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Stochastic Reconstruction of Transmission Chains

For each case, we knew the date of symptom onset (for symptomatic cases), the date of
quarantining (the date when a confirmed positive case enters quarantining and can no
longer spread COVID-19 to others), each case’s infector or possible infectors (in our data,
some cases had as many as three contacts with confirmed positive cases that could have
been the infector for the given cases; for cases with a single contact, that contact is
assumed to be the infector), and the range of dates of possible incidence of each case.

Additionally, we have infectivity profiles , , and , which are the𝑃
𝐼𝑛𝑓
𝐴𝑠𝑦 𝑠( ) 𝑃

𝐼𝑛𝑓
𝑃𝑟𝑒 𝑠( ) 𝑃

𝐼𝑛𝑓
𝑆𝑦𝑚 𝑠( )

probability distributions dependent on time, , and independent of calendar time, for𝑠
asymptomatic, presymptomatic, and symptomatic cases, respectively. The infectivity
profiles for asymptomatic, presymptomatic, and symptomatic cases were those modeled
from 77 transmission pairs obtained from publicly available sources within and outside
mainland China (He et.al. 2020) and are detailed in the end section below.

Other methods of transmissivity modeling (Cori et. al. 2013) use the serial distribution, or
the number of days between days of symptom onset between an infector and infectee
case. This method works well for pathogens that are largely symptomatic. The large
number of asymptomatic cases for COVID-19 makes it unreasonable to use the serial
intervals, and instead we must use the generation interval, or the number of days between
the incidence of a case in the infector and the incidence of a case in the infectee. This
poses an additional problem since the time of incidence is virtually impossible to witness.
To overcome this, we can use the data we have to stochastically reconstruct the
transmission chains of the COVID-19 breakout and effectively Monte Carlo integrate out
the times of incidence to model infectivity. This also provides the additional benefit of
being able to model transmissivity of different types of transmission, more specifically,
but not limited to, asymptomatic and symptomatic transmission.
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To create these stochastically reconstructed transmission chains, we assume the infections
are independent conditional on the set of infectors. We also assume that each potential
infector within each class has the same infectivity profile. For each case and each𝑖
possible infector , we determine the range of viable days could have infected , .𝑗 𝑗 𝑖 𝑡

𝑗

These days need not be contiguous. Then, according to the infectivity profile, the

probability that infected on the day of is , where is𝑗 𝑖 𝑘𝑡ℎ 𝑡
𝑗

𝑃
𝐼𝑛𝑓

𝐴
𝑗,𝑘 𝑡

𝑗𝑘( ) 𝐴∈{𝐴𝑠𝑦, 𝑃𝑟𝑒,  𝑆𝑦𝑚}

the symptomatic class of on day k. Then the probability that infected during is𝑗 𝑗 𝑖 𝑡
𝑗

𝑃
𝑗

=
𝑘=1

𝑡
𝑗| |

∑ 𝑃
𝐼𝑛𝑓

𝐴
𝑗,𝑘 𝑡

𝑗𝑘( )

for each , the set of all possible infectors of . We can then reweight ,𝑗∈𝐽 𝑖 𝑃
^

𝑗
= 𝑃

𝑗
/

𝑗∈𝐽
∑ 𝑃

𝑗

then make a simple random draw from to determine which infected in our𝑃
^

𝑗 𝑖

reconstructed chain and make a simple random draw from to determine which𝑃
𝐼𝑛𝑓

𝐴
𝑗,𝑘 𝑡

𝑗( )
day infected . Note, the date of incident of the infector case will affect the viable range𝑗 𝑖
of dates the infectee case could have been infected on, so all possible infector cases must
have their incident date drawn before drawing an infectee’s incident date. We then
continue to any further links in the chains conditioning on prior events. This process
produces a single reconstructed transmission chain. We then repeat the complete process
to sample additional chains.

Estimation of the basic reproductive number )(𝑅
0

For each realization of our stochastically reconstructed transmission chains, we estimate

posterior distributions of , , , the basic reproductive numbers of𝑅
0
𝐴𝑠𝑦 𝑅

0
𝑆𝑦𝑚 𝑅

0
𝑇𝑜𝑡

asymptomatic cases, symptomatic cases, and of all cases. We modeled transmission
between individuals with a Poisson process in time, so that the instantaneous rate at
which a case became infected or had symptom onset at time is𝑡 − 𝑠

. We assume these infection times are𝑅
0
𝐴𝑃

𝐼𝑛𝑓
𝐴 𝑡 − 𝑠( ),  𝐴∈{𝐴𝑠𝑦, 𝑃𝑟𝑒, 𝑆𝑦𝑚, 𝑇𝑜𝑡}

independent. Hence, , the number of people infected at time from cases of𝑌
𝑡
𝐴 𝑡

symptomatic class , is Poisson with mean . The instantaneous𝐴 𝑅
0
𝐴

𝑠=0

𝑡−1

∑ 𝑌
𝑠
𝐴𝑃

𝐼𝑛𝑓
𝐴 𝑡 − 𝑠( )

reproduction number for each symptomatic class is assumed to be constant at𝐴 𝑅
0
𝐴

throughout the study. The likelihood of given and is then𝑌
𝑡
𝐴 𝑅

0
𝐴 𝑌

0
𝐴,..., 𝑌

𝑡−1
𝐴
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𝑃 𝑌
𝑡
𝐴|𝑅

0
𝐴, 𝑌

0
𝐴,..., 𝑌

𝑡−1
𝐴 , 𝑃

𝐼𝑛𝑓
𝐴( ) =

𝑅
0
𝐴

𝑠=0

𝑡−1

∑ 𝑌
𝑠
𝐴𝑃

𝐼𝑛𝑓
𝐴 𝑡−𝑠( )( )𝑌

𝑡
𝐴

𝑒𝑥𝑝 −𝑅
0
𝐴

𝑠=0

𝑡−1

∑ 𝑌
𝑠
𝐴𝑃

𝐼𝑛𝑓
𝐴 𝑡−𝑠( )( )

𝑌
𝑡
𝐴!

For a given outbreak, each case has a start time , and end time during which it was𝑖 𝑠
𝑖
𝐴 𝑒

𝑖
𝐴

of symptomatic class . Note, if a case was never of a particular class, , but𝐴 𝑠
𝑖
𝐴 = 𝑒

𝑖
𝐴 = 0

for cases that transition between classes, in this case from presymptomatic to

symptomatic, then , , and , . We𝑠
𝑖
𝑃𝑟𝑒 = 0 𝑒

𝑖
𝑃𝑟𝑒 = 𝑡

𝑖
𝑜𝑛𝑠𝑒𝑡 − 1 𝑠

𝑖
𝑆𝑦𝑚 = 𝑡

𝑖
𝑜𝑛𝑠𝑒𝑡 𝑒

𝑖
𝑆𝑦𝑚 = 𝑡

𝑖
𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒

define the infectivity mass at time of symptomatic class as:𝑡 𝐴

𝑀
𝑡
𝐴 =

𝑠=0

𝑡

∑ 𝑌
𝑠
𝐴𝑃

𝐼𝑛𝑓
𝐴 𝑡 − 𝑠( ).

Similarly, we define the infectivity mass of case i for symptomatic class as:𝐴

𝑀
𝑖
𝐴 =

𝑗=𝑠
𝑖
𝐴

𝑒
𝑖
𝐴

∑ 𝑃
𝐼𝑛𝑓
𝐴 𝑗( ).

For an outbreak that occurs during and has cases for class ,𝑡
𝑠𝑡𝑎𝑟𝑡

, 𝑡
𝑒𝑛𝑑[ ] 𝑖 = 1,..., 𝑛 𝐴

𝑡=𝑡
𝑠𝑡𝑎𝑟𝑡

𝑡
𝑒𝑛𝑑

∑ 𝑀
𝑡
𝐴 =

𝑖=1

𝑛

∑ 𝑀
𝑖
𝐴.

We can simplify the likelihood of given and as𝑌
𝑡
𝐴 𝑅

0
𝐴 𝑌

0
𝐴,..., 𝑌

𝑡−1
𝐴

𝑃 𝑌
𝑡
𝐴|𝑅

0
𝐴, 𝑌

0
𝐴,..., 𝑌

𝑡−1
𝐴 , 𝑃

𝐼𝑛𝑓
𝐴( ) =

𝑅
0
𝐴𝑀

𝑡
𝐴( )𝑌

𝑡
𝐴

𝑒𝑥𝑝 −𝑅
0
𝐴𝑀

𝑡
𝐴( )

𝑌
𝑡
𝐴!

.

Since is considered to be constant over the course of the outbreak, the likelihood of𝑅
0
𝐴

transmission over by cases of symptomatic class , , given𝑡 − τ + 1, 𝑡[ ] 𝐴 𝑌
𝑡−τ+1
𝐴 , …, 𝑌

𝑡
𝐴

and is𝑅
0
𝐴 𝑌

0
𝐴, …, 𝑌

𝑡−τ
𝐴

𝑃(𝑌
𝑡−τ+1
𝐴 , …, 𝑌

𝑡
𝐴 | 𝑌

0
𝐴, …, 𝑌

𝑡−τ
𝐴 , 𝑅

0
𝐴, 𝑃

𝐼𝑛𝑓
𝐴 ) =  

𝑠=𝑡−τ+1

𝑡

∏
𝑅

0
𝐴𝑀

𝑡
𝐴( )𝑌

𝑠
𝐴

𝑒𝑥𝑝 −𝑅
0
𝐴𝑀

𝑡
𝐴( )

𝑌
𝑠
𝐴!
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If we give a prior distribution of , then under a Bayesian𝑅
0
𝐴 Γ 𝑠ℎ𝑎𝑝𝑒 = 𝑎, 𝑟𝑎𝑡𝑒 = 𝑏( )

framework, the joint posterior distribution of is𝑅
0
𝐴

𝑃 𝑌
𝑡−τ+1
𝐴 ,..., 𝑌

𝑡
𝐴, 𝑅

0
𝐴|𝑌

0
𝐴,..., 𝑌

𝑡−τ
𝐴 , 𝑃

𝐼𝑛𝑓
𝐴( ) = 𝑃 𝑌

𝑡−τ+1
𝐴 ,..., 𝑌

𝑡
𝐴|𝑌

0
𝐴,..., 𝑌

𝑡−τ
𝐴 , 𝑅

0
𝐴, 𝑃

𝐼𝑛𝑓
𝐴( )𝑃 𝑅

0
𝐴( )  =  

𝑠=𝑡−τ+1

𝑡

∏
𝑅

0
𝐴𝑀

𝑠
𝐴( )𝑌

𝑠
𝐴

𝑒
−𝑅

0
𝐴𝑀

𝑠
𝐴

𝑌
𝑠
𝐴!

𝑅
0
𝐴( )𝑎−1

𝑒
−𝑅

0
𝐴𝑏

𝑏𝑎

Γ 𝑎( )   

= 𝑅
0
𝐴( )

𝑎−1+
𝑠=𝑡−τ+1

𝑡

∑ 𝑌
𝑡
𝑒

−𝑅
0
𝐴 𝑏+

𝑠=𝑡−τ+1

𝑡

∑ 𝑀
𝑡
𝐴( )

𝑠=𝑡−τ+1

𝑡

∏
𝑏𝑎 𝑀

𝑡
𝐴( )𝑌

𝑡

Γ 𝑎( )𝑌
𝑡
! .  

Hence, the posterior distribution of is . Thus, over𝑅
0
𝐴 Γ 𝑎 +

𝑠=𝑡−τ+1

𝑡

∑ 𝑌
𝑡
𝐴, 𝑏 +

𝑠=𝑡−τ+1

𝑡

∑ 𝑀
𝑡
𝐴( )

the entirety of the outbreak, with cases , and being the number of cases infected1,..., 𝑛 𝑌
𝑖
𝑎

by while of symptomatic class ,𝑖 𝐴

𝑅
0
𝐴∼Γ 𝑠ℎ𝑎𝑝𝑒 = 𝑎 +

𝑖=1

𝑛

∑ 𝑌
𝑖
𝐴, 𝑟𝑎𝑡𝑒 = 𝑏 +

𝑖=1

𝑛

∑ 𝑀
𝑖
𝐴( ).

We estimated , , , and separately. The prior distribution for each is𝑅
0
𝐴𝑠𝑦 𝑅

0
𝑃𝑟𝑒 𝑅

0
𝑆𝑦𝑚 𝑅

0
𝑇𝑜𝑡 𝑅

0
𝐴

Gamma with mean 2.5 and standard deviation 2 (corresponds with and𝑠ℎ𝑎𝑝𝑒 = 1. 25
), expressing large uncertainty about the basic reproductive number in this𝑟𝑎𝑡𝑒 = 0. 625

context (Zhang et.al. 2020). For each chain, we calculate the realized total number of

people infected from case while of symptomatic class , , and the infectivity mass of𝑖 𝐴 𝑦
𝑖
𝐴

each case for each symptomatic class , . The posterior distribution results in𝐴 𝑚
𝑖
𝐴

𝑅
0
𝐴∼Γ 𝑠ℎ𝑎𝑝𝑒 = 1. 25 +

𝑖=1

𝑛

∑ 𝑦
𝑖
𝐴, 𝑟𝑎𝑡𝑒 = 0. 625 +

𝑖=1

𝑛

∑ 𝑚
𝑖
𝐴( ),

for total cases in the outbreak. The posterior distribution can be computed directly for𝑛
asymptomatic, presymptomatic, symptomatic, and all cases separately.

All analyses were done using R software (version 4.2.0). All quantities were estimated in
a Bayesian framework. Point estimates and the corresponding 95% credible intervals
(CrI) were obtained from the posterior distributions.

Assumed infectiousness profiles of COVID-19 used to estimate the reproductive number
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The infectivity profiles , , and were modelled from 77𝑃
𝐼𝑛𝑓
𝐴𝑠𝑦 𝑠( ) 𝑃

𝐼𝑛𝑓
𝑃𝑟𝑒 𝑠( ) 𝑃

𝐼𝑛𝑓
𝑆𝑦𝑚 𝑠( )

transmission pairs obtained from publicly available sources within and outside mainland
China (He et.al. 2020). Specifically, they estimated the serial interval to have a mean of
5.8 days based on a fitted gamma distribution. We used a gamma distribution with this
mean, represented in Figure 1.

Figure 1. Gamma distribution used for the estimation.

For systematic cases we assumed an incubation period distribution of mean 5.2 days from
a separate study of early COVID-19 cases (He et.al. 2020) and that infectiousness started
from 2.3 days before symptom onset and peaked at 0.7 days before symptom onset and
used a gamma distribution with these characteristics (See their Fig. 1c).

Figure 2. Gamma distribution for symptomatic cases.

Sensitivity Analysis for Modelling Assumptions.

It is possible that there is substantial population heterogeneity in people’s infectiousness.
Different infectiousness can be the result of age differences, differential immune system
response, etc. We represent this as an individual specific multiplicative factor, , so thatλ

𝑖

is modeled as Poisson with mean . We further model as𝑌
𝑖

λ
𝑖
𝑅

0
𝐴

𝑆
𝑖

𝐼
𝑖

∫ 𝑝
𝑖𝑛𝑓

𝐴
𝑖 𝑡 − 𝑆

𝑖( )𝑑𝑡 λ
𝑖

random and independent between cases with mean 1 and standard deviation . Theσ
𝐻𝑒𝑡

case corresponds to the special case of zero population heterogeneity inσ
𝐻𝑒𝑡

= 0 

5



infectiousness. We can interpret as the typical percentage deviation of a person'sσ
𝐻𝑒𝑡

 

infectivity from the average. Larger values of reflect higher heterogeneity ofσ
𝐻𝑒𝑡

 

infectiousness. We model the distribution of as Gamma . Thisλ
𝑖
 (1/σ

𝐻𝑒𝑡
2 , 1/σ

𝐻𝑒𝑡
2 )

additional modeling adds a single new parameter, to the model. To fit the model, weσ
𝐻𝑒𝑡

,

continue to use the Bayesian framework with a prior for being Gamma with meanσ
𝐻𝑒𝑡

0.25 and standard deviation 0.25. The other aspects of the model are the same as reported
in the paper.

Based on this model, the posterior mode of the basic reproduction number of
asymptomatic cases is similar to that in the paper, that is, with . This moreσ

𝐻𝑒𝑡
= 0

general model places somewhat more probability on larger values of . The posterior𝑅
0

mode for the standard deviation of the population heterogeneity, is about 1.0σ
𝐻𝑒𝑡

,

indicating significant heterogeneity in reproductive number between cases.

We also changed the shape of the infectivity curve by changing the parameters of the
gamma distributions to the upper and lower confidence bounds reported in He et al
(2020). These did not substantively change the results.

Predicting the Epidemic Outcomes had Mitigation not been Applied

To better understand the potential impact this outbreak could have had in the absence of
social distancing, quarantining, and other Covid-19 transmission mitigating measures, we
implement an Susceptible-Infected-Recovered (SIR) model that outputs estimates of the
prevalence, total number of cases, the incidence, number of new daily cases, and

cumulative deaths. This SIR model is based on . In an SIR model, there is a fixed𝑅
0
𝑇𝑜𝑡

sized population, and all members of the population are either Susceptible (not infected
but can be infected), Infected (have the infection and can spread it to Susceptible people),
or Recovered (had the infection but no longer have it and cannot spread it, nor can they
get the infection again). We opt for an SIR model since the data collected only allows us
to understand transmissions that occurred, but not contacts that didn’t result in new cases.
As a result, we lack information on exposure that can be credibly used in an SEIR model
for this outbreak.

At any time t, suppose there are S susceptible, I infectious, and R recovered individuals.
Denote the mean infectious time as 1/𝛾 and recovery rate 𝛾, for 𝛾 > 0, and the constant
disease transmission rate 𝛽, so that 𝛽I is the rate of infection proportional to the number
of infected, and 𝛽SI is the number of newly infected at each time t, proportional to the
number of susceptible individuals. The SIR model is specified by the ODEs:

dS/dt = -𝛽SI, dI/dt = 𝛽SI - 𝛾I, dR/dt = 𝛾I,
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along with initial conditions S(0) = S0, I(0) > 0, I(0) << S(0), and R(0) = 0.

This model results in a reproductive number of = 𝛽S0/𝛾. We assume a constant over𝑅
0

𝑅
0

the course of the outbreak, and we already have estimated a posterior distribution.𝑅
0
𝑇𝑜𝑡

By taking many random draws from this distribution (100,000), we use the SIR model to
estimate the prevalence, incidence, and cumulative deaths over time, along with best and
worst case scenarios, over the course of the outbreak.

7


