenotypes, and so overall, the likelihood of drawing any complex phenotype
from a random sample of genotypes is approximately equal to the likelihood of drawing any simple phenotype.

Here we test both parts of this argument for the biomorphs GP map, using our computational results.
First, we consider the number of simple and complex phenotypes (Fig J): we find that there is only a small
number of simple phenotypes, as expected from the information-theoretic arguments in ref [16] . However, the
number of very complex phenotypes is also limited. This deviation from the information-theoretic arguments
in ref [16] is likely due to the constraints of the biomorphs system, which only permits certain geometric
forms (for example no phenotype can have two disconnected parts and this fact alone severely restricts the
number of possible 2D drawings). Secondly, we calculate the fraction of genotypes with simple or complex
phenotypes (Fig K). We find that there is a range of complexity values, for which the probability of finding a
phenotype with that complexity is to first order constant, in agreement with the information-theoretic argu-
ments in ref [16]. However, at high complexities, we see a deviation from the flat distribution expected from
information-theoretic arguments, which is consistent with the deviations seen on the phenotypic level in Fig J.

So far, complexity distributions like this have not been discussed in much detail (exceptions are for
example in the SI of ref [16], and for one matrix-rewriting grammar GP map in ref [17] and digital logic gates
in ref [18]) and so future work should investigate these distributions and their implications more thoroughly,
both for the biomorphs and for other GP maps.
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Figure G: Neutral set sizes and complexity estimates for a few example phenotypes: the figures
show examples of rare and simple phenotypes (top row), of frequent and simple phenotypes (middle row),
and of rare and complex phenotypes (third row). Note that the labels ‘rare’/‘frequent’ and ‘complex’/‘simple’
are discrete categories that represent a range of values - not all of the ‘simple’ phenotypes have the same
complexity in this figure.
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Figure H: Neutral set size vs complexity estimate with a compression-based complexity estimator:
as in Fig 4C in the main text, we plot the neutral set size of each phenotype (on a log scale) against an estimate
of its complexity. Here, this complexity is computed by feeding a concatenated version of each phenotype’s
binary pixel array into the Lempel-Ziv compression implementation of ref [7]. A log-linear line, as predicted
as an upper bound [7], is drawn to guide the eye.

Figure I: Neutral set size vs number of lines in the figure: both quantities are estimated with the
analytic model, using eq 2 and eq 14.
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Figure J: Probability Pp(K) of obtaining a phenotype of complexity K upon random sampling of
phenotypes. Most of the ≈ 107 phenotypes have intermediate complexity values - phenotypes with very low
or very high complexities are rare. A) Phenotypic complexities based on the Block Decomposition Method [15]
(as in the main text). B) Phenotypic complexities based on Lempel-Ziv compression (as in section D.2 above).

Figure K: Probability Pg(K) of obtaining a phenotype of complexity K upon random sampling
of genotypes. A) Phenotypic complexities based on the Block Decomposition Method [15] (as in the main
text). B) Phenotypic complexities based on Lempel-Ziv compression (as in section D.2 above).
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D.5 Simplicity bias in mutation probabilities

Figure L: Mutational bias towards simple phenotypes: we consider all phenotypes q, from which at
least 100 different phenotypes p can be reached through mutations (i.e. ϵq ≥ 100). For each initial phenotype
q, we plot the mean complexity of the 10 phenotypes p with the highest ϕpq values against the mean complexity
of all phenotypes with non-zero ϕpq values, in order to compare likely phenotypic transitions to the full set
of possible phenotypic transitions. The black line indicates equality (x = y). We find that for all initial
phenotypes q, the complexity of the high-ϕpq phenotypes is lower, indicating that mutation probabilities to
simple phenotypes q tend to be higher. The data in this plot is for our computational approach based on the
coarse-grained images.

In the main text, we argued that the strong simplicity bias found in the biomorphs GP map means that a
random mutation on a random genotype is more likely to give a specific simple phenotype than a specific
complex one. Here, we test whether this continues to hold when we consider mutations for a fixed initial
phenotype (i.e. whether there is simplicity bias in the ϕpq values). The data is shown in Fig L: for a fixed
initial phenotype q, we compare the complexity of the ten phenotypes which are most likely to appear after
mutations (i.e. with the highest ϕpq values), to the complexity of all phenotypes which can appear after
mutations (i.e. with non-zero ϕpq values). This data indicates that, regardless of the initial phenotype
q, phenotypic changes that happen with a high probability through mutations tend to be towards simpler
phenotypes than phenotypic changes that occur with a lower probability. A caveat of this analysis is that we
limit the set of initial phenotypes q to phenotypes, from which at least 100 different phenotypic changes are
possible through mutations since the top-ten values are only relevant if there are ≫ 10 non-zero ϕpq values.
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E GP map properties with a fixed number of developmental stages

Figure M: Neutral set size vs rank for fixed values of g9: each plot analyses the slice of the GP map
that is defined by a fixed value of g9 between g9 = 2 and g9 = 8 (indicated in the plot titles). In each case, the
number of genotypes per phenotype (i.e. the neutral set size at fixed g9) is computed for all phenotypes present
in the given slice and plotted as a rank plot using our computational approach with the same parameters as
in the main text. To illustrate, what kind of phenotypes are frequent/rare in each case, a few phenotypes are
highlighted in each plot and drawn in corresponding colors underneath the plot.

The limitations of the analytic model can be seen most clearly when we restrict the value of the ninth gene
to a constant: in this case, the analytic model would predict that each phenotype goes through the same
number of recursions in the developmental process and has the same number of unused genes and thus uncon-
strained sites. This would mean that all phenotypic characteristics - neutral set size, complexity, phenotype
robustness, phenotype evolvability, phenotype mutation probabilities - are the same for all phenotypes. Here
we test this prediction using our computational model for several choices of a fixed g9. We find that:

• Phenotypic bias, i.e. differences in phenotypic frequencies, continue to exist (Fig M). One mechanism
behind this bias can be understood by considering the ‘simple vertical line’ phenotype as an example,
which is the most frequent phenotype for each value of g9. This line phenotype is produced by a higher
number of genotypes because it can be generated in many ways, by (overlapping) lines of arbitrary
lengths, as long as all x-components are zero. By contrast, a more sophisticated shape imposes stricter
constraints on the relative lengths and angles of the different vectors and is thus produced by fewer
genotypes.
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Figure N: Neutral set size vs estimated complexity, in a GP map with a fixed value of g9: each
plot analyses the slice of the GP map that is defined by a fixed value of g9 between g9 = 2 and g9 = 8
(indicated in the plot titles). Otherwise, the plot follows Fig 4C in the main text. We find simplicity bias,
despite constraining the value of g9, and thus the number of developmental stages, to a constant.

• Simplicity bias (Fig N & O): the most common phenotypes, such as the simple ‘line’ phenotype, tend
to be simple.

• Genetic correlations, i.e. ρp > fp, specifically an approximately log-linear relationship between phe-
notype robustness and frequency (Fig P): for example, two genotypes mapping to a single vertical
line have zeros at all x-component-genes, and are thus more likely to be mutational neighbours than
arbitrary genotypes.

• A negative relationship between robustness and evolvability on the genotypic level, and a (weak)
positive one on the phenotypic level (Figs Q & R). The latter trend only appears for values of g9 which
give a high number of phenotypes, i.e. g9 ⪆ 4 .

• Mutation probabilities from an initial phenotype q (the line phenotype) to a new phenotype p are more
likely for high-frequency target phenotypes p (Fig S). This trend only holds for g9 ⪆ 3. Even then, it is
not a perfect correlation, but this is in line with results for molecular GP maps [19], where the positive
trend only serves as a first approximation.
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Figure O: Neutral set size vs estimated complexity, in a GP map with a fixed value of g9: same
as Fig N, but using an alternative complexity estimate based on Lempel-Ziv-based compression (as in sec-
tion D.2). We find simplicity bias, despite constraining the value of g9, and thus the number of developmental
stages, to a constant.

Figure P: Phenotypic robustness vs phenotypic frequency, in a GP map with a fixed value of g9:
each plot analyses the slice of the GP map that is defined by a fixed value of g9 between g9 = 2 and g9 = 8
(indicated in the plot titles). Otherwise, the plot follows Fig 5B in the main text. As in the main text, we
find ρp > fp with a roughly log-linear trend - this becomes clearer with an increasing number of phenotypes
at higher fixed values of g9.
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Figure Q: Genotypic evolvability vs genotype robustness, in a GP map with a fixed value of g9:
each plot analyses the slice of the GP map that is defined by a fixed value of g9 between g9 = 2 and g9 = 8
(indicated in the plot titles). Otherwise, the plot follows Fig 5C in the main text. As in the main text, we
find a trade-off.

Figure R: Phenotypic evolvability vs phenotype robustness, in a GP map with a fixed value of
g9: each plot analyses the slice of the GP map that is defined by a fixed value of g9 between g9 = 2 and g9 = 8
(indicated in the plot titles). Otherwise, the plot follows Fig 5D in the main text. As in the main text, we
find a (weak) positive trend, even at fixed g9 (at least for g9 ⪆ 4, where the number of phenotypes is high).
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Figure S: Mutation probability ϕpq from an initial phenotype q to a new phenotype p vs phenotype
frequency fp, in a GP map with a fixed value of g9: each plot analyses the slice of the GP map that is
defined by a fixed value of g9 between g9 = 2 and g9 = 8 (indicated in the plot titles). The initial phenotype q
is the ‘vertical line’ phenotype, which has the highest frequency for any g9. Otherwise, the plot follows Fig 5E
in the main text. As in the main text, we find that mutations to high-frequency phenotypes tend to be more
likely (at least for g9 ⪆ 3).
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F Identifying an evolutionary path with the smallest number of pheno-
typic changes

In the main text, we illustrated how a line-shaped initial phenotype can be transformed into a specific insect-
shaped phenotype in single point mutations, such that the number of phenotypic changes during the process
is as small as possible. Here, we describe the computational approach we used to obtain this shortest series
of phenotypic changes.

It is useful to reframe this optimization problem in terms of neutral components (NCs): a NC is a subset
of the neutral set of p, which is defined [20] such that two genotypes are in the same NC if they can be
connected by a series of neutral mutations. Therefore, it is possible to get from any genotype in a NC to
any other genotype in the same NC during a period of neutral evolution, but any transition to another NC
through mutations has to include phenotypic changes. NCs for a given GP map can be identified efficiently,
for example by building on methods from ref [10].

Once we have enumerated all NCs, identifying the path with the smallest number of phenotypic changes
is equivalent to finding the sequence of mutations with the smallest number of mutations that change the
neutral component (NC) since two NCs that are connected by point mutations always correspond to different
phenotypes, by definition. This allows us to solve our optimization problem by focusing on NCs and not
individual genotypes. Thus, we created a unique ID for each NC in the GP map and evaluated, which NCs
can be reached from a given NC through single point mutations. This defines a network, where each NC
is a node and each edge indicates that there are point mutations connecting two NCs. Then we found the
shortest path in this network using Dijkstra [21]’s algorithm. The resulting list of NCs gives the shortest list
of NC transitions that have to be made in order to convert the initial phenotype into the target phenotype
through point mutations. Then we simply mapped the NCs to the corresponding phenotypes to obtain the
final figure.

G Two-peaked landscapes - beyond the first fixation

In the main text, we studied a scenario based on refs [8, 22], where a population with an initial phenotype
p0 evolved adaptively to one of two fitness peaks, p1 or p2. We reported which of these two phenotypes was
the first to go into fixation, the mutationally more accessible phenotype p1 or the phenotype with higher
selective advantage p2. Here, we investigate what happens after the first fixation event. Since there are no
point mutations that can convert p1 into p2 directly (or vice versa), the only possible phenotypic changes
are either back to the initial phenotype p0, which is less fit, or directly to the other phenotype through a
rare event involving multiple mutations at once. To investigate, if one of these phenotypic changes is likely
to happen, we ran additional simulations that spanned 106 generations each and were not terminated with
the first fixation event. This is about ten times longer than the typical number of generations until the
first fixation event, which is typically between 104 and 105 (depending on the parameters s1 and s2). We
ran 100 such simulations for each combination of parameters s1 and s2. We found no instances of direct
fixations from p1 to p2, implying that the requirement for multiple specific mutations to coincide makes such
transitions extremely unlikely for the mutation rates used in our simulations. Thus, the only new fixations
that we observe after the first fixation event is a reversion to p0, the phenotype with the lowest fitness. This
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Figure T: Likelihood of reversion to fitness valley in the two-peaked landscape: We simulate evolving
populations in the two-peaked landscape described in the main text for 106 generations. The first fixation of
one of the local maxima (p1 or p2) typically occurs after ⪅ 105 generations. Here we investigate how likely
the population is to experience a renewed fixation to the initial phenotype p0 (the fitness valley). We plot this
likelihood against the selective advantage si of the phenotype that was the first to fix. As might be expected,
reversions to the fitness valley via drift are rare since we have strong selection with Nsi ≥ 10. The same
parameters are used as in the main text, but the data is only based on 100 repetitions for each combination
of the parameters s1 and s2 because of the higher computational cost of this analysis.

only happens in rare cases (< 0.5% of cases) and only if the phenotype that fixes first only has a low selective
advantage over p0 (Fig. T).

H Selection for tree-like shapes

Here, we repeat the evolutionary simulation from Fig 6 in the main text, but with a slightly more complex
fitness landscape inspired by one of the scenarios in Johnston et al. [16]: we assume that all tree-like pheno-
types are equally fit (fitness F = 1) and all other phenotypes are completely unviable (F = 0). To obtain a
reproducible and simple definition of what a tree-like shape is, we proceed as follows: we crop empty margins
from the biomorph’s grid representation and then consider the resulting cropped grid to be tree-like if there
is a ‘stem’ in the lower part of the figure (i.e. the pixels on the lower fifth of the y-axis are filled in) and this
stem is surrounded by some space (i.e. the pixels immediately to the right and left of the stem are not filled
in). We also consider a single vertical line to be a tree-like phenotype.
The data is shown in Fig U: we find phenotypic bias over several orders of magnitude even among the
more restricted set of tree-like phenotypes. This phenotypic bias is reflected in the evolutionary simulation:
while selection confines the population to tree-like shapes, the phenotypic bias still plays an important role
in determining which of the tree-like shapes appear more often in the evolving population. Here, some of
the frequent shapes are actually observed more often than expected based on their phenotypic frequencies,
which is likely due to selection for high robustness at this high mutation rate of µ = 0.1 (the ‘survival of the
flattest’ [23] effect).
The strong bias in the frequency of different tree-like shapes in the simulation is not surprising since tran-
sitions between different tree-like biomorphs are neutral in this scenario. However, it constitutes a simple
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Figure U: Phenotypic bias towards simple shapes if the analysis is restricted to tree-like biomorphs:
The concepts of this plot are the same as in Fig 6 in the main text, but here only tree-like phenotypes have non-zero
fitness in the evolutionary simulation: (A) Phenotype frequency vs rank for all tree-like phenotypes. Three phenotypes
are selected from this plot: one with high frequency (yellow), one with medium frequency (teal), and one with low
frequency (purple). We find bias even among tree-like phenotypes. (B) Phenotype frequency vs estimated complexity
for all tree-like phenotypes, with the three selected phenotypes from (A) highlighted in color. We observe simplicity
bias among the tree-like shapes. (C) As a simplified model of an evolutionary process, we assume that all tree-like
phenotypes are equally fit (fitness F = 1) and all other phenotypes are completely unviable (F = 0). We model a
population of 2000 individuals with a mutation rate of µ = 0.1 for 105 generations. In this process, we record, how
frequently we each of the selected shapes from (A) occurs. In (C), the normalized number of times each phenotype
occurs in the population is plotted against a renormalized version of its phenotypic frequency (such that the frequencies
of all tree-like shapes sum to one). We find that the phenotypic bias among the tree-like shape is reflected in their
frequency in the evolving population.

example, where there is selection on some features of the phenotype only, which may be a more realistic
approximation under some conditions.
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