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AlphaFold 2 Subsampling and Abl1 Kinase Ensemble Predictions6

The accuracy of our ensemble predictions was defined as their capacity to replicate the wild-type Abl17

kinase core conformations and their correct relative populations as validated by nuclear magnetic res-8

onance experiments. Specifically, we sought a combination of parameters that led to an ensemble of9

predictions that met the following criteria: the ground state is the most frequent prediction within the10

ensemble, the transition from the ground to I2 state is captured within the ensemble, and the I2 state11

is present in the ensemble more frequently than transition states. Importantly, we opted to examine the12

relative populations of the ground and I2 states because of the large backbone rearrangement involved13

in the transition between these conformations, which is more likely to be reproduced by AF2 than the14

comparatively small dihedral flips in the ground to I1 transition. We optimized the accuracy achieved as15

a function of the following parameters: max_seq, extra_seq, number of seeds, and number of recycles16

(see Supplementary Table 1 for a complete list of tests and parameters). We evaluated the ensemble17

resulting from each parameter set by measuring the activation loop backbone RMSD relative to either18

the active kinase core (PDB 6XR6) [1] or the I2 kinase core (PDB 6XRG) [1] for each prediction. This19

decision is rooted in the fact that the activation loop is the structural element that changes the most (in20

terms of backbone motions) upon the transition from the ground to I2 state [1].21
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To encourage AF2 to generate a full ensemble of Abl1 conformations, we started by compiling an22

extensive MSA spanning over 600,000 sequences using the JackHMMR algorithm [2] on wild-type Abl123

kinase core (residues 229-515) sequences pulled from the UniRef90 [3], Small BFD [4], and MGnify [5]24

databases. To increase the statistical power of our results, we then ran 32 predictions with independent25

seeds for each test, and enabled dropouts during inference to sample from the uncertainty of the models.26

All other parameters were left in their default settings (3 recycles per prediction, 5 models per seed, a27

total of 160 predictions per run, 3 independent runs with unique seeds, 480 predictions per test).28

In order to better quantify the effects of each parameter change, we binned each predicted struc-29

ture into three classes based on the backbone RMSD of relevant structural elements (activation loop,30

phosphate-binding loop, and C helix) with respect to the backbone of these elements in the ground (ac-31

tive) state, as defined by the lowest-energy structure assignment in the NMR ensemble PDB 6XR6 [1].32

Since the RMSD with respect to the ground state of the majority of predictions clustered within 3 Å, we33

classified predictions with RMSD values greater than 3.5 Å as “not in the ground state." See Supplemen-34

tary Figure 1 for a depiction of the rationale behind this classification.35

Supplementary Figure 1: of A-Loop (residues 379 to 395) backbone RMSD vs. the ground state
reference (PDB 6XR6) for the predicted Abl1 kinase ensemble generated by AF2 with subsampling
conditions (top) 512:1024 and (bottom) 256:512. Frequencies are calculated from a kernel density
estimation with 480 samples per ensemble (96 independent seeds * 5 different models).

Through this binning, we observed that the 256:512 and 512:1024 values for max_seq and extra_seq36

led to predictions in which the ground state is populated 80% and 85% of the time, respectively. Of note,37

NMR results suggest that the relative state population of the Abl1 kinase core’s ground state in solution38
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is 88%, which is in surprisingly good agreement with our AF2 predictions [1]. In contrast with the39

effects observed from changing MSA composition and length, increasing the number of seeds beyond40

128 did not lead to significant changes in the state distribution, suggesting a degree of determinism in41

the prediction results, presumably stemming from AF2 training biases and information encoded in the42

co-evolutionary signal (see Supplementary Figure 2).43

Supplementary Figure 2: Percent of Abl1 kinase domain conformations predicted to fall outside of the
ground state using AF2 based on different MSA clustering parameters (number of sequences selected as
cluster centers, number of sequences sampled from the clusters, number of seeds used in the prediction,
and number of recycles). (A) Summary of the MSA subsampling and clustering algorithm implemented
in AF2. (B) Percent of Abl1 kinase core conformations predicted to fall outside of the ground state
using subsampled AF2 based upon the number of seeds used and the amount of recycling performed,
and whether recycling intermediates are kept. (C) Impact of changing the number of seeds (each seed
corresponds to an independent AF2 prediction); and (D) impact of changing the number of recycles and
if structures from recycled iterations are included in the analysis or discarded. Each bar represents one
data point (each data point is calculated from analyzing 160 measurements).

Interestingly, predictions with the max_seq and extra_seq parameters of 512 and 8, respectively, led44

to results that are similar to those of the 512:1024 test. Similarly, changing max_seq and extra_seq45

to 8:1024 led to results that closely resemble those from the 8:16 test. These results suggest that the46

max_seq parameter is the principal driver of alternative state predictions. This is unsurprising consider-47

ing the different roles played by each parameter: the MSA of length defined by the max_seq argument48

and formed by the sequences randomly selected as cluster centers is passed to the expensive row/column49

attention Evoformer track, while the MSA of length extra_seq skips it. Due to the increased computa-50

tional effort needed for featurization and attention, we expect AF2 to distill significantly more coevolu-51

tionary signal from the MSA of length max_seq, thus changes to max_seq will exert greater influence52

than changes than changes to extra_seq.53
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Finally, we also tested the hypothesis that changing the number of recycles (n_recycles) per seed54

could lead to changes in predicted state distributions by doubling the number of recycles. Interestingly,55

increasing the number of recycles significantly increases the population of the ground state, suggesting56

that the recycling stage plays a role in AF2’s propensity to generate different conformations. Consider-57

ing all of the above, we defined our target-specific parameters for all subsequent kinase predictions as58

follows: max_seq: 256, extra_seq: 512, n_recycles: 3, n_models: 5, n_seeds: 96. Considering its signif-59

icant impact on the distribution of predictions, the optimization of the max_seq parameter is paramount60

for successfully obtaining conformational ensembles when running AF2. While 256 cluster centers (de-61

fined by max_seq = 256) works for Abl1, significantly smaller values are likely to be required for protein62

systems with less available sequence data.63

Molecular Dynamics and WESTPA2 Simulations64

Molecular dynamics simulations of wild-type Abl1 were conducted using the OpenMM software pack-65

age [6] with the amber99sb-ildn force field [7] and the tip3p water model [8] at 300 K and 1 atm. The66

lowest energy Abl1 structure from the PDB 6XR6 [1] NMR ensemble was solvated within a dodec-67

ahedron box and charges were neutralized by replacing a number of solvent atoms with chloride and68

potassium ions. Following solvation, we minimized the energy of each system using a steepest-descent69

algorithm until the maximum force on any given atom was less than 1000 kJ/mol/min or until 50,00070

minimization steps were conducted. We ran the simulations with a 1 fs time step during the equilibration71

phase and a 2 fs time step during the production phase. We equilibrated solvent atoms first for 1 ns72

in the NVT ensemble and then for 1 ns in the NPT ensemble with solute heavy atoms restrained using73

the LINCS algorithm with a spring constant of 1,000 kJ/mol/m2 [9]. The production phase (in the NPT74

ensemble) followed the equilibration phase but without restraints.75

We used the WESTPA2 [10] enhanced-sampling method to access the timescales necessary to simu-76

late the inactivation pathway of Abl1. This was done via two WESTPA2 simulations (ground to I1 and77

I1 to I2). As progress coordinates for the ground to I1 transition, we defined the distance between the78

backbone oxygen of V299 and the center of mass of the carboxyl group of D381 as PC1; and the angle79

formed by the center of mass of the carboxyl group of D381, the backbone oxygen of K379, and the80

center of mass of the aromatic ring of F382 as PC2. For the I1 to I2 transition, we defined the distance81

between the backbone oxygen of L409 and the backbone oxygen of E377 as PC1; and the distance be-82

tween backbone oxygen of L409 and the backbone oxygen of G4598 as PC2. Representative illustrations83

of the progress coordinates used in this protocol are in Supplementary Figure 3, and their distributions84

and start/end state definitions are described in Supplementary Figure 4. We ran WESTPA2 for 300 iter-85

ations for each leg of the transition, with the number of walkers per iteration varying from 64 to 512 due86

to the adaptive binning scheme, and 100 ps per iteration, totaling over 9 us of aggregate simulation time87

for each leg of the transition.88
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Supplementary Figure 3: Progress coordinates used in the WESTPA2 simulations of wild-type Abl1.
(A) Progress coordinates used in sampling the transition from the ground to the I1 state. (B) Progress
coordinates used in sampling the transition from the I1 to the I2 state.

Supplementary Figure 4: Distribution of values for the progress coordinates used in either the
transition from the (A) ground to the I1 state or (B) I1 to I2 state.
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Supplementary Figure 5: Part one of four of the comparison between the values of five structural
elements in the Abl1 kinase core known to change during the I1 to I2 transition as measured from the
ensemble of 160 subsampled AF2 predictions and six frames extracted from a molecular dynamics
simulation trajectory spanning the transition at different time points. Core, P-Loop, and A-Loop
RMSDs are defined as the backbone RMSDs of each AF2 prediction’s kinase core (residues 242 to
459), activation loop (residues 379 to 395), or phosphate-binding loop (residues 244 to 256) vs. the
kinase core, phosphate-binding loop, or activation loop backbone of the MD snapshot selected at each
time point. Distance deltas are defined as the difference in atom pair distances between each AF2
prediction and its respective MD snapshot. Distance 1 corresponds to the distance between the
backbone oxygens of E377 and L409, and Distance 2 corresponds to the distance between the backbone
oxygens of L409 and G457.
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Supplementary Figure 6: Part two of four of the comparison between the values of five structural
elements in the Abl1 kinase core known to change during the I1 to I2 transition as measured from the
ensemble of 160 subsampled AF2 predictions and six frames extracted from a molecular dynamics
simulation trajectory spanning the transition at different time points. Core, P-Loop, and A-Loop
RMSDs are defined as the backbone RMSDs of each AF2 prediction’s kinase core (residues 242 to
459), activation loop (residues 379 to 395), or phosphate-binding loop (residues 244 to 256) vs. the
kinase core, phosphate-binding loop, or activation loop backbone of the MD snapshot selected at each
time point. Distance deltas are defined as the difference in atom pair distances between each AF2
prediction and its respective MD snapshot. Distance 1 corresponds to the distance between the
backbone oxygens of E377 and L409, and Distance 2 corresponds to the distance between the backbone
oxygens of L409 and G457.

7



Supplementary Figure 7: Part three of four of the comparison between the values of five structural
elements in the Abl1 kinase core known to change during the I1 to I2 transition as measured from the
ensemble of 160 subsampled AF2 predictions and six frames extracted from a molecular dynamics
simulation trajectory spanning the transition at different time points. Core, P-Loop, and A-Loop
RMSDs are defined as the backbone RMSDs of each AF2 prediction’s kinase core (residues 242 to
459), activation loop (residues 379 to 395), or phosphate-binding loop (residues 244 to 256) vs. the
kinase core, phosphate-binding loop, or activation loop backbone of the MD snapshot selected at each
time point. Distance deltas are defined as the difference in atom pair distances between each AF2
prediction and its respective MD snapshot. Distance 1 corresponds to the distance between the
backbone oxygens of E377 and L409, and Distance 2 corresponds to the distance between the backbone
oxygens of L409 and G457.
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Supplementary Figure 8: Part four of four of the comparison between the values of five structural
elements in the Abl1 kinase core known to change during the I1 to I2 transition as measured from the
ensemble of 160 subsampled AF2 predictions and six frames extracted from a molecular dynamics
simulation trajectory spanning the transition at different time points. Core, P-Loop, and A-Loop
RMSDs are defined as the backbone RMSDs of each AF2 prediction’s kinase core (residues 242 to
459), activation loop (residues 379 to 395), or phosphate-binding loop (residues 244 to 256) vs. the
kinase core, phosphate-binding loop, or activation loop backbone of the MD snapshot selected at each
time point. Distance deltas are defined as the difference in atom pair distances between each AF2
prediction and its respective MD snapshot. Distance 1 corresponds to the distance between the
backbone oxygens of E377 and L409, and Distance 2 corresponds to the distance between the backbone
oxygens of L409 and G457.
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Abl1 Homolog Sequences Used to Generate Multiple Sequence Align-89

ments90

Supplementary Figure 9: Sequences of the Abl1, Src, and Anc-AS kinase cores used to generate
MSAs as input for subsampled AlphaFold 2.
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Optimization of AF2 Parameters for the Abl1 Protein91

Supplementary Table 1: Optimized AF2 parameters for predicting Abl1 ensembles.

parameter_test max_seq extra_seq n_recycles n_models n_seeds %_notground
t_max_extra_1 32 64 3 5 32 2
t_max_extra_2 64 128 3 5 32 5
t_max_extra_3 128 256 3 5 32 9
t_max_extra_4 256 512 3 5 32 18
t_max_extra_5 512 1024 3 5 32 15
t_max_extra_6 2048 4096 3 5 32 7
t_max_extra_7 4098 8192 3 5 32 6
t_max_extra_8 512 32 3 5 32 18
t_max_extra_9 32 512 3 5 32 1
t_nseeds_1 256 512 3 5 128 12
t_nseeds_2 256 512 3 5 300 12
t_nrecycles_1 32 64 8 5 128 0
t_nrecycles_2 32 64 8 (kept) 5 128 2
t_nrecycles_3 256 512 8 5 128 8
t_nrecycles_4 256 512 8 (kept) 5 128 21

AF2 Predictions of the Relative State Populations of Abl1 Kinase92

Core Mutants93

Supplementary Table 2: Abl1 kinase core mutants and their observed or expected effects on the
relative populations of the active (Ground), inactive 1 (I1), or inactive 2 (I2) states.

Ground I1 I2
Wild-Type 88 6 6

M290L 55 10 35
L301I 25 10 65
M290L + L301I 8 10 82

F382L 90 0 10
F382Y 10 0 90
F382V 5 0 95

I2M 10 0 90
E255V (I2M background) nr nr 45
T315I (I2M background) 93 0 7
E255V + T315i nr nr nr
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Effects of Model Choice94

In its current implementation, AF2 ships with five pre-trained models, which were trained for and applied95

in the CASP14 challenge [11, 12]. The differences between each model are slight, as they are all forked96

from the initial AF2 models. Namely, models (1, 2) were finely tuned with four templates, and models97

(3, 4, 5) did not use templates in their fine-tuning. Besides the use of templates, the models mostly98

diverge in the number of training times and the subsampling level used for training. Key differences99

among models are described in Supplementary Table 3.100

Supplementary Table 3: Summary of differences among the five models shipped with AlphaFold2

Model 1 2 3 4 5
Init. From N/A 1 N/A 3 3
N Templates 4 4 0 0 0
Max Nres 384 256 256 256 256
max_seq 512 512 512 512 512
extra_seq 5120 1024 5120 5120 1024
Training Samples 0.3*10e6 0.6*10e6 1.4*10e6 1.1*10e6 2.4*10e6
Training Time 20h 1d 13h 4d 1h 3d 5d 12h

To measure how each individual model fares at predicting the relative state populations of Abl1 and101

its activating and inactivating mutants, we divided Figure 6 into five plots, one for each model, and102

analyzed the accuracy (Supplementary Figure 10).103
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Supplementary Figure 10: Effects of model choice on predictions of the Abl1 activating and
inactivating mutations. Each plot represents results from 96 independent seeds (32 seeds per replicate,
480 predictions in total across all five models), and error bars are calculated from the sets of triplicates.
Predictions were considered outside of the ground state if their Activation Loop backbone RMSD vs.
the ground state reference (PDB ID 6XR6) was above 3.5 Å. Data are presented as mean values +/-
standard error of the mean.

Notably, models 3, 4, and 5 showed the best accuracy at predicting the effects of the Abl1 mutations,104

especially for the activating mutations. Models 3 and 5 showed the smallest variance, presumably due105

to the larger number of training samples used to generate them. Interestingly, all 5 models incorrectly106

predicted the M290L mutation as strongly inactivating, with models 5 and 2 leading to the most incorrect107

predictions. This unanimous inaccuracy suggests that the factors that lead to the Abl1 M290L mutants108

being incorrectly predicted potentially stem from other parts of the model not affected by the differences109

highlighted in Supplementary Table 3.110

In summary, we observed significant differences in the accuracy of the predictions of relative state111

populations of Abl1 variants between the five models included in the current implementation of AF2.112

It is not in the scope of this study to explore which model is most appropriate for a given test case, but113

we anticipate that the observation that models that were refined in the absence of templates led to more114
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accurate predictions could be useful for further work seeking to answer this and related questions.115

GMCSF Chemical Shift Perturbations116

Supplementary Figure 11: 1H-15H Chemical shift perturbations for mutant GMCSF constructs
relative to wild-type GMCSF peaks. Vertical bars indicate residues whose signal was lost due to
chemical exchange broadening.
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Supplementary Figure 12: Overlay of heteronuclear single quantum coherence measurements from
WT GMCSF and the H83Y mutant showing residues experiencing slow exchange. The appearance of
multiple resonances denotes a shift in the conformational exchange experienced at these residues in the
mutant GMCSF. The relative populations of each conformer can be approximated by the resonance
intensities (or volumes).
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Optimization of AF2 Parameters for the GMCSF Protein117

Supplementary Figure 13: Optimal AF2 subsampling parameters for GMCSF. (Left) Effects of
modifying the max_seqs and extra_seqs values on the diversity of the distances between the H15 and
H83 residues observed, which is a proxy for the opening of the heparin-binding site in GMCSF. (Right)
Effects of modifying the max_seqs and extra_seqs values on the diversity of the root mean square
deviation of atomic positions (RMSD) of the GMCSF backbone with respect to the ground state
reference (the prediction closest to PDB 1CSG [13]). Data are presented as mean values +/- standard
error of the mean.
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GMCSF Conformational Ensemble Predictions118

Supplementary Figure 14: Unusual GMCSF states predicted by subsampled AF2 and the respective
populations of those states. (A) Structure of the most common alternative state predicted by AF2 (A1,
in pink) aligned with and overlain on a ground state prediction (in grey). The distance between H83 in
the reference and in conformation A1 is displayed as a measure of the difference between the
conformations. Also shown are two misfolded/unfolded predictions aligned with and overlain on the
ground state prediction (in grey). (B) AF2 predictions of the relative populations of the A1
conformation and the misfolded/unfolded structures. Conformations were classified as the A1
conformation based on the distance between the H15 and H83 residues (greater than 11 Å) and overall
backbone RMSD vs. ground state reference (greater than 5 A but less than 10 Å), while they were
classified as misfolded/unfolded based on overall backbone RMSD vs. the ground state reference (equal
to or greater than 13 Å). Data are presented as mean values +/- standard error of the mean.
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Supplementary Figure 15: AF2 predictions of the distributions of different GMCSF properties. Every
RMSD measurement was taken with respect to the ground state reference (the prediction closest to PDB
1CSG).

Supplementary Appendix: Additional Test Cases119

In order to measure the potential of our subsampled AF2 approach as a general tool for predicting the120

alternative conformations of proteins and their relative populations, we curated a test set of eight proteins121

with significantly different functions, lengths, conformational landscapes, and evolutionary histories.122

The composition of this test set is summarized below in Supplementary Table 4.123

Supplementary Table 4: Additional test set composition.

Example Measurement Ref. 1 Ref. 2 MSA Depth
Calmodulin Backbone Bent linker (4BW7b) Extended linker (4BW8b) 77210
Fyn SH3 C-Term. BB Ordered C-Term. (Pred.) Disordered C-Term. (Pred.) 50521
AlkB Binding site BB Closed (3I49a) Open (Pred.) 14236
CCR5 Backbone Inactive (5UIWa) Active (7F1Qr) 62583
LmrP Backbone Outward-Facing (6T1Za) Inward-Facing (Pred.) 4724
LAT1 Backbone Inward-Facing (6IRSb) Outward-Facing (7DSQb) 53314
Aurora A A-Loop BB Ground/Active (6XR6a) I2/Inactive (6XRGa) 820754
C. Anhyd. IV Backbone Ground (3FE4a) Ground (Pred.) 40033

18



Importantly, all the proteins in the test set with the exception of Carbonic Anhydrase (which is in-124

cluded as a negative control) are known to occupy distinct conformational states. Three proteins in the125

test set have been previously studied in other AlphaFold subsampling studies (LmrP, LAT1, and CCR5),126

with mixed results [14]. Below, we describe our prediction results in detail for each protein in the test127

set.128

CCR5129

The C-C Chemokine Receptor Type 5 (CCR5) is an immune system protein expressed on the surface130

of white blood cells [15]. Previous studies seeking to predict different conformations of CCR5 using131

subsampled AlphaFold were not successful in predicting significantly different alternative conformations132

of CCR5, such as the active conformation shown in PDB 7F1Qr [14, 16]. This lack of resolution in133

subsampled AF was attributed to biases introduced by the training set composition, as the alternative134

conformation was published in the PDB in 2021 and thus was not included in AlphaFold’s training set135

[16].136

To test if our subsampled AF2 approach fared any better than previous attempts at predicting alter-137

native conformations of CCR5, we made a series of predictions of CCR5 with different subsampling138

conditions ranging from 4:8 to 1024:2048 (max_seq:extra_seq), with a total of 480 individual predic-139

tions for each subsampling condition (96 seeds times five models). The results of these predictions are140

summarized in Supplementary Figure 16.141
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Supplementary Figure 16: Predictions for the CCR5 system using the subsampled AF2 methodology
described in this study. (A) (left) Structural models obtained from the prediction method, aligned to the
top-ranked prediction by pLDDT (AF2’s confidence metric) and overlaid on top of each other in
different colors; (middle) Rendering of the conformational references used to summarize the prediction
results in the backbone RMSD vs. references scatterplots, each structure is colored according to its
accompanying label; and (right) Alternate view of the structural references. (B) Bidimensional
projection of four sample prediction results, comparing the similarity of each prediction to either Ref. 1
(inactive, PDB ID 5UIWa) or Ref. 2 (active, PDB ID 7F1Qr) by a backbone RMSD metric. Predictions
are colored by average pLDDT, which is a metric of AlphaFold2’s confidence in the resulting model.
(C) Distribution of backbone RMSD values vs. each reference for each subsampling condition tested
(conditions 4:8 through 16:32 omitted from the plot to avoid distortion of the X axis).
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Surprisingly and in contrast with previous methods, our approach leads to predictions of CCR5 both142

in the ground and alternative state with most subsampling conditions, with good coverage of in-between143

conformations along the putative transition pathway. Decreasing the level of subsampling leads to re-144

duced conformational diversity, as observed in the Abl1 and GMCSF examples. Interestingly, at low sub-145

sampling levels (512:1024, for instance), the CCR5 predictions still strongly sample both tested states,146

but an intermediate conformation which is significantly closer to the inactive reference is predicted more147

often. This effect is similar to the one observed by del Alamo and collaborators in their predictions of148

different conformations of CCR5 [14], and again reinforces the goldilocks principle of choosing sub-149

sampling conditions for predicting the relative populations of alternative states of a given system (that150

is, identifying the subsampling parameters that minimize the prediction of unfolded/nonphysical states151

while maximizing conformational diversity along a path defined by putative states as endpoints).152

Finally, we hypothesize that our approach successfully predicts CCR5 in its active state (similar to153

PDB ID 7F1Qr) while previous subsampling methods fell short due primarily to the choice of using a154

deep MSA built with jackhmmer instead of mmseqs2. Recent works have shown that MSA depth and155

coverage directly affect AlphaFold2’s accuracy [17], which is in line with our observations of how these156

factors impacted the CCR5 predictions.157

LmrP158

Multidrug transporters such as LmrP and LAT1 shift between two major states in their transport cycles,159

the outward-facing (OF) and the inward-facing (IF) conformations [18, 19]. In the CASP14 challenge,160

AlphaFold predicted LmrP with the highest confidence in the inward-facing conformation [20]. This is161

intriguing because previous studies have found that LmrP predominantly occupies the outward-facing162

conformation [19], and although there is a PDB structure of LmrP in the outward-facing conformation163

(PDB ID 6T1Za), it was published in 2020 and thus was not included in AlphaFold’s training dataset164

[21]. Given this, the field’s leading hypothesis for the preferential prediction of an alternate state of165

LmrP by AlphaFold was that other transporters in the IF conformation were present in the AlphaFold166

training dataset, leading to bias towards the prediction of LmrP in the IF conformation [14, 20].167

In stark contrast to previous studies that predicted the structure of LmrP with AlphaFold [20], and168

as a direct refutation of the training bias hypothesis, our approach successfully predicts LmrP more169

frequently in the most stable state (OF) in certain subsampling conditions. These predictions occur in170

subsampling values below 64:128, after which the conformational preference is shifted and the IF state171

is predicted more often (Supplementary Figure 17).172
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Supplementary Figure 17: Predictions for the LmrP system using the subsampled AF2 methodology
described in this study. (A) (left) Structural models obtained from the prediction method, aligned to the
top-ranked prediction by pLDDT (AF2’s confidence metric) and overlaid on top of each other in
different colors; (middle) Rendering of the conformational references used to summarize the prediction
results in the backbone RMSD vs. references scatterplots. Each structure is colored according to its
accompanying label; and (right) alternate view of the structural references. (B) Bidimensional
projection of four sample prediction results, comparing the similarity of each prediction to either Ref. 1
(outward-facing, PDB ID 6T1Za) or Ref. 2 (inward-facing, AF2 prediction) by a backbone RMSD
metric. Predictions are colored by average pLDDT, which is a metric for AlphaFold2’s confidence in
the resulting model. (C) Distribution of backbone RMSD values vs. each reference for each
subsampling condition tested.
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This prediction preference shift suggests that, in some cases, the selection of the appropriate subsam-173

pling conditions without prior knowledge is non-trivial. It is not within the scope of this study to resolve174

a one-size-fits-all approach for selecting subsampling conditions, but a few observations could form a175

general outline for further studies seeking to find a common heuristic toward that goal. As an example,176

we observed that subsampling levels that led to incorrect relative state populations (such as 128:256 and177

512:1024) also led to the prediction of a significant number of conformations that did not closely map to178

the IF to OF putative pathway. The subsampling condition that mostly mirrored experimentally resolved179

conformational state populations (16:32) had very few predictions outside of that diagonal. This points180

towards a potential parameter for further evaluating subsampling conditions if the goal is to quantify181

relative state populations without any prior knowledge of the system.182

Finally, we hypothesize that our approach successfully predicts LmrP in its OF state more frequently183

while previous subsampling methods failed due primarily to the choice of using a deep MSA built with184

jackhmmer instead of mmseqs2. Recent studies have shown that MSA depth and coverage directly affect185

AlphaFold2’s accuracy [17], which is in line with our observations for how these factors impacted the186

LMRP and CCR5 predictions. Notably, predictions of LmrP with an MSA built from mmseqs2 only187

have the IF state as the most populated conformation regardless of subsampling level (Supplementary188

Figure 19), which we know to be inaccurate.189

Effects of MSA Depth and Content190

Considering the contrasting results obtained from the predictions made from multiple sequence align-191

ments (MSAs) built from either the jackhmmer or mmseqs2 method, we sought to explore how MSA192

depth and content affected subsampled’s AF2 ability to predict alternative conformations and relative193

state populations. The rationale for this test stems from the fact that jackhmmer frequently assembles194

significantly deeper MSAs than mmseqs2, due to differences in the queried datasets (jackhmmer searches195

UniRef90, smallbfd, and mgnify, while mmseqs2 searches UniRef100, PDB70, and an environmental se-196

quence dataset) and due to mmseqs2 including an early stop heuristic to minimize the search space after197

a threshold of sequences is found [22].198

Initially, we evaluated how wild-type Abl1 kinase core ensembles varied between predictions made199

with either the MSA built with jackhmmer (n = 614,759 sequences) or with mmseqs2 (n = 30,502 se-200

quences). As an important control, we also evaluated predictions generated with a modified jackhmmer201

MSA, truncated at n = 30,502 sequences, in order to isolate the potential contributions of MSA composi-202

tion beyond just depth. Importantly, this truncated jackhmmer MSA has the same number of sequences203

as the mmseqs2 MSA, but the sequences in the former are significantly more similar to each other than204

in the latter. As an additional control, we also made predictions with just the Abl1 kinase core sequence205

alone, obliviating any coevolutionary signal. The results of this analysis are summarized in Supplemen-206

tary Figure 18.207
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Supplementary Figure 18: Effects of MSA length and composition in AlphaFold2’s capacity for
predicting different conformations of the Abl1 kinase domain. (A) Bidimensional projection of
prediction ensembles for the Abl1 kinase core in subsampling conditions 256:512 using different MSA
lengths and compositions, summarized by the backbone RMSD of the A-Loop vs. the Ground (PDB ID
6XR6) or the I2 (PDB ID 6XRG) reference. Points are colored by pLDDT, which is a metric of AF2’s
confidence in the prediction. (B) Results for each prediction ensemble in different subsampling
conditions ranging from 4:8 to 512:1024 with different MSA lengths and compositions, summarized as
the backbone RMSD of the A-Loop of each prediction vs. the ground reference (PDB ID 6XR6). In
both A and B, each dot represents a single prediction (n = 480).

Crucially, the ensemble resulting from the single sequence prediction leads to mostly unfolded struc-208

tures that are not similar to the known organization of the Abl1 kinase core (or of any kinase core). This209
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suggests that, in the absence of templates, the presence of a coevolutionary signal from the input MSA is210

essential for accurately predicting kinase core conformations. In line with previous observations for the211

CCR5 and LmrP examples, the predictions using the mmseqs2 MSA as input led to considerably fewer212

intermediate conformation predictions for the Abl1 kinase core than those from the jackhmmer MSA.213

Interestingly, the truncated jackhammer MSA designed to be the same depth as the mmseqs2 MSA still214

led to considerably more conformations along the Ground to I2 path in Abl1 kinase core predictions.215

These results match recent studies that found that MSA depth leads to increased accuracy in AF2 pre-216

dictions [17], while also recapitulating previous results that found that MSA entropy (that is, the average217

distance between pairs of sequences) also plays a significant role. Although it is within the scope of this218

study to answer why this is the case, we hypothesize that MSAs with lower entropy cause AF2 to more219

easily distill the coevolutionary signal pertaining to conformations that would otherwise be lost in MSAs220

with larger distances between sequences.221

Considering the above and the observation that our subsampled AF2 approach using MSAs from222

jackhmmer succeeded at sampling challenges that were not met by previous studies using MSAs from223

mmseqs2, we repeated the CCR5 and LmrP predictions with MSAs from mmseqs2 and contrasted the224

results with our previously discussed prediction ensembles (generated with the jackhmmer MSAs). The225

results of this analysis are summarized in Supplementary Figure 19.226

Supplementary Figure 19: Effects of MSA length and composition in AlphaFold2’s capacity for
predicting different conformations of CCR5 and LmrP. (A) Bidimensional projection of results for
ensembles of CCR5 predictions generated with either the MSA from jackhmmer or from mmseqs2.
Results are summarized according to a backbone RMSD metric vs. either the inactive state (Ref. 1,
PDB ID 5UIWa), or the active state (Ref. 2, PDB ID 7F1Qr). (B) Distribution of LmrP predictions
according to a backbone RMSD metric vs. the outward-facing conformation (Ref. 1, PDB ID 6T1Za).
Ensembles were predicted from an MSA stemming from either jackhmmer (left) or mmseqs2 (right).

In the CCR5 example, predictions by del Alamo and collaborators did not lead to structures that sig-227

nificantly diverged from the conformation present in the AlphaFold training set [14]. These results are228
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replicated by our predictions with the mmseqs2 MSA (n = 10,066 sequences), where the vast majority of229

predictions in the ensemble represent the inactive form, which is present in the AF training set (inactive.230

PDB ID 5UIWa). As previously discussed in Supplementary Figure 16 and Supplementary Figure 19,231

our predictions with the MSA built from jackhmmer (n = 62,583 sequences) frequently populate the al-232

ternative state (active, PDB ID 7F1Qr, not present in the AF training set) and intermediate conformations233

between both states.234

Additionally, both del Alamo and collaborators and the original implementation of AlphaFold for the235

CASP14 challenge found LmrP to be predicted more frequently in its inward-facing conformation [14,236

20], despite the outward-facing conformation being the most frequently populated according to experi-237

mental data [19]. In Supplementary Figure 19, we show that predictions with the MSA from mmseqs2238

(n = 628 sequences) lead to ensembles where the inward-facing conformation of LmrP is predicted in239

either similar frequencies to the outward-facing conformation, or exponentially more frequently. This is240

in stark contrast to the previously discussed predictions created from the jackhmmer MSA (n = 4,724241

sequences), in which the outward-facing conformation is correctly predicted as the dominant state in242

certain subsampling conditions.243

All in all, these results highlight the importance of considering MSA depth and entropy when seeking244

to predict the different conformational states of proteins and their relative state populations and should245

pave the way for future studies seeking to better understand what specific MSA elements are the most246

important for conformational preference in AF2 predictions.247

LAT1248

LAT1 is another transporter that converts between the inward-facing and outward-facing configurations249

[23], and was also tested in previous subsampling AF2 studies [14]. Contrary to CCR5, previous studies250

were successful in predicting both major conformations of LAT1 with AF2 [14]. To see how our approach251

fares at replicating the above results considering the contrasting results we obtained for CCR5 and LmrP,252

we made predictions for LAT1 using the previously described alternative subsampling conditions (4:8253

to 1024:2048 max_seq:extra_seq, 480 individual predictions - 96 seeds * five models) and analyzed254

for the presence of both IF and OF conformations and putative in-between states. The results of these255

predictions are described in Supplementary Figure 20.256
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Supplementary Figure 20: Predictions for the LAT1 system using the subsampled AF2 methodology
described in this study. (A) (left) Structural models obtained from the prediction method, aligned to the
top-ranked prediction by pLDDT (AF2’s confidence metric) and overlaid on top of each other in
different colors; (middle) Rendering of the conformational references used to summarize the prediction
results in the backbone RMSD vs. references scatterplots. Each structure is colored according to its
accompanying label; and (right) alternate view of the structural references. (B) Bidimensional
projection of four sample prediction results, comparing the similarity of each prediction to either Ref. 1
(inward-facing, PDB ID 6IRSb) or Ref. 2 (outward-facing, 7DSQb) by a backbone RMSD metric.
Predictions are colored by average pLDDT, which is a metric for AlphaFold2’s confidence in the
resulting model. (C) Distribution of backbone RMSD values vs. each reference for each subsampling
condition tested.
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Notably, our predictions closely resemble those obtained by del Alamo and collaborators in terms of257

the distribution between conformations at different subsampling conditions [14], with lower subsampling258

conditions such as 256:512 and above leading to predictions primarily of the IF state.259

Calmodulin260

Calmodulin is a 16.7 kDa (148 AA), highly conserved calcium-binding protein composed of two sym-261

metrical terminal globular domains connected by a flexible linker [24]. Each terminal domain contains a262

pair of EF-hand motifs, for a total of four calcium binding sites [25]. In the absence of calcium and/or in263

the presence of binders, Calmodulin assumes a collapsed and compact form, with the central linker dis-264

ordered [26, 27]. The apo version of the protein becomes highly organized upon calcium saturation, and265

the central linker forms a mostly stable helix that converts between a fully extended and a bent confor-266

mation in solution [27]. Importantly, E84 deletions in Calmodulin are known to change the propensity267

for the formation of the extended form of calcium-saturated apo Calmodulin in solution [28], and the268

M124L mutation has similar effects to E84K in biochemical assays [29].269

Considering the above, we sought to test how our subsampled AF2 approach fares at predicting the270

interesting intrinsic dynamics of calcium-saturated apo calmodulin, as well as the effects of the two point271

mutations (E84K and M124L) suspected to alter its conformational equilibrium [28, 29]. To do so, we272

first predicted the structure of chicken Calmodulin using subsampled AF2 with different subsampling273

conditions ranging from 4:8 to 1024:2048 (max_seq:extra_seq), with 480 individual predictions for each274

condition (96 seeds times 5 models) and evaluated the resulting ensembles (Supplementary Figure 21).275
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Supplementary Figure 21: Predictions for the Calmodulin system using the subsampled AF2
methodology described in this study. (A) (left) Structural models obtained from the prediction method,
aligned to the top-ranked prediction by pLDDT (AF2’s confidence metric) and overlaid on top of each
other in different colors; (middle) Rendering of the conformational references used to summarize the
prediction results in the RMSD vs. references scatterplots. Each structure is colored according to its
accompanying label; and (right) Positions of residues suspected to affect relative state populations when
mutated. (B) Bidimensional projection of four sample prediction results, comparing the similarity of
each prediction to either Ref. 1 (bent central linker, PDB ID 4BW7b) or Ref. 2 (extended central linker,
PDB ID 4BW8b) using a backbone RMSD metric. Predictions are colored by average pLDDT, which is
a metric for AlphaFold2’s confidence in the resulting model. (C) Distribution of backbone RMSD
values vs. each reference for each subsampling condition tested (4:8 and 8:16 are omitted due to a high
frequency of unfolded predictions, which would warp the X axis).

Analysis revealed that the vast majority of the predicted structures adopt the ordered conformation276

(Supplementary Figure 21A). Although AF2 does not allow for the inclusion of ions in the modeling pro-277

cess, this preference towards the ordered conformation might be due to training set composition biases.278
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Importantly, for most of the subsampling conditions, the ensembles presented a bimodal distribution of279

conformations, with the first mode representing the ordered conformation of Calmodulin with the cen-280

tral linker bent, consistent with previous studies that found that calcium-saturated chicken Calmodulin281

assumes this conformation in solution [30]. The other mode, significantly less populated, corresponds to282

the ordered Calmodulin conformation with the fully extended central linker [28].283

Besides the identification of two significantly populated conformations of calcium-saturated apo284

chicken Calmodulin in the wild-type prediction, subsampling conditions above 8:16 also led to the285

prediction of a range of intermediate conformations between each stable state (Supplementary Figure286

21B). Crucially, the intermediate conformations appear to cover most of the range between the bent and287

extended states.288

Considering the success of subsampled AF2’s approach in predicting the two main states of ordered289

chicken Calmodulin, we sought to test if our heuristic could also correctly predict the suspected effects290

of the E84K and M124L mutations. For this comparison, we chose the 256:512 subsampling conditions291

because they led to the best coverage of the putative path between the two main states in the wild-type292

predictions.293

As seen in Supplementary Figure 22, our approach predicts that the E84K mutation increases the294

propensity for forming the extended linker, which is a phenotype similar to E84 deletions [28], as that295

state’s relative population is significantly increased in our E84K predictions. Additionally, the M124L296

mutation has similar effects to E84K in biochemical assays and is hypothesized to also affect linker297

conformation [29]. This potential similarity is captured by the subsampled AF2 predictions for the298

M124L mutant, which led to a reduced population of the bent conformation, although not as drastic as299

the E84K mutation.300

Supplementary Figure 22: Predictions for Calmodulin mutants. (A) Bidimensional projection of
predictions for the (left) E84K mutant with 256:512 subsampling conditions and (right) M124L mutant
with 256:512 subsampling conditions, comparing the similarity of each prediction to either Ref. 1 (bent
central linker, PDB ID 4BW7b) or Ref. 2 (extended central linker, PDB ID 4BW8a). (B) Distribution of
backbone RMSD values vs. each reference for the wild-type reference and for the tested mutants in the
256:512 subsampling conditions.
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In summary, our subsampled AF2 approach correctly identified the two main states of calcium-301

saturated chicken Calmodulin. The resulting predictions are distributed in a manner that correlates with302

experimentally determined conformational preferences. Finally, our approach also correctly predicted303

the effects of two mutations suspected to decrease the stability of the bent linker state, by leading to304

ensembles in which the extended state is predicted more frequently.305

Fyn-SH3 Triple Mutant306

The Src-homology 3 (SH3) is a protein domain composed of approximately 65 amino acids [31]. It is307

found in a large number of eukaryotic proteins related to signal transduction and is functionally important308

for protein/protein interactions [31, 32]. Fyn, a kinase of the Src family, contains an SH3 domain (Fyn-309

SH3) that is crucial for regulating kinase activity [33, 34]. Fyn-SH3 has been previously used as a model310

for studying protein folding [35–38], and information about the relative population of different states311

is abundant [39]. Further, substitutions in Fyn-SH3 such as the triple mutant A39V+N53P+V55L are312

known to cause it to interact strongly with other copies of itself, leading to aggregation [39]. Importantly,313

these mutations lead to the aggregation phenotype by disrupting the order of the C-terminus of Fyn-SH3,314

which preferentially forms a stable beta-sheet [39]. In the mutant proteins, the C-terminus of Fyn-SH3 is315

significantly less stable during the folding process, exposing the aggregation-prone amino-terminal beta316

strand [39].317

The interesting dynamics of SH3 domains and the extensive literature pertaining to altered conforma-318

tional equilibriums in response to mutations make Fyn-SH3 an excellent challenge for our subsampled319

AF2 method. We started by making predictions of the triple mutant form of Fyn-SH3 (residues 7 to320

63, based on PDB ID 2LP5a) using different subsampling levels, ranging from 4:8 to 1024:2048, with a321

sample size of 480 predictions per ensemble (96 seeds * 5 models). The results of this are presented in322

Supplementary Figure 23.323
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Supplementary Figure 23: Predictions for the Fyn-SH3 triple mutant/wild-type system using the
subsampled AF2 methodology described in this study. (A) (left) Structural models obtained from the
prediction method, aligned to the top-ranked prediction by pLDDT (AF2’s confidence metric) and
overlaid on top of each other in different colors; (middle) Rendering of the conformational references
used to summarize the prediction results in the C-terminus backbone RMSD vs. references scatterplots.
Each structure is colored according to its accompanying label; and (right) position of residues known to
affect relative state populations when mutated. (B) Bidimensional projection of two sample prediction
results for triple mutant Fyn-SH3 (top) or to wild-type Fyn-SH3 (bottom) comparing the similarity of
each prediction to either Ref. 1 (ordered C-terminus, chosen from the AF2 prediction ensemble) or Ref.
2 (disordered C-terminus, chosen from the AF2 prediction ensemble) by a C-terminus backbone RMSD
metric. Predictions are colored by average pLDDT, which is a metric of AlphaFold2’s confidence in the
resulting model. (C) Distribution of C-terminus backbone RMSD values vs. each reference for each
subsampling condition tested for triple mutant Fyn-SH3.

The decision to start with the triple mutant is rooted in the fact that the conformation with the disor-324
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dered C-terminus is stabilized in the triple mutant, with a population of 2%, and has not been detected in325

the wild-type.326

Surprisingly, only the subsampling conditions 4:8 and 8:16 (max_seq:extra_seq) led to the detection327

of the Fyn-SH3 state containing a disordered C-terminus. This might stem from the very low population328

of this state even in the triple mutant, which has been measured experimentally as about 2% [39], and/or329

from potential biases stemming from training set composition (most SH3 structures in the PDB have330

an ordered C-terminus). Additionally, only a handful of predictions were found to be in the alternative331

conformation (six in the 8:16 subsampling conditions, from a total of 480 predictions, or 1.25% of332

the total), and no significant coverage of intermediate conformations between ordered and disordered333

C-terminus was found in any subsampling condition. These results hint at a resolution limitation of334

subsampled AF2, which did not perform well at predicting intermediate conformations in this example,335

and required extreme subsampling to detect the disordered C-terminus conformation of triple mutant336

Fyn-SH3.337

Next, we repeated our prediction heuristic for wild-type Fyn-SH3, which led to no predictions of338

conformations with the disordered C-terminus, regardless of subsampling level (Supplementary Figure339

23B). This is not unexpected, as this conformation in wild-type Fyn-SH3 is present in presumably un-340

detectable levels (if at all), and the A39V+N53P+V55L mutations are required to stabilize it sufficiently341

for detection. Considering the potential resolution limitations described above and the presumably ex-342

tremely low population of this conformation in wild-type Fyn-SH3, it is unsurprising that AF2 was not343

able to predict it, even with extreme subsampling levels.344

AlkB345

Alkylation B (AlkB) is a bacterial protein that is involved in the adaptive response by reversing alkylation346

damage from single-stranded DNA [40]. In solution, AlkB occupies two predominant conformations,347

open and closed, with the closed conformation being significantly more stable in the presence of zinc348

and of the co-substrate 2OG. [41].349

Given the presence of two distinct conformational states in AlkB and literature pertaining to their350

relative state populations, we sought to measure how our subsampled AF2 approach fared at predicting351

the two major states of AlkB in the right proportion. As with the previous examples, we made AlkB352

predictions with subsampling conditions ranging from 4:8 to 1024:2048, with 480 individual predictions353

per condition (96 seeds time five models). The results of the AlkB predictions with subsampled AF2 are354

described in Supplementary Figure 24.355
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Supplementary Figure 24: Predictions for the AlkB system using the subsampled AF2 methodology
described in this study. (A) (left) Structural models obtained from the prediction method, aligned to the
top-ranked prediction by pLDDT (AF2’s confidence metric) and overlaid on top of each other in
different colors; (middle) Rendering of the conformational references used to summarize the prediction
results in the binding site backbone RMSD vs. references scatterplots. Each structure is colored
according to its accompanying label; and (right) Comparison between the closed conformation of AlkB
and a slightly open conformation that is predicted frequently with certain subsampling conditions. (B)
Bidimensional projection of four sample prediction results, comparing the similarity of each prediction
to either Ref. 1 (closed binding site, PDB ID 3I49a) or Ref. 2 (open binding site, AF2 prediction) by a
C-terminus backbone RMSD metric. Predictions are colored by average pLDDT, which is a metric of
AlphaFold2’s confidence in the resulting model. (C) Distribution of binding site backbone RMSD
values vs. each reference for each subsampling condition tested (subsampling condition 4:8 omitted
from the plot to avoid distortion of the X axis).

Importantly, our subsampled AF2 approach correctly captures the open and closed conformations of356

AlkB with certain subsampling conditions such as 8:16, with strong coverage of intermediate confor-357
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mations in the putative transition. The closed conformation is predicted far more frequently than the358

open conformation, which is interesting as that conformation only becomes dominant upon the binding359

of zinc and of the co-substrate 2OG [40], indicating a potential bias in AF2’s predictions that cause the360

method to preferentially predict the bound form of the AlkB even in the absence of explicit substrate or361

ion coordination. Interestingly and similar to the CCR5 example, reducing subsampling levels leads to a362

reduction in conformational diversity, to the point that the proper “open” conformation is not predicted363

after max_seq:extra_seq values of 16:32. The ensembles resulting from predictions above this threshold364

are still strongly bimodal, but the conformational change between the ground state and the alternative365

state is very minute, although it is still on the pathway towards the open conformation.366

Ultimately, our subsampled AF2 approach was successful in predicting both predominant confor-367

mations of AlkB, although the proportions of each prediction did not match what is expected in the368

literature for the apo form of the enzyme. The observed effect of loss of conformational diversity at369

lower subsampling levels is similar to the one observed in the Abl1, and GMCSF examples, highlighting370

the importance of choosing appropriate subsampling conditions for predicting the alternative states of a371

given system.372

Aurora Kinase A373

Aurora A is a serine/threonine kinase involved in crucial processes during mitosis and meiosis, playing374

a central role in cell proliferation [42]. As with Abl1, Src, and other kinases, Aurora A can shift between375

active and inactive forms through a conformational change know as the DFG flip pathway [43]. Improper376

regulation of Aurora A kinase activity can be remediated with kinase inhibitors, although that can be377

challenging without causing off-site effects [44]. To circumvent this problem, inhibitors selective for378

Aurora A kinase have been discovered and/or designed, including the inhibitor known as MLN8054 [45,379

46].380

Interestingly, MLN8054 stands out from other kinase inhibitors because it is thought to induce and381

bind to the “DFG-up” conformation in Aurora A [47]. Notably, this conformation is theorized to be an382

intermediate conformation in the kinase inactivation pathway (DFG flip) that is presumably at too low383

occupancy to be detected with NMR methods in other kinases such as Abl1 [1]. Since MLN805 pref-384

erentially binds to the DFG-up conformation, and MLN8054 is highly selective towards Aurora Kinase385

A, we hypothesize that the intermediate conformations in the inactivation pathway might be consider-386

ably more stable in Aurora Kinase A, and that our subsampled AF2 approach could detect this change387

in stability. This hypothesis is supported by the observation that Imatinib, which binds to the DFG-out388

conformation of kinases, is highly selective towards Abl1, which occupies the DFG-out conformation389

significantly more often than Src [48], a phenotype that is captured by subsampled AF2.390

To test if the Aurora A kinase domain occupies intermediate conformations in the inactivation path-391

way more frequently than other kinases such as Abl1, we applied our subsampled AF2 protocol with the392

Aurora A kinase core, using AF2 to make predictions with subsampling parameters ranging from 4:8 to393

1024:2048 (max_seq:extra_seq), totaling 480 predictions per condition (96 independent seeds times five394

models). The results of these predictions are summarized in Supplementary Figure 25.395
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Supplementary Figure 25: Predictions for the Aurora Kinase A system using the subsampled AF2
methodology described in this study. (A) (left) Structural models obtained from the prediction method,
aligned to the top-ranked prediction by pLDDT (AF2’s confidence metric) and overlaid on top of each
other in different colors; (middle) Rendering of the conformational references used to summarize the
prediction results in the A-Loop backbone RMSD vs. references scatterplots. Each structure is colored
according to its accompanying label; and (right) Comparison between the ground-like state, I2-like
state, and a putative intermediate conformation that is significantly enriched in the Aurora Kinase A
predictions. (B) Bidimensional projection of four sample prediction results, comparing the similarity of
each prediction to either Ref. 1 (ground-like) or Ref. 2 (i2-like) by a A-Loop backbone RMSD metric.
Predictions are colored by average pLDDT, which is a metric of AlphaFold2’s confidence in the
resulting model. (C) Distribution of A-Loop backbone RMSD values vs. each reference for each
subsampling condition tested (subsampling conditions 4:8 through 8:16 omitted from the plot to avoid
distortion of the X axis).
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Curiously, our Aurora Kinase A prediction ensembles differ from the Abl1 and Src predictions in396

that the resulting RMSD distributions vs. known references (Ground or I2) is trimodal in certain sub-397

sampling conditions (such as 256:512 or 512:1024), with a putative intermediate conformation being398

predicted with similar frequencies than Ground-like conformations. We speculate that the enrichment of399

this intermediate conformation in Aurora Kinase A when compared to Abl1 or Src provides support to400

the hypothesis that intermediate states might be occupied more frequently in Aurora A.401

Carbonic Anhydrase402

Carbonic Anhydrase (CA) is an enzyme that helps maintain acid-base balance by catalyzing the inter-403

conversion between carbon dioxide and water and the dissociated ions of carbonic acid [49, 50]. We404

included CA in the analysis because its enzymatic domain is knotted and shows very little conforma-405

tional mobility [50, 51], so it is a welcome control case to measure if our subsampled AF2 approach406

might be exaggerating the frequency and amplitude of conformational changes in proteins. For this, we407

repeated the experimental routine described for all of our previous systems, making predictions for sub-408

sampling conditions 4:8 to 1024:2048, with 480 individual predictions for each condition (96 seeds times409

five models) for human Carbonic Anhydrase VI [50]. The results for the CA predictions are described in410

Supplementary Figure 26.411
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Supplementary Figure 26: Predictions for the human Carbonic Anhydrase VI system using the
subsampled AF2 methodology described in this study. (A) (left) Structural models obtained from the
prediction method, aligned to the top-ranked prediction by pLDDT (AF2’s confidence metric) and
overlaid on top of each other in different colors; (middle) Rendering of the conformational references
used to summarize the predictions in the backbone RMSD vs. reference scatterplots. Each structure is
colored according to its accompanying label; and (right) alternate view of the structural references. (B)
Bidimensional projection of four sample predictions, comparing the similarity of each prediction to
either Ref. 1 (human CA VI, AF2 prediction most similar to PDB ID 3FE4a) or Ref. 2 (bottom-ranked
structure by pLDDT) by a backbone RMSD metric. Predictions are colored by average pLDDT, which
is a metric of AlphaFold2’s confidence in the resulting model. (C) Distribution of backbone RMSD
values vs. each reference for each subsampling condition tested (subsampling conditions 4:8 and 8:16
are omitted from the plots to avoid distorting the X axis).
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Notably, every subsampling condition above 16:32 led to predictions with extremely small confor-412

mational diversity for Carbonic Anhydrase, and conditions below that threshold led to predictions of413

mostly unfolded/misfolded structures that do not correspond to known conformational states of CA. As414

previously mentioned, the amplitude of conformational changes in CA across each predicted ensemble is415

minute and mostly provoked by the dynamics of a small flexible loop (residues 116-120) in CA VI. Fur-416

ther analysis and comparison with other prediction sets show that other structural elements of Carbonic417

Anhydrase, which have no other known conformational states, are very rigid across predictions.418

These results are not unexpected and highlight the point previously illustrated by the distribution of419

RMSD values vs. ground or alternative states in previous examples, which is that subsampled AF2 with420

optimized subsampling parameters is correctly predicting conformational changes in domains known to421

change conformation or to be flexible, instead of randomly predicting dynamics across protein back-422

bones.423

As a positive control of random predictions of dynamics, we point to extreme subsampling conditions424

such as 4:8 in the CA and other examples, where the resulting ensemble is extremely diverse with many425

different conformations that are, to the best of our knowledge, not representative of actual states.426

Additional Negative Controls427

In addition to the Carbonic Anhydrase VI test, which is a protein with very little conformational mobility428

across most of its backbone, we also sought to test if subsampled AF2 was correctly predicting the rigid-429

ity of structural elements known to not be mobile even in proteins that undergo significant conformational430

changes.431

For that test, we measured the backbone RMSD vs. the ground and alternative references from sub-432

sampled AF2 prediction ensembles of two structural elements known to be relatively immobile belonging433

to either the Abl1 kinase core or the AlkB enzyme. For the Abl1 kinase core, we chose residue range434

419-434, as that forms a structural helix in the C-lobe that is seldom disrupted and not involved in the435

activation/inactivation pathway. For the AlKB test case, we chose the residue range 150-200, which436

forms half of the beta-sandwich in AlkB and is known to be stable and not involved in AlkB opening and437

closing. The results of this analysis, as well as comparisons with bona fide structural changes observed438

in other structural elements of these example proteins, are summarized in Supplementary Figure 27.439
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Supplementary Figure 27: Comparison of prediction results using subsampled AF2 for mobile and
rigid structural elements of the Abl1 kinase core and of AlkB. (A) (left) Superposition of structural
models of the Abl1 kinase core in the active or inactive conformations with residue range 419-434
colored in red in the active core, and in blue in the inactive core, (right) Superposition of structural
models of the AlkB enzyme in the closed or open conformations with residue range 150-200 colored in
yellow in the closed state, and in cyan in the open state (B) (left) Bidimensional projection of results
from the Abl1 kinase core prediction ensemble with 256:512 subsampling parameters, comparing the
backbone RMSD distribution vs. the inactive and vs. the active references for the mobile activation
loop (top) or for the rigid helix formed by residues 419-434 (bottom); (right) Bidimensional projection
of results from the AlkB prediction ensemble with 1024:2048 subsampling parameters, comparing the
backbone RMSD distribution vs. the closed and vs. the open references for the mobile binding site (top)
or for the rigid beta sheets formed by residues 150-200 (bottom).

Notably, within both prediction ensembles, the backbone RMSD vs. references for the rigid elements440

did not cross the 0.5 A threshold, as opposed to the known mobile elements that ranged up to 15 A441

in the case of Abl1. Additionally, the distribution of RMSDs for the rigid elements did not follow442

either the signature downwards diagonal (strong negative correlation) observed in predictions covering443

a conformational change, or the upwards diagonal (strong positive correlation) observed in predictions444

that diverge significantly from both references. Combined, these results suggest that AF2 is correctly445

predicting rigid structural elements to be rigid and mobile structural elements to be mobile in Abl1 and446

AlkB in the tested subsampling conditions.447
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Statistics of Measurements448

In order to measure the significance of the differences observed in structural ensembles for the multiple449

wild-type vs. variants predictions generated in this study, we used a Kruskal-Wallis H-test between each450

Wild-Type/variant pair. A sample of the results of this analysis are summarized in Supplementary Table451

4. Complete results are available in the GitHub repository used for data deposition in this study [52].452

p_value h_stat trial test sample_size
1 0 GMCSF R80-90 BB. RMSD vs. Ref. 480
2.99E-26 112.3543 GMCSF H15Y R80-90 BB. RMSD vs. Ref. 480
4.18E-47 207.7826 GMCSF H15R R80-90 BB. RMSD vs. Ref. 480
7.70E-27 115.0427 GMCSF H15N R80-90 BB. RMSD vs. Ref. 480
1 0 Calmodulin BB. RMSD vs. Ref. 480
8.78E-78 348.5452239 Calmodulin E84K BB. RMSD vs. Ref. 480
1.63E-09 36.36993935 Calmodulin M124L BB. RMSD vs. Ref. 480
1 0 Fyn SH3 C-Term, RMSD vs. Ref. 480
4.72E-22 93.20141568 Fyn SH3 A39V/N53P/V55L C-Term. RMSD vs. Ref. 480
1 0 Abl1 A-Loop RMSD vs. Ref. 480
1.66E-12 49.84482421 Anc-AS A-Loop RMSD vs. Ref. 480
1.88E-17 72.26142001 Src A-Loop RMSD vs. Ref. 480
1.18E-11 46.00662103 Abl1 M290L + L301I A-Loop RMSD vs. Ref. 480
0.34444905 0.893802102 Abl1 E255V + T315I A-Loop RMSD vs. Ref. 480

Notably, most variants led to distributions of structural observables that are significantly different than453

the wild-type measurements, with the exception of a few Abl1 activating mutations for which statistical454

power was reduced.455
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