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SUPPLEMENTARY INFORMATION

I. BASIC PRINCIPLES OF PROBABILISTIC COMPUTINGWITH HARDWARE P-BITS

Probabilistic algorithms (e.g., sampling, inference, optimization) are performed with a network of p-bits interacting with
each other [1]. The basic equation for the p-bit is given by:

mi(t+ τN ) = sgn{rand(−1, 1) + tanh[βIi(t)]}, (1)

where rand(-1, 1) represents a random number drawn from the uniform distribution in [−1,1], β is the inverse algorithmic
temperature, and Ii is the local field of p-bit “i” received from its neighbors. τN in this equation is defined as the neuron
evaluation time [2]. For the typical choice of 2-local (Ising-like) energy functions, Ii is given by:

Ii(t+ τS) =
∑

Jijmj(t) + hi, (2)

where Jij are the weights and hi is the bias term for each individual p-bit. τS represents the synapse evaluation time. If the
network of p-bits is symmetric (Jij = Jji), it is possible to define the following energy function:

E = −
(∑

Jijmimj +
∑

himi

)
. (3)

In such a network of N p-bits, there are 2N states, S = {1, 2, . . . , 2N}, and each state j ∈ S is visited according to the
Boltzmann-Gibbs distribution:

pj =
1

Z
exp(−βEj). (4)

The coupled evolution of Supplementary Eq. (1) and Supplementary Eq. (2) represents a dynamical system and a wide variety
of problems can be mapped onto this system, including combinatorial optimization, machine learning and quantum simulation
problems, all phrased in terms of powerful physics-inspired Monte Carlo algorithms [3, 4]. In this paper, we focus on the two
settings of probabilistic inference and Boltzmann learning. In either case, we will be interested in a fixed β value (typically 1)
and sample from the corresponding Boltzmann-Gibbs distribution of the network. We will show how the asynchronous and
truly random bits generated by the sMTJs represent a low-level realization of physics-inspired probabilistic computation.

II. CHARACTERIZING SMTJS THROUGH P-BITS

We first characterize the statistics of the sMTJs (in Supplementary Figure 1) by making measurements on the p-bit circuit
described later in Supplementary Figure 2b. The fluctuations of the p-bit circuit are controlled entirely by the sMTJs. We
observe the outputs of 5 sMTJ-based p-bits and characterize their rate of fluctuations from event times and autocorrelations.

Event time (s)Event time (s)

ln
(M

R
)

ln
(M

R
)

12 16 20 24 28
0

2

4

6

8

12 16 20 24 28
0

2

4

6

8

τAP
 =10 ms τP

 = 9 ms

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n 

 p-bit #1
 p-bit #2
 p-bit #3
 p-bit #4
 p-bit #5

lag (ms)

(b)(a)

Supplementary Figure 1. sMTJ-based p-bit characterization. (a) Histogram of ln(MR) (number of magnetic relaxation (MR) events)
as a function of the event times tevent for p-bit #2, following the exponential distribution 1/τP,AP exp(−tevent/τP,AP), expected from a Poisson
process (red lines). (b) Autocorrelation of sMTJ-based p-bits #1-5. We define τac as the time at which the normalized autocorrelation decays
to 1/e.

In the main paper FIG. 1g shows the fluctuations of p-bits #1-5 at I50/50, which is the current at which the sMTJs show 50/50
fluctuations for the high- and low-resistance states. The rate of fluctuations provides an estimate of the neuron evaluation time
τN of Supplementary Eq. (1) after which the p-bit produces a new and independent random bit.
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p-bit Mean MR Autocorr. TMR I50/50

time (τ) time (τac)

1 2.4 ms 0.97 ms 64% 16 µA
2 9.6 ms 4.8 ms 68% 19 µA
3 14.4 ms 6.8 ms 65% 20 µA
4 8.7 ms 4.2 ms 59% 17 µA
5 4.2 ms 1.8 ms 65% 14 µA

Supplementary Table 1. Table of results for all 5 p-bits reporting mean relaxation time τ =
√
τPτAP, τac, TMR and I50/50 of sMTJs. I50/50

is defined as the absolute value of the current at which the perpendicular sMTJs show 50/50 fluctuations by canceling the uncompensated
dipolar field resulting from the fixed layer.

Even though the sMTJs were fabricated under the same conditions, slight differences in their volumes and shapes critically
affect their relaxation times. The relaxation times τP,AP obeys a Néel-Arrhenius law [5], described by τ = τ0exp(∆/kBT ),
where τ0 is the attempt time and ∆ is the energy barrier of the nanomagnet. In this paper, our magnets are not truly zero-
barrier and their fluctuation rates exponentially depend on the energy barrier, ∆, however, detailed theoretical analysis shows
that this dependence is much less pronounced in low barrier nanomagnets [6, 7]. Moreover, as we experimentally show in
Sections 3-4, p-bits in symmetric networks are agnostic to update orders [2, 8, 9], therefore variations in these time scales should
not play a prohibitive role in scaled implementations of p-computers (see Supplementary Note VIII for another experiment
showing this update order invariance).

In Supplementary Figure 1b, we calculate the normalized autocorrelation of the p-bits using a 300 s time window with a
sampling rate of 3.16 kHz, collecting N ≈ 949000 samples. The discrete autocorrelation function is defined as:

C[m] =

N−1∑
n=0

V [n]V [n+m]

N−1∑
n=0

V [n]2

, (5)

where V [n] is the discrete sampled voltage read from the oscilloscope, and m represents the discretized lag time. Since
autocorrelations typically show exponential decay [6], we extract an autocorrelation time τac, by measuring and fitting the
autocorrelation to a continuous function C(tlag) = exp(−tlag/τac). As an additional measure to τac, we also determine the
frequency of magnetic relaxations that are characterized by an event time. The event time, tevent, is defined as the time
between one event to the next. Measuring the distribution of event times from parallel and antiparallel configurations, we
observe that the p-bit outputs are distributed according to the exponential distribution, indicating a Poisson process [11].
Overall, p-bits show a good degree of variation in the relaxation and autocorrelation times as well as in their TMR values and
their 50/50 currents. These values are summarized in Supplementary Table 1.

III. A VOLTAGE-COMPARATOR BASED P-BIT

In this note, we describe a new p-bit circuit we designed in this work, comparing its characteristics to an earlier design
implemented in [10]. Supplementary Figure 2a,b show both these designs. The earlier design was implemented in several
small-scale experimental demonstrations using perpendicular sMTJs [10, 12, 13]. In the original theoretical proposal [14],
however, circular or elliptical in-plane nanomagnets were used. In-plane low barrier magnets are very hard to pin, requiring
spin polarized currents of ≈100-500 µA or more for typical parameters [7]. If the magnetization provides continuous
randomness providing all resistance values between RP to RAP, this allows a faithful realization of Supplementary Eq. (1) as
carefully discussed in [15]. In such a case, spin-transfer-torque pinning is an unnecessary distraction, other than causing a
read disturbance. Indeed, the fastest experimental p-bits are based on in-plane magnetic tunnel junctions [16, 17] and
variations of the design proposed in Ref. [14] may still be useful in future implementations.

The experimental demonstrations including the present work have so far been primarily focused on perpendicular sMTJs
to keep fluctuation speeds slow for practical reasons. Perpendicular sMTJs are easily pinned with spin currents around ≈10 to
20 µA for typical parameters [15]. Unlike in-plane sMTJs, however, perpendicular sMTJs switch telegraphically and they do
not provide a uniform resistance between the two extremes. By a fortunate coincidence, the presence of the uncompensated
dipolar field from the reference layer and easy pinning of perpendicular sMTJs appear to allow the realization of Supplementary
Eq. (1) in hardware [10], since the spin-torque pinning changes the 50/50 fluctuations of the sMTJ [12].

In the design shown in Supplementary Figure 2a, the comparator has a fixed reference voltage. This means that as a
function of VIN, the drain voltage swings between two extremes, VD,AP = VDD −RAPIMTJ and VD,P = VDD −RPIMTJ. As shown
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Supplementary Figure 2. sMTJ-based p-bit circuits (a) Single branch p-bit circuit diagram based on [10] with the following typical
parameters: VDD = 0.8 V, VCC = 2 V, RS = 10 kΩ, Vref = 680 mV, and NMOS (2N7000) [10] (b) Double branch p-bit circuit with a variable
Vref and fixed RS. VDD = 2.5 V, VCC = 5V, RS = 47 kΩ, Rave = 1/2 (RP+RAP), R1 = 100 Ω, R2 = 220 Ω, NMOS (ALD1101), and op-amp
(ALD1702). (c) Single branch circuit of (a): the drain voltage as a function of current through the sMTJ, where (VD,AP = VDD − RAPIMTJ)
and (VD,P = VDD −RPIMTJ). Vertical alignments show how the fixed reference voltage limits the stochastic window of the p-bit. (d) Double
branch circuit of (b): the drain voltage as a function of the sMTJ current, showing the variable reference voltage to the op-amp.

in Supplementary Figure 2c, this limits the stochastic window of the p-bit. For the circuit shown in Supplementary Figure 2b,
we have two parallel branches, one with the RMTJ and the other with Rave, defined as 1/2(RP + RAP) of the sMTJ. The output
nodes of these branches, taken from the drain of the transistor are compared by an operational amplifier. The key difference
as shown in Supplementary Figure 2d is that the voltage reference is variable in the circuit of Supplementary Figure 2b
and a larger stochastic window can be obtained. Additionally, the differential nature of the voltage comparison in the new
design allows the use of a single source resistance across all sMTJs, unlike the circuit of Supplementary Figure 2a where the
source resistance is adjusted individually [10]. Finally, the bipolar junction transistor at the output may not be necessary for
integrated implementations, in this work, it simply functions as a buffer and lowers the output voltage to 3V, to safely interface
with the FPGA.

IV. EXPERIMENTALLY DESIGNING THE VOLTAGE-COMPARATOR BASED P-BIT

Although the circuit shown in Supplementary Figure 2b is operated at only 50/50 fluctuations to provide asynchronous
clocks, this circuit can also be used as a full p-bit whose output probability is tunable by the input voltage VIN.

Each of the sMTJs used in this work has different characteristics, as such Rave and VIN should be customized for the
specific sMTJ used in a p-bit circuit. We first characterize the specific sMTJ by experimentally measuring the ⟨RMTJ⟩ - IMTJ
( Supplementary Figure 3a), the value of RP, and the value of RAP. The value of the Rave resistor is given by
Rave = 1/2 (RP +RAP).

As shown in Supplementary Figure 2b, the NMOS transistor and the RS in either branch of the circuit form a constant
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Supplementary Figure 3. sMTJ-based p-bit circuit characterization (a) ⟨RMTJ⟩, the time average (over a period of 3 minutes) of the
sMTJ resistance, as a function of IMTJ, the current flowing through the sMTJ. The yellow squares are experimental data, and the blue dashed
line is a fit of the form ⟨RMTJ⟩ = a + b/{1 + exp [−c(IMTJ − d)]}, with a = 5.32 kΩ, b = 3.87 kΩ, c = 0.45 (µA)−1, d = 16.6 µA.
(b) Experimentally measured ⟨VOUT⟩, the time average (over a period of 3 minutes) of the output of the circuit shown in Supplementary
Figure 2b, as a function of DC input voltage VIN. The yellow squares are experimental data, and the blue dashed line is a fit of the form
⟨VOUT⟩ = 1/2 V ′

CC[tanh[β(VIN − V0)] + 1], where V0 = 1.55 V, β = 3.43 V−1, V ′
CC = 3 V is a reduced voltage from VCC = 5 V.

current source. The two current sources in the two branches form a current mirror, so they have the same I-V characteristics.
Note that the I-V characteristics of the circuit (with ALD1101 NMOS transistors and RS = 47 kΩ) do not depend on the RP
and RAP values of the specific sMTJ used.

The ALD1101 current source can be characterized using the following setup: we replace the sMTJ and the Rave in the left and
right branches of the circuit with two 10 kΩ resistors, we connect VDD to a 2.5 V power supply, and we leave VCC unconnected.
Supplementary Table 2 shows the experimentally measured I-V relationship.

VIN (mV) 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
INMOS (µA) 0.974 2.24 3.83 5.55 7.37 9.21 11.1 13.0 15.0 16.9 18.9 20.9 22.8 24.8 26.8 28.8 30.8 32.8 34.8

TABLE Supplementary Table 2. ALD1101 constant current source characterization: experimentally measured INMOS - VIN relationship. The
ALD1101 constant current source consists of the ALD1101 matched pair NMOS (the ALD1101 is a single IC consisting of two NMOS’s with
their threshhold voltages matched to within 10 mV of difference) and the two RS resistors, as shown in Supplementary Figure 2b.

We discovered that the variation in the VTH of each ALD1101 IC is important. While the shape of the INMOS - VIN relationship
in Supplementary Table 2 is the same for each ALD1101 IC, the VTH variations lead to offsets, shifting the INMOS - VIN curves
up or down. Remeasuring of all the data points in Supplementary Table 2 is not required, only one measurement is needed:
using the same characterization setup described above, we find and record the VIN that produces INMOS = 16.9 µA. The
difference of this VIN with the value recorded in Supplementary Table 2 (1500 mV) gives the offset to the entire INMOS - VIN
curve of the specific ALD1101 used. We simply add this offset to all data points in the reference INMOS - VIN curve. We use
the experimentally measured ⟨RMTJ⟩ - IMTJ curve of the specific sMTJ and the INMOS - VIN curve of the specific ALD1101 IC to
determine the stochastic range of VIN.

V. FPGA ARCHITECTURE

A. p-bit and MAC Unit

To evaluate the performance of the random number generators, we first implemented fully digital probabilistic bits (p-bits)
on a Kintex UltraScale KU040 FPGA Development Board. A single p-bit consists of a tanh lookup table (LUT), a random
number generator (RNG) and a comparator to implement Supplementary Eq. (1). In this work, we used 32-bit LUTs and RNGs.
There is also a multiplier–accumulator (MAC) unit to compute Supplementary Eq. (2) from the neighbor p-bits and provide
the input signal for the LUT. The p-bits are interconnected in a fixed hardware topology where the weights and biases, Jij , hi

are stored in 10-bit registers and a digital multiply-accumulate operation with mj ∈ {0, 1} selects a particular weight or not.
In the FPGA, we switch from a bipolar p-bit mi ∈ {−1, 1} to a binary formulation mi ∈ {0, 1} [18]. In our hybrid CMOS +
sMTJ based p-bits, the architecture remains the same except the sMTJs serve as the clocks for the LFSRs and the p-bits.
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B. RNG Unit

As shown in Algorithm 1 in the Supplementary information, we used three different types of RNGs: linear feedback shift
register (LFSR), Xoshiro [19] and sMTJ-driven LFSR to compare the quality of randomness. We used 32-bit RNGs and compared
the RNG outputs with the 32-bit LUTs to implement Supplementary Eq. (1). LFSR involves a linear shift operation on all the
bits and an XNOR operation on some bits based on the selected taps. Unique seeds were used for each RNG and unique taps
were used for RNGs in each p-bit block while ensuring maximal-length outputs. In contrast, a Xoshiro RNG involves linear
shift and rotation operations on 32-bit words as well as XORing between subsequent words. In the all-digital versions, LFSR
and Xoshiro RNGs are driven by digital clocks. However, in the hybrid design where sMTJs serve as the clocks for the RNGs,
sMTJ + LFSR is considered as a new RNG unit. Using sMTJ-based p-bit removes the need for the 32-bit RNG and the 32-bit
LUT.

C. Clocking and Sampling Unit

For the fully digital CMOS p-bits, each p-bit and its RNG is driven by system clocks generated on the low-voltage differential
signaling (LVDS) clock-capable pins of the FPGA. These clocks are generated using Xilinx LogiCORE™ IP clocking wizard and
mixed-mode clock manager (MMCM) module. Each of the five clocks operates at 15 MHz with shifted phases and is highly
accurate with low jitter noise. In the Boltzmann learning example and for the NIST tests, to make these clocks comparable to
sMTJs, we used frequency divider circuits to slow down the clocks to ≈ 2 kHz. For the sMTJ-driven p-bits, sMTJs replace the
FPGA clocks and drive the p-bits and the RNGs externally using the peripheral module (PMOD) interface. FPGA samples the
sMTJ outputs with a fast system clock of 75 MHz.

D. Data Programming and Acquisition Unit

We used MATLAB 2022a as the host program to read-write data to and from the FPGA through the USB-JTAG interface.
MATLAB communicates with the FPGA board via AXI4 (Advanced eXtensible Interface 4) protocol where MATLAB works as
the AXI master to drive a slave memory-mapped registered bank and Block RAMs (BRAM) inside the FPGA. We used airHDL
[20], a memory management tool to assign the memory addresses for the register bank and the BRAMs. The weights J , h
of the full adder circuit are programmed through MATLAB. In the inference and the Boltzmann learning example, the p-bit
outputs were read from MATLAB as batches of sweeps that were initially sampled at 2kHz and stored in a BRAM. For the
NIST tests, however, we sampled and stored all the sweeps in the BRAM at a much higher frequency (≈10 kHz) compared to
the clock frequency of ≈ 2 kHz and then downsampled the data to a designated frequency. This procedure ensured that we
did not lose any samples. MATLAB reads the BRAM data in burst mode and performs the downsampling.

VI. INFERENCE ON THE PROBABILISTIC FULL ADDER

Inside the FPGA, we construct digital p-bits that behave according to Supplementary Eq. (1) and interconnections between
p-bits that behave according to Supplementary Eq. (2). Each p-bit has a PRNG, a LUT for the hyperbolic tangent function
and 10-bit weights in fixed-precision, 1 sign, 6 integer, and 3 fractional bits (s[6][3]). Supplementary Eq. (2) is implemented
by a multiply-accumulate unit inside the FPGA, whose multiplication reduces to simple multiplexing since a given weight
Jij is either taken or not if mj is 0 or 1. An important consideration in ensuring the p-bit network reaches the equilibrium
is the necessity of fast synapse times (τs) compared to neuron times τn [2]. In our context this requirement (τs < τn) is
naturally satisfied because the combinational logic inside the FPGA, which computes Supplementary Eq. (2) with about 10 ns
delays is orders of magnitude faster than both our deliberately slowed digital clocks and our sMTJs. In scaled and integrated
implementations with fast p-bits with GHz fluctuations, this necessity requires careful design. In the case sMTJ clocks, there is
also the theoretical possibility of parallel updates by simultaneously switching sMTJs. Practically this is not a concern due to
the extremely low probability of such an event which would be washed over thousands of samples anyway. Our results with
sMTJs in FIG. 2c,d and in FIG. 3c,d indicate that the sMTJs reproduce the ideal distributions well.

A full block diagram of the FPGA unit is shown in FIG. 3a. To rule out any spurious correlations, the starting states (seeds)
used for the LFSR and Xoshiro are randomized for each p-bit. LFSRs also use unique sets of random taps while ensuring
maximum-length outputs.

In this setting, for each RNG, we cumulatively sampled 106 states from the p-bits starting from a random initial state.
A system state out of 5-p-bits can be defined from 0 to 2N − 1 such that state 0 is p1p2p3p4p5 = 00000 and state 31 is
p1p2p3p4p5 = 11111. We define the single update of each p-bit according to Supplementary Eq. (1)-(2) as a sweep. Due to
their digital nature, defining exact times to perform a sweep for LFSR and Xoshiro is straightforward. With a driving clock
frequency of 2 kHz, we perform one sweep and then record it as a new state. However, sampling states from sMTJ-clocked
LFSR p-bits is not straightforward due to the analog nature of fluctuations of the sMTJs. The relaxation time of the slowest
sMTJ is ≈20 ms (50Hz) that is 40× slower than the sampling frequency of 2 kHz. For this reason, we collect 40× more data
points from sMTJ-based p-bits and downsampled them to obtain independent samples. The oversampling and subsequent
downsampling of sMTJ data is due to our 40× faster readout process, not an inherent sMTJ limitation, and is implemented
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to use the common sampler for each RNG setup. The sampling frequency can easily be adjusted, removing the need for
oversampling and downsampling.

Algorithm 1: Learning the full adder on Deep BMs
Input : number of samples N , number of truth table lines T , epochs NL, learning rate ε, regularization λ
RNG: LFSR, Xoshiro, sMTJ-clocked LFSR
Output : learned weights Jnew and biases hnew
Jnew ← 0.01 ∗ randi([−1, 1]);
hnew ← randi([−1, 1]);
for i← 1 to NL do

JFPGA ← Jnew;
/* positive phase */
for j ← 1 to T do

hT ← clamping to truth table values;
hFPGA ← hT + hnew;
{r} ← RNG();
{m} ← FPGA(N, {r});

end
⟨mimj⟩data = {m}{m}T;
/* negative phase */
hFPGA ← hnew;
{r} ← RNG();
{m} ← FPGA(N × T, {r}) ;
⟨mimj⟩model = {m}{m}T;
/* update weights and biases */
Jnew ← Jnew +∆Jij ;
hnew ← hnew +∆hi;

end

VII. LEARNING THE FULL ADDER ON THE 32-NODE CHIMERA LATTICE

Boltzmann machines can be trained using the contrastive divergence algorithm. There are two phases during the training
of Boltzmann machines as shown in FIG. 3a and Algorithm 1. The first one is the positive phase where the network operates in
its clamped condition under the direct influence of the training samples. The next one is the negative phase when the network
is allowed to run freely without having any environmental input. The update rules can be obtained by minimizing the KL
divergence between the data and the model distributions [21]:

∆Jij = ε

(
⟨mimj⟩data − ⟨mimj⟩model − λJij

)
(6)

∆hi = ε

(
⟨mi⟩data − ⟨mi⟩model − λhi

)
, (7)

where ϵ is the learning rate, λ is the regularization parameter, ⟨mimj⟩data is the average correlation between two neurons in
the positive phase, and ⟨mimj⟩model is the average correlation between two neurons in the negative phase.

As described in the previous note, five sMTJ-based p-bits are used here as clocks for digital p-bits with 32-bit LFSRs in FPGA
and each LFSR starts with a unique seed. We also used 5 different sets of taps for the LFSRs, ensuring maximal-length output.
The ⟨mimj⟩data is obtained by clamping visible bits to the eight lines in the truth table of the full adder (FIG. 2b). Then the
⟨mimj⟩model is calculated in the negative phase where the clamp is removed. We obtain the updated weights and biases using
Supplementary Eqs. (6),(7) and repeat the weight learning for 500 epochs. We also naturally adopt the persistent contrastive
divergence (PCD) algorithm that runs a continuous Markov Chain from the last state of the previous update to the next [22].
This is because the FPGA holds the previous state of the chain and continues sampling from that state as new weights are
loaded. The hyperparameters we used while learning are as follows: inverse temperature β = 1, learning rate ε = 0.003, and
regularization λ = 0.005.

The 32-node Chimera graph is bipartite. This means that p-bits in a Chimera topology can be updated in parallel in two
blocks. In order to make our system resemble eventual, fully-asynchronous systems, we distributed our 5 available sMTJ
clocks over these two blocks, ensuring that no sMTJ clock serviced two p-bits of the same block to avoid parallel updates
(FIG. 3b bottom panel shows our clock distribution over the p-bits). For the fully digital setup, we distributed the digital clocks
similarly. As in the inference experiments in the previous note, LFSR and Xoshiro RNGs were driven at 2 kHz. We used the
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same 5 sMTJ-based p-bits we characterized (Supplementary Figure 1) and sampled them at 2 kHz. To train the full adder on
the LFSR and Xoshiro RNG-based p-bit network, we took 400 sweeps per epoch for a total of 500 epochs. For the sMTJ-clocked
LFSR based p-bit network, we took 16000 sweeps per epoch and a total of 500 epochs. We took 40× more sweeps for the
sMTJ because they were sampled at 2 kHz (40× faster than their autocorrelation) in order to produce the same number of
independent sweeps for all solvers.

In Supplementary Figure 4 we provide the full histograms (32-states) of the full adder for the sampling and learning
experiments. Only parts of the histograms are shown in the main text for clarity. In Supplementary Figure 8 we show that
this bias is not random and never goes away, rather it is a consistent systematic bias by starting the LFSRs at different
uniform random initial conditions (seeds) and different maximum-length taps.
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Supplementary Figure 4. Extended data for probabilistic sampling and learning experiments, showing all 32 states of the 5-bit full adder
for LFSR, sMTJ-clocked LFSR, and Xoshiro. (a) Sampling data is taken at 106 sweeps, (b) Learning data is taken at epoch = 400 where the
number of sweeps per epoch = 400 for LFSR-only and the number of sweeps per epoch = 16000 for the sMTJ-clocked LFSR.

VIII. UPDATE ORDER INVARIANCE OF BOLTZMANN NETWORKS

In Supplementary Figure 5, we perform additional experiments to study how undirected Boltzmann networks are invariant
to update orders in the system, significantly easing experimental difficulties in scaled-out implementations of p-bit networks. In
this experiment, a fully connected undirected p-bit network had nodes clocked asynchronously with independent sMTJs. Even
with only 104 samples, a very close match is seen between the distributions corresponding to sMTJ-clocked LFSRs and Gibbs
sampling in simulation. It is important to note that Gibbs sampling was performed with randperm updates, where a new update
order (out of 4!=24 possibilities) was sampled (without replacement) at each iteration. Despite this highly random updating
scheme, both Gibbs (ideal simulation) and the sMTJ-clocked system eventually reach the ground truth, represented by the
Boltzmann distribution. This remarkable feature of update invariance in Boltzmann networks [8] significantly eases fabrication
difficulties in eventual sMTJ-based large-scale p-bit networks. Going further, the investigation of “time-to-equilibrium” that
determines the model averages and correlations in Algorithm 1 remains to be one of the future challenges of the field.

IX. SAMPLING FROM ARBITRARY DISTRIBUTIONS

In this note, we show how the CD algorithm can be used to create networks of p-bits that can sample from arbitrary
distributions up to M-bit accuracy. We start by defining a PDF for a given distribution. As an example, we choose a normal
distribution with µ = 16 and σ = 4 to be approximated by a N = 5 p-bit network with 2N = 32 states. Once the PDF is
specified, one approach is to create a truth table matrix of size V = NT ×N , where the rows of the truth table are repeated
according to the specified PDF. Assuming a fully visible network, we then calculate the data correlations from the truth table,
V †V . We then perform the standard contrastive divergence algorithm. Supplementary Figure 6 shows inference and learning
of a normal and exponential distribution with Mersenne Twister-based high-quality RNGs and LFSR-based low-quality RNGs.
Even though the Mersenne-based learning looks marginally better, we do not see a strong LFSR bias in such low-dimensional
learning tasks. Next, we test the difference between low and high-quality RNGs in much larger networks including MNIST
handwritten digits.



8

0 5 10 15
States [m1 m2 m3 m4]

0

0.05

0.1

0.15

0.2

0.25

Pr
ob

ab
ili

tie
s

sMTJ-clocked LFSR (Experiment)
Gibbs (Simulation)
Boltzmann Law (Ground Truth)

-1.5

+0.3-2

+2.5 +1

+2

4 sMTJ-clocked 
Boltzmann Network

(a) (b)

p-bit 1

p-bit 2

p-bit 3
p-bit 4

Supplementary Figure 5. Update order invariance of heterogeneous p-computer (a) Fully connected undirected Boltzmann network with
4 nodes. Different sMTJs drive the LFSRs in the p-bits corresponding to each node. (b) Experimental results of 4 sMTJ-clocked LFSR-based
p-bits (1e4 iterations) performing probabilistic inference. This asynchronous clocking of LFSR-based p-bits matched the random Gibbs
Sampling simulation results (1e4 iterations), which also matched the Boltzmann Law ground truth for these undirected networks. Note that
the Gibbs simulation randomized the update order of the network, choosing one of 4!=24 possible permutations randomly at each iteration.
The weight matrix is shown on the nodal interconnections, and the bias was 0 for p-bit 1, 3 and 4, but set to 0.3 for p-bit 2.
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Supplementary Figure 6. Networks of p-bits can be connected to sample from arbitrary probability distributions: on the left of the top
panel is a network of 5 p-bits approximating a normal distribution where training and inference are both done with high-quality Mersenne
Twister-based PRNGs. The blue-filled lines are the exact probability density functions (PDF), discretely sampled in both figures. Bottom
panel shows a similar result to learn the exponential distribution. Histograms show the inference on a 5 p-bit network that has been trained
using the contrastive divergence algorithm. On the right is the same result (inference followed by learning) using 5 p-bits using LFSRs only
(32-bit with random taps and initial conditions). All histograms are obtained with 50,000 samples. All models are trained on a 5-bit all-to-all
fully visible network (weights and biases not shown).
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Supplementary Figure 7. Learning MNIST handwritten digits (a) Training accuracy of 100 handwritten digits from MNIST with a sparse
Deep Boltzmann Machine (Pegasus 5640 p-bits) for 1000 epochs using both LFSR and Xoshiro. This shows a significant discrepancy in training
accuracy depending on whether p-bits are implemented with LFSR or Xoshiro. Despite being identical excluding the RNG implementation,
the former does not suffice due to the low accuracy at around 40% even after 1000 epochs, the latter reaches 100% accuracy with the same
number of epochs and the same set of hyper-parameters. (b) Illustration of sparse DBM (Pegasus 5640 p-bits) with 1 layer of visible units
and 3 layers of hidden units where both the inter-layer and intra-layer connections are allowed.

X. TRAINING MNIST WITH DEEP BOLTZMANN MACHINE: LFSR VS XOSHIRO

We now present a more complex task of training a subset of MNIST handwritten digits [23] using Algorithm 1 that also
suffers from the low-quality randomness of LFSR. Pegasus 5640 p-bits [24] is chosen as the sparse DBM where we randomly
distribute the visible and hidden units which yield multiple hidden layers as shown in Supplementary Figure 7b. The details
of this method are described in [25]. Here, we choose a subset of MNIST data including 100 images with no down-sampling
and train them in 10 mini batches using the CD algorithm for both LFSR and Xoshiro. All the hyperparameters remain the
same for these two cases which are as follows: inverse temperature β = 1, learning rate ε varies linearly from 0.03 to 0.003 for
1000 epochs.

Supplementary Figure 7a shows the comparison of training accuracy of 100 MNIST digits between the implementation of
LFSR and Xoshiro. While LFSR-based training barely reaches 40% accuracy in 1000 epochs, the Xoshiro-based training goes to
100% strongly indicating how the quality of randomness matters in terms of training such a large network.

XI. ANALYZING LFSR BIAS OVER DIFFERENT TAPS AND INITIAL CONDITIONS

Supplementary Figure 8 presents a detailed analysis of LFSR as a random number generator. LFSR RNG quality is measured
by its ability to perform bias-free sampling on the probabilistic full adder. Across different seeds and taps, even for 106

iterations, a consistent bias is always seen as demonstrated by the variations in histogram peaks.

XII. NIST TESTS ON XOSHIRO, LFSR AND SMTJ CLOCKED LFSRS

NIST tests are widely used to evaluate the quality of randomness, so we conducted standard randomness tests on the
bitstreams generated by the LFSR, Xoshiro, and LFSR+sMTJ using the NIST Statistical Test Suite [26]. We applied all 16
different NIST tests to the bitstreams. For LFSR and Xoshiro, we used MATLAB to generate bitstreams since given taps and
initial conditions these bitstreams are fully reproducible.

We used a modified experimental setup to obtain the bitstreams for LFSR+sMTJ. First, the inverse temperature value β in Eq.
(1) was set to 0 to get 50/50 fluctuations. Second, we sampled bitstreams of 650000 bits with a 10 kHz sampling rate in BRAM
blocks of the FPGA. Then, we downsampled the bitstream by a factor k. This is equivalent to sampling the bitstream with
frequency fk that fk = 10000 Hz/k. The length of the bitstream then becomes 650000/k. The reason for this downsampling
is to obtain independent samples from the sMTJs whose fluctuations times are far above 100 microseconds.

We used p-bit #3 to generate the bitstreams for LFSR+sMTJ. The result ‘Random’ represents that the bitstream passes the
tests whereas ‘Non-Random’ means the bitstream fails. Supplementary Table 3 summarizes the results of the NIST tests for
the LFSR+sMTJ with k = 601 and k = 2001, Xoshiro and LFSR. The results without oversampling issue show the good
quality of randomness generated by LFSR+sMTJ when k=601 or fk = 16.63 Hz, corresponding to a period of 60 milliseconds,
of the same order of our sMTJ fluctuations reported in Supplementary Table 1. The result of k = 2001 fails Maurer’s
Universal Test (Test #9) because the downsampled bitstream with length 650, 000/2001 ≈ 324 is not long enough for
applying that test. Corroborating our results in the main text, LFSR+sMTJ and Xoshiro pass all the tests, while LFSR fails one
test.



10

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Pr
ob

ab
ili

ty

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

[A B Cin S Cout]

LFSR-only
Boltzmann

Different Taps

Different seeds

Systematic bias in sampling Full Adder with LFSR

Set 2 Set 3 Set 4 Set 5 Set 6

Set 1 Set 2 Set 3

Set 4 Set 5 Set 6

Set 1

Set 2 Set 3 Set 4 Set 5 Set 6Set 1

Set 1 Set 2 Set 3

Set 4 Set 5 Set 6

p-bit 1
p-bit 2
p-bit 3
p-bit 4
p-bit 5

32 21 11 132 22 2 1 32 17 4 1 32 23 18 1 32 16 15 1 32 29 11 1

Bias
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taps for the LFSR. The seeds are chosen uniform randomly and the taps are chosen to provide the maximum length of the LFSR. Irrespective
of the seeds and taps, the bias never goes away, indicating a systematic bias.



11

Supplementary Table 3. Results of tests on bit streams specified in standard NIST SP800-22a

Test # Test Name Sub-tests
LFSR + sMTJ
k = 601
fk = 16.63 Hz

LFSR+sMTJ
k = 2001
fk = 5.00 Hz

Xoshiro LFSR

1 Frequency 1 Random Random Random Random
2 Frequency within a Block 1 Random Random Random Random
3 Runs 1 Random Random Random Random
4 Longest run of ones 1 Random Random Random Random
5 Rank 1 Random Random Random Random
6 Discrete Fourier Transform 1 Random Random Random Random
7 Non-overlapping T. M. 1 Random Random Random Random
8 Overlapping T.M. 1 Random Random Random Random
9 Maurer’s Universal 1 Random Non-Random Random Random
10 Linear complexity 1 Random Random Random Non-Random
11 Serial 2 Random Random Random Random
12 Approximate Entropy 1 Random Random Random Random
13 Cumulative sums 2 Random Random Random Random
14 Random Excursions 8 Random Random Random Random
15 Random Excursions Variant 18 Random Random Random Random
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Supplementary Figure 9. Flowchart highlighting the key steps in the digital synthesis flow from hardware description languages such as
Verilog all the way down to SPICE.

XIII. SYNTHESIS FLOW

The synthesis process followed involves the conversion of HDL codes modeling the digital p-bit to a functionally equivalent
SPICE netlist ( Supplementary Figure 9). This HDL-to-SPICE conversion first involves using Synopsys Design Compiler (DC)
to generate the HDL gate-level netlist from the open-source ASAP7 PDK library files. Subsequently, we used Calibre’s Verilog-
to-LVS (V2LVS) tool to translate the gate-level netlist into a SPICE compatible netlist. After post-processing using a custom
Mathematica script to get the netlist HSPICE compatible, we run transient simulations to obtain energy consumption, transistor
counts, and current and voltage plots. With Synopsys DC, we used the regular voltage threshold (RVT) database files, and with
V2LVS we used the RVT CDL files. For the HSPICE simulations, a VDD value of 0.7 V was used, and clock frequencies from
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100 MHz to 1 GHz were tested, with 1 GHz being used for all results reported in this work.

XIV. FUNCTIONAL VERIFICATION OF P-BITS AND PRNGS
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Supplementary Figure 10. Verifying p-bits and PRNGs functionality (a) 32-bit LFSR and (b) Xoshiro-based p-bits synthesized using ASAP7
PDK. Input current is converted from the 2’s complement s43 representation to decimal equivalent. The y-axis indicates the probability of the
p-bit being in a 1 state calculated over 2500 clock cycles of a transient p-bit simulation generating random bits. (c) Verifying the functionality
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Supplementary Figure 11. Input profile to activate the LUT: 1 GHz positive and negative pulse are applied to the input of the p-bit to
activate LUT transistors. Insets show representative transient simulations for instantaneous power consumption for LFSR and Xoshiro-based
p-bits.

As seen from Supplementary Figure 10a,b, the experimental data obtained from HSPICE by varying the p-bit inputs (8-bit
LUT input) of the synthesized circuit falls on the theoretically expected 1 + tanh(x)/2 for both LFSR and Xoshiro-based p-
bits. Varying the p-bit input allows us to tune the probability with which the p-bit fluctuates in accordance with the sigmoid
seen in Supplementary Figure 10a,b. In Supplementary Figure 10c,d, we observe that across 25000 experimental samples,
the distribution of outputs obtained from the digitally synthesized PRNG (LFSR or Xoshiro) are uniformly random. These
two results verify the functionality of the digital p-bit synthesized using ASAP7 by a transistor-level simulation performed in
HSPICE.
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XV. POWER ANALYSIS OF P-COMPUTERS

A. Synapse power

It is important to note that our calculations do not include any power analysis for the synapse (Supplementary Eq. (2)) so
far. Earlier estimations [27] indicated that the synapse power is at least 50% of the overall power consumption. Depending on
the implementation, for example, using analog crossbars or in-memory computing techniques, the synapse power could show
a large degree of variation and we do not explore these possibilities in this paper.

B. Digital p-bit power

Insets of Supplementary Figure 11 show high resolution, representative section of the power plots for LFSR and Xoshiro
p-bits. Energy analysis was performed by integrating the power over the transient time followed by averaging over 100 clock
cycles of a 1 GHz clock, using trapezoidal numerical integration (trapz) in MATLAB.

In order to estimate the energy contribution of the LUT to the energy of generating a random bit, we vary the least significant
3 bits of the p-bit input to keep the LUT actively switching to simulate normal operating conditions during probabilistic
computations. We do this in two different ways by generating 2 switching sequences of the form 00000xxx and 11111xxx,
where “x” switches between 0 and 1 (see Supplementary Figure 11 for the pulse shapes). The first switching pattern is shown
by the positive pulse in blue, where the LUT is traversing the sigmoid just above the zero point. The second switching pattern
shown by the negative pulse in red has the LUT switching between values just below the zero point. We choose these input
variations to have a 1 GHz frequency and measure the average power and energy dissipation over 100 clock cycles. For the
positive pulse, the results are shown in FIG. 4b. For the negative pulse we obtain an energy consumption for a 32-bit LFSR
p-bit as 119 fJ, and that of a 32-bit Xoshiro p-bit as 267 fJ, similar to what we observed for the positive pulse, reported in the
main text, FIG. 4b.

XVI. BENCHMARKING AND PROJECTION OF P-BITS: ROADMAP

In this note, we provide projections and benchmarks for probabilistic inference and sampling hardware at device, circuit
and systems levels which are summarized in Supplementary Table 4, below.
Device-level: At the sMTJ level, a key performance metric is the speed of fluctuations which can be measured by
autocorrelation and magnetic relaxation times. Here, we seek order-of-magnitude estimates and represent average
fluctuations by a single number τ for simplicity. There are two main methods to design sMTJs, one by employing
nanomagnets with perpendicular anistropy (PMA) and another by employing nanomagnets with in-plane anisotropy (IMA).
PMA magnets of the type we use in this paper typically have slow fluctuation rates compared to IMA [6, 28]. PMA magnets
whose energy barriers are around 10-15 kBT fluctuate in the millisecond range [10, 13]. On the other hand, recent
device-level experiments using IMA magnets have shown fluctuations with 1-10 nanosecond rates [29–31]. sMTJs made out
of IMA magnets possess other favorable properties such as bias-independence [16] to build robust p-bit circuits.
Circuit-level: Despite advances at the individual device level, p-bit circuits using sMTJs have not yet caught up with the
fastest sMTJs. Even though we use a different current-mirror topology for the p-bit circuit in this paper, similar to earlier
work, our p-bits use PMA MTJs with milisecond fluctuations. A recent report showed the fastest p-bit circuits with microsecond
fluctuations, using IMA magnets [32]. Reaching nanosecond fluctuations with p-bit circuits might require integrated solutions,
of the type that are sought initially in Ref. [33]. Given that CMOS circuitry could operate at picosecond timescales, there should
be no fundamental obstacles to building GHz p-bit circuits.
System-level: At the system level, two main performance metrics for p-computers have been identified. One is the number
of nodes in the network, N . The other one is sampling throughput that measures the number of probabilistic decisions taken
by a system. Highly optimized standalone GPUs/TPUs of similar size graphs provide a sampling throughput of 10 flips/ns,
establishing an optimized conventional baseline [34–37]. These chips consume around 100W of power. Given this GPU/TPU
background, we provide established experimental data and projections for CMOS and CMOS+sMTJ-based probabilistic
computers.

The FPGA columns represent our fully digital FPGA work with different quality RNGs (LFSR and Xoshiro). Depending on
the bit precision and network connectivity, these digital solvers can sustain up to N = 104 p-bits in hardware [18, 25]. Running
in parallel with around 10 MHz frequencies, they reach 100 flips/ns [18] in sampling throughput, about an order of magnitude
higher than typical GPU and TPUs. On the other hand, the sMTJs with perpendicular magnetic anisotropy (PMA) used in our
present heterogeneous p-computers currently have fluctuation times around τ = 1 ms. However, near-term projections with
N = 104 p-bits using sMTJs with in-plane magnetic anisotropy (IMA) (τ ≈ 1ns [29–31]) can reach 104 flips/ns in sampling
throughput. In the case of heterogeneous p-computers driven by sMTJs, the external p-bits can drive a large number of digital
p-bits inside the FPGA. In such a case, around N=10,000 digital p-bits can be driven by sMTJs and the sampling throughput
would be limited by the synapse time inside the FPGA (or the digital ASIC). This number shows that even in this modest
scale, heterogeneous computers can already provide computational advantages over-optimized typical TPU/GPUs. Ultimate,
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fully-integrated and sMTJ-based computers with N = 106 p-bits can reach sampling throughputs of 106 flips/ns, 5 orders of
magnitude faster than typical TPU/GPUs. TPU/GPU references discussed have been plotted on a power consumption versus
sampling throughput scale in [38] and [32].

For sampling throughput projections at large scale, we use N/τ , assuming each p-bit flips independently of each other. This
basic formula assumes that each flip is communicated to neigboring p-bits before a new flip is attempted, as otherwise flips
may not be useful. If the network density scales as O(k · N) with some small k corresponding to sparse networks, the fast
communication assumption is warranted and ideal parallelism can be achieved.

For FPGA-based p-computers, the total power consumption is around 30W, including peripheral and unrelated circuits
beyond the digital synthesis of our design. For heterogeneous computers of the type we consider in this work (5 MTJs + FPGA),
the total power is also dominated by the FPGA power and is also around 30W. Unlike the present work where we used sMTJs
to clock digital PRNGs such as LFSRs, in the future we envision the sMTJ-based analog p-bits as standalone blocks interacting
through a CMOS underlayer without any seeding of CMOS PRNGs. In terms of power estimates for such fully sMTJ-based
p-computers, detailed circuit simulations with experimentally established parameters indicate a power consumption of 10 µW
per p-bit [15]. For fully sMTJ-based p-computers with N = 106, this would indicate a total p-bit power of 10 W, with an
additional 10 W estimated synapse power [27, 32]. Considering how present day MRAM technology has been scaled up to 1
Gbit densities [39], integrating about 106 p-bits on top of CMOS should be reasonable.

Supplementary Table 4. Benchmarking probabilistic hardware from device, circuit and system perspectives. For device comparisons
we focus on experimentally demonstrated sMTJ fluctuations. p-bits are circuits that use sMTJs to produce binary stochastic neurons with
tunable probability with fluctuations at τ−1 rates. At the system level, we focus on number of p-bits in a network (N) and sampling
throughput, which is given by N/τ , for asynchronous systems with fast synapses computing Supplementary Eq. 2 (see text). Also at the
system level, we report published data for GPUs/TPUs handling similar probabilistic sampling tasks. Projections are shown using (†). (*) In
heterogeneous computers of the type we consider in this paper, external sMTJ-based p-bits can drive a large number of digital p-bits in an
FPGA or an ASIC. ◦ RNG quality is deemed low / high for sampling problems rather than combinatorial optimization problems for which
LFSR-based PRNGs seem sufficient [18].

←− THIS WORK −→ NEAR-TERM LONG-TERM
PROJECTION PROJECTION

Level of GPUs/TPUs FPGA p-computer Hetero FPGA+sMTJ p-computer ASIC all-digital Heterogeneous
Comparison LFSR-based Xoshiro-based PMA IMA IMA sMTJ+ASIC
DEVICE: N/A N/A N/A τ ≈ 1ms [10] τ ≈ 1 µs [17] τ ≈ 1 ns [30] N/A τ ≈ 1 ns†sMTJ
CIRCUIT: N/A (τ)−1 ≈ 10MHz (τ)−1 ≈ 10MHz τ ≈ 1ms [10] τ ≈ 1 µs [32] τ ≈ 1 ns† τ ≈ 1 ns† τ ≈ 1 ns†p-bit
SYSTEM:

N/A N ≈ 104 [18] N ≈ 104 [25] N = 32(∗) N ≈ 104(∗)† N ≈ 104(∗)† N ≈ 105† N ≈ 106†Number of
p-bits (N)
SYSTEM:

≈ 10 ≈ 100 ≈ 100 ≈ 32× 10−6 ≈ 10† ≈ 104† ≈ 105† ≈ 106†Sampling
throughput

(flips/ns)

RNG Quality PRNG/ PRNG/ PRNG/ TRNG/ TRNG/ TRNG/ PRNG/ PRNG/
High Low◦ High High High High High High
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