ETV2 Regulating PHD2-HIF-1o Axis Controls Metabolism

Reprogramming Promotes Vascularized Bone Regeneration
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Supplementary Figure 1. (A) Flow cytometry was used to detect the expression of stem cell
surface markers on DPSCs (B) Tri-lineage differentiation assays of DPSCs demonstrated the
potential to differentiate into osteogenic, adipogenic, and chondrogenic lineages from left to
right, as indicated. Scale bars: 200 um (C, D) The protein and mRNA expression levels of
ETV2 were assessed following ETV2 overexpression (E) The CCK-8 assay was performed on
HUVEC:s treated with a-KG at various time points (1, 3, 5, and 7 days) (F) The CCK-8 assay
was conducted on HUVECs treated with I0X4 at various time points (1, 3, 5, and 7 days) (NS,
no significant difference, NC, negative control; OE, overexpression. Data are presented as the
mean of >3 independent experiments = SD. *P < 0.05, **P < 0.01, and ***P < 0.001).
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Supplementary figure 2. (A, B) Representative image and semi-quantitative analysis of ARS
staining after PHD2 knockdown. Scale bar: 100 pm (C, D) The protein expression and
semi-quantitative analysis of HIF-1 signaling (PHD2, HIF-la, VEGFA) and osteogenic
makers (COL-1, OPN) after PHD2 knockdown (KD knockdown, NC negative control, OE
overexpression. Data are presented as the mean of >3 independent experiments + SD. *P <
0.05, **P < 0.01, and ***P < 0.001).
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Supplementary figure 3. (A) ELISA was used to measure intracellular VEGFA levels in
ETV2-DPSCs after osteogenic induction for 12 hours and 3 days (B) Secretory VEGFA levels
in ETV2-DPSCs were determined by ELISA after osteogenic induction for 3 days (C)
Alizarin Red staining and semi-quantitative analysis of DPSCs treated with 40ng/ml VEGFA
(D, E) Protein expression and quantitative analysis of COL-1, OPN, and RUNX2 in DPSCs
treated with 40ng/ml VEGFA (NS, no significant difference, NC, negative control; OFE,
overexpression. Data are presented as the mean of >3 independent experiments + SD. *P <
0.05, **P < 0.01, and ***P < 0.001).
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Supplementary figure 4. (A) Mitochondrial respiration of ETV2-DPSCs is measured using
OCR detection at various time points after osteogenic induction (B) Glycolysis stress of
ETV2-overexpressing DPSCs is measured using ECAR detection at different time points after
osteogenic induction. (Data are presented as the mean of >3 independent experiments + SD.)
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Supplementary figure 5. (A) Elemental distribution mapping of Ca, P, and N on the surface
of HA/CS microspheres (B) The mRNA expression of OPN and RUNX2 after seven days of
osteogenic induction in cells cultured on well plates or microsphere surfaces (C) Quantitative
statistics of the protein expression of COL-1, OPN, and RUNX2 after seven days of
osteogenic induction in cells cultured on well plates or microsphere surfaces (NC, negative
control; OE, overexpression. Data are presented as the mean of >3 independent experiments +
SD. *P < 0.05).
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Supplementary figure 6. (A) ELISA analysis of TNF-a and IL-6 levels in mouse ocular
blood three days after modeling.(B) Macroscopic images of vital organs (C) H&E staining of
vital organs (MS, microsphere; NS, no significant difference; NC, negative control. Data are
presented as the mean of >3 independent experiments + SD.)
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Supplementary figure 7. (A) Masson staining of the defect area. The white arrow indicates

the microsphere. The black arrow indicates neovasculars. Scale bar: 200 um (B)

Representative images of immunofluorescence labeling OSX in tissue sections of defect area

at 3 d post-modeling. Red arrows indicate OSX* cells. Scale bar: 200 um (C) Representative

images of immunofluorescence co-staining PHD2 (red) and HIF-1a (green) in tissue sections

of defect area at 3 d post-modeling. Scale bar: 200 pm (D, E) Quantification of the proportion
of PHD2'HIF-1a* cells and OSX* cells (MS, microsphere; NC, negative control. Data are
presented as the mean of >3 independent experiments + SD. *P < 0.05, **P < 0.01, and ***P

<0.001)
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Supplementary figure 8. (A-F) Quantitative

(A), 2C (B), 2G (C), 3D (D), 3F (E), 4E (F).
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Table 1 Primer sequences

Gene Forward sequence Reverse sequence
ETV2 GAAGGAGCCAAATTAGGCTTCT GAGCTTGTACCTTTCCAGCAT
RUNX2 TGGTTACTGTCATGGCGGGTA TCTCAGATCGTTGAACCTTGCTA
0OSX CCTCTGCGGGACTCAACAAC AGCCCATTAGTGCTTGTAAAGG
COL1Al GAGGGCCAAGACGAAGACATC CAGATCACGTCATCGCACAAC
OPN CTCCATTGACTCGAACGACTC CAGGTCTGCGAAACTTCTTAGAT
PHDI TGGCCCTGGACTATATCGTG GGCACCAATGCTTCGACAG
PHD2 GAAGGCGAACCTGTACCCC TTCATGCACGGCACGATGTA
PHD3 CTGGGCAAATACTACGTCAAGG GACCATCACCGTTGGGGTT
HIF-1a GAACGTCGAAAAGAAAAGTCTCG CCTTATCAAGATGCGAACTCACA

Table 2 Plasmid sequences

gene

sense (5'-3")

antisense (5'-3")

Human-si-VEGFA

Human-si-PHD2

CAAGAUCCGCAGACGUGUA(AT)(dT) UACACGUCUGCGGAUCUUG(AT)(dT)

CAAGGUAAGUGGAGGUAUA(AT)(dT) UAUACCUCCACUUACCUUG(AT)(dT)



