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Supplementary Methods

1. Model architectures of DeepICL
(a) Node and edge features

The input node features of ligand and protein atoms, Xl
i ∈ RF l

and Xp
j ∈ RFp

, are used as described in the
Supplementary Table 1. Each of the features is represented as a one-hot vector of a corresponding category.
Only an atom type is used for a ligand atom feature, while more informative features are used for a protein
atom feature by concatenating every one-hot vector. The resulting feature dimensions of a ligand and a
protein atom are F l = 9 and F p = 51, respectively. Initial node features of a ligand and a protein are then
embedded into a hidden dimension Fh with a single linear layer.

Ligand atom feature, Xl
i Available list

Atom type C, N, O, F, P, S, Cl, Br, stop (one-hot)
Protein atom feature, Xp

j Available list
Atom type C, N, O, F, P, S, Cl, Br, else (one-hot)
Atom degree 0, 1, 2, 3, 4, else (one-hot)
Hybridization s, sp, sp2, sp3, sp3d, sp3d2, else (one-hot)
Formal charge -2, -1, 0, 1, 2, 3, else (one-hot)
Amino acid type G, A, V, L, I, C, M, F, Y, W, P, S, T,

Q, N, D, E, H, R, K, else (one-hot)
Aromaticity 0 or 1

Supplementary Table 1. The used node features of ligand and protein atoms with their available item lists
to construct a one-hot vector.

We used the Gaussian expansion of a distance between the i-th and j-th nodes as an edge feature,
eij := {en(dij)}Nn=1. Each Gaussian distribution is located at each center value of a distance bin, where a
total distance is divided into N bins with a spacing of ∆µ. The smoothness of the expansion is controlled
by γ. Formally,

en(dij) =
e−γ(dij−n∆µ)2∑N−1

n′=0 e−γ(dij−n′∆µ)2
. (1)

Specific values of each hyper-parameter are summarized in the Supplementary Table 2.

(b) E(3)-Invariant interaction network architecture

While updating the node features of a protein and a ligand, we devise an E(3)-invariant interaction network
that can propagate the inter- and intra-molecular messages between a protein and a ligand. A single layer of
the network consists of three steps: inter- and intra-molecular message calculation and aggregation (eqs. (2)
to (5)), gate coefficient calculation (eq. (6)), and node feature update (eq. (7)). Formally,

mk→i = ϕintra(hl
k, hl

i, eki), ml→j = ϕintra(h
p
l , hp

j , elj), (2)

µl→i = ϕinter(h
p
l , hl

i, eli), µk→j = ϕinter(hl
k, hp

j , ekj), (3)

mi =
∑
k

mk→i, mj =
∑
l

ml→j , (4)

µi =
∑
l

µl→i, µj =
∑
k

µk→j , (5)

zi = ψgate(mi, µi), zj = ψgate(mj , µj), (6)

hl
i

′
= χl(hl

i, zi ·mi + (1− zi) · µi

)
, hp

j
′
= χp(hp

j , zj ·mj + (1− zj) · µj

)
. (7)

For convenience, subscripts i, k denote ligand atom indices, and j, l denote protein atom indices. ϕintra,
ϕinter, and ψgate are learnable models shared on both a ligand and a protein. ϕintra and ϕinter are multi-layer



perceptrons (MLPs) activated by sigmoid linear units (SiLUs)[1], while ψgate is a single linear layer followed
by a sigmoid function. Intramolecular message m and intermolecular message µ are linearly interpolated by
gate coefficients zi and zj and then used to update the current node hidden states. The hidden vectors for a
ligand and a protein, hl and hp, are updated by χl and χp of gated recurrent units (GRUs)[2], yielding the
updated hidden vectors hl′ and hp′, respectively.

(c) Atom type and position prediction model

After node feature updates through multiple layers of E(3)-invariant interaction networks, the features
are joined with a latent vector, z. After that, only protein node features are additionally joined with an
interaction condition, I. The resulting features then undergo fully connected layers into dimensions of type
and distance distributions individually. We used SiLU as an activation function, where final prediction
outputs go through a softmax function for normalization.

2. Training details
(a) Loss scheduling

A decoder that generates an output in an autoregressive fashion can be susceptible to the KL-vanishing
problem, which might cause undesired model behaviors such as mode collapse[3, 4]. To mitigate this KL-
vanishing problem, one can employ an annealing schedule for the KL divergence term. Various strategies
for the annealing schedules have been proposed[3–6]. In our study, we adopted the simplest monotonic
KL annealing, gradually increasing the weight of the KL divergence term up to a predefined value during
training. Formally, the weight β(t) is scheduled at the t-th epoch as:

β(t) = βf + (βi − βf ) · ηt, (8)

where βi is the initial weight, βf is the final wight, and η is the weight annealing factor. Their specific values
used in this work can be found in the Supplementary Table 2. Thus, our final loss function can be written
as follows:

ℓtotal(t) = ℓrecon + β(t) · ℓreg. (9)

In addition, we used ReduceLROnPlateau module implemented in PyTorch[7], which reduces a learning
rate if there is no improvement in the validation loss for a fixed number of training epochs until the learning
rate reaches a minimum threshold value. Specific hyper-parameters are also summarized in Supplementary
Table 2.

3. Sampling details
(a) Controlling the randomness

In conditional deep generative models, ensuring diversity and novelty in the sampled outputs is an important
concern. One simple way to increase them is by introducing some randomness into the sampling process.
In our study, we control the randomness of the proposed ligands by employing a temperature factor and a
roto-translational noise to the sampling process using DeepICL. Although the randomness of the sampling
process affects the validity, our model produces approximately 99% of chemically valid ligands from the
provided experimental settings in Supplementary Table 2.

i. Temperature factor As in the work of G-SchNet[8], we use an additional temperature factor that
allows for controlling the randomness of the generation. We reformulate eqs. (11) and (12) in the main
text (Section 4.2.5), which is to define the likelihood of the next atom type and its position in the sampling
process, to introduce temperature factors τtype and τpos:

p̃(Xt|Ct−1, I, z) =
1

a
exp

(
log p(Xt|Ct−1, I, z)

τtype

)
, (10)

p̃(rt|Xt, Ct−1, I, z) =
1

b
exp

(
log p(rt|Xt, Ct−1, I, z)

τpos

)
, (11)



where a and b are normalization constants. Increasing τtype and τpos will smoothen the predicted probability
distributions, adding more randomness to the next atom prediction, whereas small values will produce
sharper distributions, leading to less randomness.

ii. Adding roto-translational noise We adopt an additional method that introduces a random noise to
the initial state of the sampling process. We use a different random noise depending on the ligand design task
being considered; in the case of de novo ligand design, a translational noise is added to the given center-of-
mass, whereas a roto-translational noise is added to the initial ligand core structure for a ligand elaboration
task. A translational noise is simply a vector sampled from a Gaussian distribution in 3D space centered at
the origin with variance σt, which is a hyper-parameter to control the randomness of the translational noise.
Then, the center-of-mass is moved by the vector.

For applying extra rotational noise, the rotation axis is sampled from a uniform distribution, and its
rotational angle is sampled from a Gaussian distribution centered at the origin with variance σr, which is a
hyper-parameter to control the randomness of the rotational noise. By increasing σt and σr, the initial state
will be scattered with a greater variance, appending more randomness to the ligand sampling process. The
specific value of each hyper-parameter used in the experiments is summarized in the Supplementary Table 2.

(b) Determining the pocket coefficient

We introduce a pocket coefficient λ in eqs. (11) and (12) in the main text (Section 4.2.5), which controls
the weight of a pocket-side prediction during the atom sampling. When the space where the next atom will
be added is located far from the pocket, the dependence of ligand atom types and positions on the pocket
diminishes. To reflect this, we allow the distance between a ligand and a pocket to determine the pocket
coefficient. We average the distances between the ligand atom-of-interest and its k-nearest pocket atoms as
described in eq. (12). Then, the pocket coefficient λ is determined by a function defined in eq. (13). The
function decays as the average distance, d̄, increases in the region where d̄ is larger than 2.5 Å. We set its
decaying coefficient so that λ ≃ 1 at d̄ = 5.0 Å.

d̄(t∗) =
1

k

∑
j∈Nk(t∗)

dt∗,j , (12)

λ =

{
10 if 0 ≤ d̄ ≤ 2.5 Å,
10 · e−0.91(d̄−2.5) otherwise.

(13)

Hyper-parameters Descriptions Values
k number of nearest neighbors 8
Fh hidden dimension 128
n_interaction_layers number of interaction layers 6
n_fc_layers number of FC layers 3
N number of bins for Gaussian expansion 25, 300
∆µ spacing between distance bins 0.4 Å, 0.05 Å
γ smoothness of Gaussian expansion 10, 50
τtype, τpos temperature factor 0.1, 0.1
σt, σr variance of roto-translational noise 0.2 Å, 2◦

βi, βf KL-divergence loss initial and final weights 0.0, 1.0
η KL-divergence loss annealing factor 0.2
lr initial learning rate 10−3

lr_min minimum learning rate 10−6

lr_decay lr decaying factor 0.8
lr_tol lr decay tolerance epochs 4

Supplementary Table 2. Descriptions of the hyper-parameters and their values used in this work.



4. Reference-free interaction conditions
We used specific criteria to designate protein atoms’ interaction types in the case when no reference ligand
information is available. Atoms involved in salt bridge anions and cations, hydrogen bond acceptors, and
donors are selected by using SMARTS descriptors summarized in the Supplementary Table 3. Since only
particular motifs that appear on amino acid chains are known to have cations or anions, we set SMARTS
patterns to fully cover them, even their resonance structures. Halogen atoms or carbons, which are sur-
rounded only by carbon or hydrogen atoms, are classified as hydrophobic atoms, and atoms within aromatic
rings are classified as aromatic atoms.

Types SMARTS descriptors
Anion [O;$([OH0-,OH][CX3](=[OX1])),$([OX1]=[CX3]([OH0-,OH]))]
Cation (Lysine) [N;$([NX3H2,NX4H3+;!$(NC=[!#6]);!$(NC#[!#6])][#6])]
Cation (Arginine) [#7;$([NH2X3][CH0X3](=[NH2X3+,NHX2+0])

[NHX3]),$([NH2X3+,NHX2+0]=[CH0X3]([NH2X3])[NHX3])]
Cation (Histidine) [#7;$([$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),

$([#7X3H])]1:[#6X3H]:[$([#7X3H+,#7X2H0+0]:
[#6X3H]:[#7X3H]),$([#7X3H])]:[#6X3H]:[#6X3]1),
$([$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),
$([#7X3H])]1:[#6X3H]:[$([#7X3H+,#7X2H0+0]:
[#6X3H]:[#7X3H]),$([#7X3H])]:[#6X3]:
[#6X3H]1)]

Hydrogen bond acceptor [$([!#6;+0]);!$([F,Cl,Br,I]);
!$([o,s,nX3]);!$([Nv5,Pv5,Sv4,Sv6])]

Hydrogen bond donor [!#6;!H0]

Supplementary Table 3. SMARTS descriptors for anion, cation, hydrogen bond acceptor, and donor.

5. Molecular dynamics simulation details
During the MD simulations done in this work, topology and parameter files for the ligands were generated
using the GAFF-2.11 force field[9] via the OpenMM Toolkit[10]. Protein-ligand structures were solvated
in a cubic box using TIP3P water models[11], extending 10 Å from the protein to provide padding. The
systems were neutralized by adding Na+ and Cl− ions. Periodic boundary conditions were applied to the
systems in the NPT ensemble using the Langevin thermostat[12]. To simulate the interactions, we employed
the Amber FF14SB force field[13]. Equilibration and production runs were performed using the OpenMM
toolkit. Initially, the systems underwent energy minimization followed by 1 ns of equilibration. Production
runs were conducted at 303.5 K and 1 bar, using a 2 fs integration time step. Each protein-ligand complex
underwent 10 ns production runs, initiated with the same initial structure but differently randomized initial
velocities. To assess the stability of ligand binding to the target protein, we aligned protein backbone
structures from each frame based on their heavy atom coordinates using MDtraj software[14] to capture
the ligand movement only and calculate the ligand RMSDs. For each protein-ligand complex, the ligand
RMSD was averaged over the entire 10 ns simulation time, yielding the averaged ligand RMSD value and
its variance.



Supplementary Discussion

6. Additional discussions and examples of an interaction-aware conditioned lig-
and elaboration
In Section 2.2 of the main text, we only discussed the first case in which the target was BMP1; we here
continue the comprehensive study of the other two examples. The second example is an elaboration of 2-
(oxan-3-yloxy)oxane, a skeletal structure of a disaccharide, to fit in the fibroblast growth factor-1 (FGF1, the
middle column of Main Figure 2). While the original ligand forms multiple hydrogen bonds with neighboring
backbone atoms and the polar side chain of ASN9 (Main Figure 2(c-2)), DeepICL successfully designed a
ligand of an identical interaction pattern with the original complex by generating phosphate and carboxylate
groups instead of a sulfate (Main Figure 2(d-2)). Interestingly, the generated ligand formed a hydrogen
bond with LYS119 via its equatorial hydroxyl group, while the original ligand possesses an axial methoxy
group that is directed away from LYS119.

For the third case, we generated ligands from the benzene inside the pocket of the dihydrofolate reductase
(DHFR, the right column of Main Figure 2). The original complex shows a complicated interaction pattern,
including multiple salt bridges and π-π stackings (Main Figure 2(c-3)). The designed ligand contains a
guanidine moiety similar to the original ligand to form a salt bridge and hydrogen bonds with surrounding
amino acids simultaneously (Main Figure 2(d-3)). Additionally, the pyruvate-like group of the sampled
ligand could form both a hydrogen bond and a salt bridge with ARG31. However, the sampled ligand
could not interact with HIS28, which forms a salt bridge with the original ligand. The interaction similarity
distributions show multi-modal distributions apparently, which happened from the construction of particular
motifs that can form multiple interactions existing in the original complex. In this case, whether the model
constructs a hetero-aromatic ring at the position near PHE30 and ASP26 of DHFR results in the subsequent
bimodal distribution in Main Figure 2(e-3).

In addition, we provide five more examples of interaction-aware conditioned ligand elaboration in Supple-
mentary Figure 1., which are composed of human sialidase (PDB ID: 2f0z), beta-lactamase Mox-1 (PDB ID:
4wbg), ubiquitin ligase (PDB ID: 6do4), abscisic acid receptor (PDB ID: 6nwc), and MAP kinase-activated
protein kinase 2(PDB ID: 3fpm). With DeepICL, we sampled 100 molecules starting from the core structures
of the original ligands by using the interaction condition extracted from the original complexes.

Notably, similarity distributions have dramatically diverged in the case of human sialidase (PDB ID:
2f0z). However, one might be concerned about the chemical diversity of the generated ligands since the
structure of the top-1 ligand is so similar to the original ligand, placed on the first row of Supplementary
Figure 1. Thus, we further provide more molecular structures of ligands that were generated to target the
human sialidase in Supplementary Figure 2. While sharing the common core structure, which is oxane,
generated ligands are highly diverse.



Supplementary Figure 1. Five more examples of an interaction-aware conditioned ligand elaboration task:
human sialidase (PDB ID: 2f0z), beta-lactamase Mox-1 (PDB ID: 4wbg), ubiquitin ligase (PDB ID: 6do4),
abscisic acid receptor (PDB ID: 6nwc), and MAP kinase-activated protein kinase 2 (PDB ID: 3fpm). Left
column: structures of original ligands (white) and their core structures (orange), where the surface of sur-
rounding pockets are shown in grey. Middle column: structures of the most similar ligand molecules elabo-
rated from each core structure in terms of interaction similarity, and their values are denoted in the bottom
left corner. Right column: distributions of interaction similarities of generated ligands, where the set of
ligands that employs interaction condition clearly shows higher similarities in every case. We visualized the
protein surfaces and ligand structures in 3D via PyMOL software[15].



Supplementary Figure 2. Additional 64 ligands elaborated from the core structure of the original ligand
binding to human sialidase (PDB ID: 2f0z) are shown. The structures are diverse despite their high interac-
tion similarities.



Frequencies (%) Carbon Nitrogen Oxygen Fluorine
With information 63.3 14.5 21.8 0.0418
Without information 72.7 6.30 19.8 0.0205

Supplementary Table 4. The frequencies of ligand atom types that were generated within 4Å of hydrogen
bond donor or acceptor protein atoms.

7. Atom addition frequency analysis
In section 2.3.2 of the main text, we discussed the number of interactions of each type and noted the number
of hydrogen bonds was much lower in the case of using the model trained without interaction information.
We here further provide empirical reasoning for the result by showing how the model trained with interaction
information achieved more generation of hydrogen bonds. We analyzed the ligand atoms generated within 4
Å of protein atoms, which were typed as hydrogen bond acceptors or donors.

We measured the frequencies of carbon, nitrogen, oxygen, and fluorine atoms. The result is summarized
in Supplementary Table 4., where the generated complexes with and without interaction information were an-
alyzed. When the interaction information is used, the frequency of carbon is decreased, while the frequencies
of nitrogen, oxygen, and fluorine are increased, facilitating the formation of more hydrogen bonds.

8. Additional discussions on geometry analysis
Supplementary Figure 3.(a) shows a distance distribution of salt bridges measured between two charge
centers. The generated distribution shows a decaying pattern similar to that of the reference data. Still, our
model has room for improvement as the sharp peak near 3.5 Å does not appear on the generated distribution.
We speculate the reason is that a charged state of each atom is not informed to the model during generation
since the protonation states can only be determined after the generation. Thus, it would be challenging to
learn the exact characteristics of the salt bridge.

Supplementary Figure 3.(b) demonstrates a distribution of π-π stacking distances, which is defined be-
tween two centers of aromatic rings. The distance distribution of π-π stackings exhibits bimodal behavior,
each from the parallel and the perpendicular stackings. Generating a π-π stacking geometry poses a particu-
lar challenge for our model, as it requires adding multiple atoms in the same plane to construct an aromatic
ring. Moreover, the lack of explicit information about an aromatic ring center during the generation process
increases the difficulty of the task; these combinatorial requirements must be fulfilled to form a π-π stack-
ing. Although the generated distribution deviates slightly from the observed one, it apparently exhibits two
distinct modes.

Supplementary Figure 3. Distributions of (a) salt bridge and (b) π-π stacking distances, which were measured
via the PLIP software.



9. Scaffold diversity and novelty of ligands generated by DeepICL
We conducted further analysis on the ten most commonly appearing scaffolds among the generated ligands
and illustrated them in Supplementary Figure 4.(a). Our model generates the benzene ring most frequently,
which is also the most prevalent scaffold in the training data. Our model also generates molecules with
scaffolds that are less frequently observed in the training data; diphenylmethane ranks 6th among the
generated ligands, whereas it is in the 17th place in the training ligands. Tetralin shows a much larger
difference: 9th in the generated ligands but 352nd in the training data. Thus, our model does not solely
follow the observed structural priority of the training data. Also, a few examples of novel scaffolds in
generated ligands are shown in Supplementary Figure 4.

Supplementary Figure 4. (a) Bar graphs illustrating the frequency of the 10 most commonly appearing
scaffolds in the generated data. For each scaffold, the graph displays the log-scaled frequencies in the
generated set (red) and the training set (blue). The labeled numbers on each bar indicate rankings of their
appearing frequencies in each set, respectively. (b) Few examples of novel scaffolds in generated ligands.

10. Synthesizability of ligands generated by DeepICL
We have evaluated the synthesizability of the generated molecules by using SAscore[16], a widely used metric
for synthetic accessibility introduced by Etrl and Schuffenhauer. The calculated SAscores exhibited a very
similar distribution to that of bioactive molecules introduced in the work of Etrl et al.; the average SAscore
of the generated molecules was 3.18, which is close to the peak of the graph for bioactive molecules, as shown
in Supplementary Figure 5. This result suggests that in terms of SAscore, the synthetic accessibility of the
generated molecules is comparable to that of typical bioactive molecules.

11. Designing hinge binders of Rho-associated protein kinase 1 (ROCK1)
The ATP binding site of ROCK1 contains a hinge region that recognizes the adenine moiety through multiple
hydrogen bonds[17]. Hence, ROCK1 inhibitors are often designed to bind to the hinge region, thus called
hinge binders[18, 19]. We retrieved the ROCK1 structure reported by Li et al. (PDB ID: 3v8s)[18]. In the
complex, the ligand forms hydrogen bonds with the carbonyl oxygen of GLU154 and the amide nitrogen of
MET156 within the backbone of the hinge region. To design hinge binders that can form hydrogen bonds
with both residues, we conditioned on two protein atoms - the carbonyl oxygen and the amide nitrogen - as
hydrogen bond acceptor and hydrogen bond donor, respectively.

We generated 1,000 ligands and performed local optimization and binding affinity scoring, similar to
Section 2.5 of the main text. Among the generated ligands, molecules interacting with both regions were
identified as hinge binders, resulting in a total of 263 unique ligands. The binding affinity scores are shown
as a jitter plot in Supplementary Figure 6.(a), where the hinge binders are colored red while other molecules



Supplementary Figure 5. Distributions of SAscores of ligands generated by DeepICL and of the training set.

Supplementary Figure 6. (a) The jitter plot shows the binding affinity scores of the designed ligands on
ROCK1; among them, hinge binders are colored red. The mean binding affinities of each group are denoted.
(b) An example of a designed hinge binder inside a ROCK1 (depicted as a triangle in (a)), where the hydrogen
bonds with a hinge region are depicted with yellow dashed lines. Their distances (unit: Å) are also shown.

are colored grey. Hinge-binding ligands achieved a mean binding affinity score of -7.76 kcal/mol, which
was lower than that of other molecules, -7.11 kcal/mol. Consequently, the presence of interactions with the
hinge region indeed contributes to the binding, emphasizing the significance of considering protein-ligand
interactions in ligand design. We selected a well-designed hinge-binding ligand, depicted as a triangle in
Supplementary Figure 6.(a), and visualized it in Supplementary Figure 6.(b). The molecule forms multiple
hydrogen bonds with GLU154 and MET156 with plausible bond distances, achieving a fair binding affinity
score of -9.1 kcal/mol.



12. Test set PDB IDs
We here provide the PDB IDs of 100 protein-ligand complexes involved in the test set.

1a4r, 1a7c, 1b56, 1dis, 1ggd, 1h60, 1hkm, 1ilh, 1lyb, 1mmr, 1njf, 1ppw, 1rdn, 1xjd,
2ael, 2drc, 2f0z, 2fqx, 2jxr, 2nnd, 2qw1, 2rc9, 2uzj, 2w68, 2xow, 2y6o, 3bm8, 3fpm,
3fxb, 3g3n, 3gsm, 3ip9, 3iqh, 3k16, 3meu, 3mj5, 3oy8, 3p3g, 3qvv, 3ta1, 3ud9, 3v2n,
3vw1, 4dfu, 4eu0, 4gki, 4i6f, 4j78, 4jj7, 4jpx, 4k42, 4k7o, 4l02, 4lar, 4mrf, 4o43,
4ocq, 4r74, 4tvj, 4tx6, 4u0n, 4wbg, 5bve, 5ii2, 5jnn, 5jz9, 5l9i, 5ldk, 5m4k, 5m77,
5mf6, 5myv, 5owc, 5uoy, 5v5e, 5wii, 5y24, 5ypy, 5z95, 5zun, 6a94, 6bto, 6chh, 6cwn,
6dik, 6do4, 6fv1, 6gvz, 6h1i, 6h4a, 6hh3, 6hly, 6hry, 6i0k, 6i68, 6iou, 6nwc, 6p10,
6qat, 6st0
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