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FIG. Supplementary Figure 1. TEM image of Fe5−δGeTe2 cross section. a Annular
Dark-Field Scanning Transmission Electron Microscopy (ADF-STEM) images of a slow-cooled
Fe5−δGeTe2 sample along the [100] direction, showing ABC stacking of the vdW slabs. The blue
arrow points to a stacking fault between vdW slabs. b The same measurement on a quenched
Fe5−δGeTe2 sample, showing the ABC stacking of the vdW slabs.

SUPPLEMENTARY NOTE 1: TRANSMISSION ELECTRON MICROSCOPY

CHARACTERIZATION

The TEM image (Supplementary Figure 1) indicates the layered structure of Fe5−δGeTe2.

The most bright points are from Te atoms, a ABC stacking order were revealed by comparing

each layers Te atoms’ position, seeing the guide line for slow-cooled and quenched samples.

A stacking fault was found between the vdW sublayers in slow-cooled sample pointed by the

blue arrow. This result is consistent with previous report that the slow-cooled sample show

more stacking faults [1, 2].

SUPPLEMENTARY NOTE 2: SHG MEASUREMENTS AND SYMMETRY ANAL-

YSIS

We derive the equation of SHG intensity vs. incident polarization in slow-cooled and

re-quenched Fe5−δGeTe2 crystals, by considering the electric quadrupole (EQ) SHG term

IEQ
i (2ω) ∝

∣∣∣Σjklχ
EQ
ijklkjEk(ω)El(ω)

∣∣∣2 and the inversion symmetry breaking induced electric

dipole (ED) term IED
i (2ω) ∝

∣∣Σjkχ
ED
ijk Ej(ω)Ek(ω)

∣∣2, respectively. The two tensors χEQ
ijkl and
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χED
ijk must agree with the symmetry presented in these crystals.

Slow-cooled crystals

The slow-cooled crystal has the point group 3m and space group R3m (166), which

preserves the inversion symmetry and has χED
ijk = 0. In that, the ED SHG term vanishes,

while a smaller EQ SHG term may be present. Under normal incidence, one can simplify the

EQ SHG term χEQ
ijklkjEk(ω)El(ω) by restricting k, l = x, y and fixing j = z. According to

the symmetry of the EQ SHG tensor χEQ
ijkl , one can write the SHG intensity as:

Iparallel(2ω) ∝
(
χEQ

xzxx

)2
I(ω)2 cos2 3α (1)

Icrossed(2ω) ∝
(
χEQ

xzxx

)2
I(ω)2 sin2 3α (2)

where α is the angle between the input polarization and the crystalline x axis and I(ω)

is the incident power. From the above equations, one can see both parallel and crossed

configuration has six lobes with equal intensity in their polar pattern, matching well with

our observation (Fig. 1i).

Quenched crystals

In the re-quenched crystals, the formation of the
√
3×

√
3 superstructure breaks inversion

symmetry, which allows a non-zero ED contribution to SHG intensity. We used the DUU

structure as an example to derive the polarization dependent SHG intensity. A mirror plane

is found in the structure. The mirror plane is parallel to the c axis and parallel to the

bisector of the angle formed by a and b axis. This matches the point group 3m. It holds

point group 3m, which will give the corresponding SHG polar pattern under parallel and

crossed configuration:

Iparallel(2ω) ∝
(
χED

xxy

)2
I(ω)2 sin2 3α (3)

Icrossed(2ω) ∝
(
χED

xxy

)2
I(ω)2 cos2 3α (4)

3



where I(ω) is the input power and α is the angle between crystalline x axis and input

polarization. Thus, both parallel and crossed setup will give six lobes with the same amplitude

in their polar pattern, agreeing with our experimental results (Fig. 1j).

SUPPLEMENTARY NOTE 3: SINGLE-CRYSTAL DIFFRACTION

We compare the diffraction data at the L=0 scattering plane for the two types of sam-

ples. Since cutting a single crystal for vdW materials creates edges, we instead take two

slow-cooled samples from the same batch and carefully re-quenched one prior to XRD

measurements. Supplementary Figure 3a shows the slow-cooled single crystal XRD pattern

and Supplementary Figure 3b shows the data from the re-quenched crystal. Comparing the

two sets of data, the slow-cooled sample shows stronger disorder from the presence of many

ring-like features. In addition, the presence of the
√
3×

√
3 superstructure peaks indicative

of the Fe(1) site ordering is present in both crystals. However, as we will demonstrate with

STM, the
√
3×

√
3 order appears in slow-cooled crystals as small puddles. To compare the

superstructure population difference between the two types of samples, we pick a region in

the scattering plane free from ring-like disorder (see boxed region in Supplementary Figure

3). To capture the entire peak with finite width, we integrate along the shorter width of

the boxes and compare the integrated line profile for the two types of samples as shown in

Supplementary Figure 3c, where we have normalized the curves by the Bragg peak intensity.

The area of the superstructure peak is larger in the quenched sample indicating that the

population of
√
3×

√
3 ordered region is larger in the quenched crystals, which is consistent

with previous reports [1, 2].

SUPPLEMENTARY NOTE 4: SCANNING TUNNELING MICROSCOPY MEA-

SUREMENTS AND ANALYSIS

Supplementary Figure 2 shows the STM topography images of four types of regions we

have found, along with the Fourier transforms of each respective topographies as the insets.

Supplementary Figure 2b has pixel density of 6.61 pixels/nm. Supplementary Figure 2c-e

have pixel density of 24.8 pixels/nm. The peaks in the Fourier transforms correspond to

the lattice periodicity (white), a
√
3×

√
3 superstructure periodicity (blue), and the second
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FIG. Supplementary Figure 2. STM topographies of Fe5−δGeTe2. a STM topography on
a Te termination in a slow-cooled Fe5−δGeTe2 sample. The lighter region is a disordered surface,
surrounding the darker regions that contain the three ordered surfaces (hexagonal, UDD, DUU). b-e,
Different STM topographies on a Te termination in a slow-cooled Fe5−δGeTe2 taken on a disordered
surface as shown in a and three ordered surfaces: an apparently unmodulated hexagonal lattice
as shown in c, a lattice corresponding to an up-down-down (UDD) ordering of subsurface Fe(1)
atoms as shown in d, and a lattice corresponding to a down-up-up (DUU) ordering of subsurface
Fe(1) atoms as shown in e. f-h STM topographies on a Te termination in a quenched Fe5−δGeTe2
sample, taken on three ordered surfaces: f an apparently unmodulated hexagonal lattice, g a lattice
corresponding to an UDD ordering of subsurface Fe(1) atoms, and h a lattice corresponding to a
DUU ordering of subsurface Fe atoms. The hexagonal regions in both samples likely correspond to
the regions with Fe vacancies, with a crystal structure of Fe4GeTe2 with no Fe(1).

order of the
√
3×

√
3 superstructure periodicity (pink). The inset scale bars are 17.3 nm−1.

Topographies in Supplementary Figure 2c-e are of the same size.

In the slow-cooled sample, we find the cleaved surface to be dominated by a disordered

region within the field of view as plotted in Supplementary Figure 2a. The larger field of

view in Supplementary Figure 2a was measured with set-point current of 50 pA and bias

of 100 mV. The disordered topography in Supplementary Figure 2b was measure with a
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set-point current of 200 pA and bias of 200 mV. In addition, we also found the presence of

the three types of ordered surfaces formed as small puddles of typically 50 nm within the

disordered region Supplementary Figure 2c-e. Each ordered topography was measured with

set-point current of 1 nA and bias of 25 mV. The hexagonal surface Supplementary Figure

2c is likely a Fe(1) vacancy region (Fe4GeTe2) corresponding to the Fe deficient regions. In

addition, we also observe regions that correspond to the previously identified UDD and DUU

regions Supplementary Figure 2d-e whose Fourier transforms exhibit a
√
3×

√
3 periodicity

from a up-down-down or down-up-up ordering of the subsurface Fe(1) atoms [3]. For the

quenched crystal, within the field of view, we only observed the presence of the three ordered

surfaces (Hexagonal, UDD and DUU).

To compare the difference between the quenched and slow-cooled crystal, we annealed

and quenched the same batch of the slow-cooled sample and check the cleaved surface by

STM. As shown in the Supplementary Figure 2f-h, we did not find any disordered region

in the quenched crystal and only three ordered region are found in the field of view. Each

topography in Supplementary Figure 2f-h was measured with set-point current of 1.2 nA

and bias of 25 mV. Such result suggesting the UDD and DUU region is more dominating in

the quenched crystals.

SUPPLEMENTARY NOTE 5: PHOTON ENERGY DEPENDENCE AND ADDI-

TIONAL ARPES DATA

We carried out photon-energy dependence measurements to probe the electronic structure

along the out-of-plane direction for the two types of crystals. The quenched crystal was

directly quenched from growth, while the slow-cooled crystal was slow-cooled from growth.

We measured the K̄–Γ̄–K̄ direction of both types of crystals as a function of photon energy.

For the slow-cooled crystal (Supplementary Figure 6a), the measurements were taken with

LV polarized photons with the photon energy ranging from 60 to 164 eV. For the quenched

crystal (Supplementary Figure 6b), the photon energy range was from 30 to 180 eV. Due to

the 2D nature of the vdW material, we do not observe strong variation of the dispersions

along the kz direction, preventing us from accurately determining the inner potential. The

kz maps shown in Supplementary Figure 6a-b were produced with an inner potential of 17

eV to demonstrate that we have covered multiple BZs along kz.
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FIG. Supplementary Figure 3. Single crystal x-ray diffraction. a-b, Single crystal x-ray
diffraction data from the (HK0) scattering planes in a a furnace slow-cooled sample and b a sample
requenched from the same batch of samples as a. c, Line profile from the boxed region shown in
a-b where the shorter width of the boxes were integrated. the black arrow points to the Bragg peak.
The superstructure peaks are also indicated. The data were taken at 300K.

We summarize additional Fermi surface mapping and band dispersions along the

K̄–Γ̄–K̄–M̄ direction measured with 114 eV and 132 eV photons in Supplementary Figure 6.

The topological crossing near -0.2 eV at K are clearly shown in slow-cooled site-disordered

crystals under LV polarization. For the quenched Fe(1) site-ordered samples, crossings at K

point are no longer observed, consistent with the broken inversion symmetry. Instead, three

flat bands are clearly observed under LH polarization across most of the BZ and hybridized

with dispersive bands.
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FIG. Supplementary Figure 4. DFT calculations a Definition of lattice structures used for
DFT calculations and the BZ. b1-b2 DFT calculations for Fe5GeTe2 with all up Fe(1) sites occupied,
without SOC and with SOC. b3-b4 DFT calculations for Fe6GeTe2 with all Fe(1) sites occupied,
without and with SOC. In this case, the inversion symmetry is preserved. c Zoomed in view of
bands near K for b1-b4. Only in the inversion-symmetry preserving Fe6GeTe2 do we see protected
crossings that become gapped when SOC is included. d1-d2 DFT calculations for UUU and DDD
with SOC. d3 To simulate the site-disordered case, the UUU and DDD calculated band structures
are overlapped. d4 DFT calculations of UDD Fe5GeTe2 plotted in the small folded BZ defined in a.
Some potential flat bands are marked with red arrows.
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SUPPLEMENTARY NOTE 6: MIXED PHASES

While for all the crystals that we measured with ARPES, either the topological nodal line

or flat band dispersions were observed following a slow-cooling or quenching, respectively, we

did observe one case resembling the mixing of the two phases (Mixed State). The data is

presented in (Supplementary Figure 7a,d), which is compared to the topological nodal line

phase (Supplementary Figure 7b,e) and the flat band phase (Supplementary Figure 7c,f).

The mixed state shows both topological crossing at K point (blue dotted lines) as well as

the flat bands (red dotted lines). Even the dispersive hole bands at the BZ center are an

overlap of the two phases. As the ARPES beamspot is 50 µm2, this mixed signal is most

compatible with the understanding that the sample contains both regions of site-disordered

occupation of Fe(1) and regions with
√
3×

√
3 superstructure. This mixing is consistent with

the understanding that these are the two most stable formations of the Fe(1) sites, which

always exist in domains and the quenching or slow cooling processes modify the balance of

the different domain populations, as also demonstrated by the coexistence of the two phases

by XRD and STM measurements. We also note that the coexistence of the two domains

does not seem to affect the stability of the topological crossings of the site-disordered region

as the crossings can still be observed in the crystal with mixed populations.

SUPPLEMENTARY NOTE 7: FLAT BAND ESTIMATION

We can estimate the flatness of the flat dispersions in the site-ordered region. Supple-

mentary Figure 14 shows the constant energy contours taken at the energy of the three flat

dispersions discussed in the main text. Three cuts are also shown for each set, from which

we have fitted the disperions of the flat bands. The constant energy contours show shaded

regions for the portions of the Brillouin zone where each flat band disperses within a 50 meV

window. The estimated percentage of these regions are 40%, 84%, and 96% of the BZ for the

flat bands at EF , -0.22 eV, and -0.56 eV, respectively.
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FIG. Supplementary Figure 5. DFT calculations and ARPES data comparison. a, ARPES
measured dispersions of a quenched crystal. To visualize more bands, the spectra is from the sum of
data taken under LH and LV polarizations. b DFT calculated band structure for the UDD FGT
which is unfolded into the original BZ. c, Overlap of the ARPES data and DFT calculations and
the density of state projection for different Fe sites. The flat band positions are marked with red
arrows. d-e The same as a-b but with additional guides to the eye to show the similarity between
the DFT and the data. We note that a chemical potential up-shift of 1eV is applied to all the UDD
calculations shown here. f-g ARPES data of the slow-cooled crystal overlapped with 0.5 FGT UUU
(red) + 0.5 FGT DDD (blue) calculations.

SUPPLEMENTARY NOTE 8: DENSITY FUNCTIONAL THEORY CALCULA-

TIONS

Below we discuss two aspects of our DFT calculations. First we demonstrate the importance

of the inversion symmetry to the topological band crossing at K. Second, we demonstrate

the importance of the clover unit to the emergence of flat bands in the site-ordered phase. In

order to do this, we have carried out DFT calculations for four types of crystal structures, as

shown in Supplementary Figure 4. UUU represents the structure with all the up-Fe(1) sites

occupied. DDD represents the structure with all the down-Fe(1) sites occupied, and is the
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FIG. Supplementary Figure 6. Additional ARPES data. a,b, Photon energy dependent
electronic structure of Fe(1) site-disordered state (blue hexagon) and Fe(1) site-ordered (red hexagon)
state taken with LV polarization. c1-c4, Fermi surface mapping and corresponding high symmetry
cut along K’–Γ–K–M direction taken with 114 eV LV light. d1-d4, Fermi surface mapping and
corresponding high symmetry cut along K’–Γ–K–M direction taken with 114 eV LH light. e1-e4,
Fermi surface mapping and corresponding high symmetry cut along K’–Γ–K–M direction taken
with 132 eV LV light. f1-f4, Fermi surface mapping and corresponding high symmetry cut along
K’–Γ–K–M direction taken with 132 eV LH light.
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FIG. Supplementary Figure 7. Mixed state and its comparison between Fe(1) site-
disordered state and Fe(1) ordered state. a-c, Mixed state, Fe(1) site-disordered state and
Fe(1) ordered-site state electronic structure without any marker. d-f, the corresponding electronic
structure with dashed line highlighting the key features in Fe(1) site-disordered state (blue) and
site-ordered state (red). The dashed line marks the similarity between each state. All the data taken
with the same geometry, temperature (15K) and photon energy (132 eV) and polarization (LV).

inverted structure of UUU. Both UUU and DDD have a stoichiometry of Fe5GeTe2. F6GT

is the structure with all up and down Fe(1) sites occupied, and hence has a stoichiometry

of Fe6GeTe2. Finally, UDD is the structure with the UDD order, and hence represents the

site-ordered phase.

We first focus on the band crossings at K. As discussed and demonstrated in the main text,

the inversion symmetry in the site-disordered phase is protected globally. The site-disordered

Fe5GeTe2 has a random distribution of the Fe(1) sites with 50% chance to occupy the site

above or below the Ge site. The UUU or DDD structure has the correct average stoichiometry.

However, both structures have broken inversion symmetry. We can directly compare the band

structure of these structure with that of the F6GT, which preserves inversion symmetry. This

comparison is provided in Supplementary Figure 4b. As there appear to be near-crossings

at K, we zoom-in to these regions in Supplementary Figure 4c and test these by comparing

the calculations with and without SOC. We note that topological crossings protected by the

three symmetries would become gapped by the inclusion of SOC. As can be seen, only the

crossings in F5GT are real gapless crossings with SOC is not included, and develop gaps

when SOC is included. The near-crossings for the DDD structure are not actual gapless
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FIG. Supplementary Figure 8. Demonstration of the switching of the electronic structure
of Fe5−δGeTe2. a Schematic view of thermal history and corresponding electronic state. The red
hexagon means the Fe(1) ordered-site state while the blue hexagon means the Fe(1) site-disordered
state. b Sequence of switching electronic state for a grown-quenched sample. The grown-quenched
sample was cut into two pieces. The S2 was put into furnace for annealing and quenching. c-d
Similar schematic and the experimental sequence for a grown-slow-cooled sample. e-f Real image of
the experimental sequence in d. g-h The corresponding resistivity for the crystal that from the
schematic in d. i-l The corresponding magnetization curves for S1-S4 as illustrated in b,d. m-p The
summarized electronic structure of S1-S4. The red and blue dashed lines highlight the key features
to identify the different electronic states. All data were taken at 15 K with 132 eV LV photons.

crossings even when SOC is not included. This comparison demonstrates that the inversion

symmetry is important for the crossings in the site-disordered region. Moreover, we note that

these crossings should be gapped when SOC is included. We cannot resolve the SOC gap

clearly in our measured dispersions. This is likely due to a combination of energy resolution

and moderate correlation effects associated with the Fe 3d states. Nonetheless, we have tried

fitting for an upper bound of the gap size. As shown in Supplementary Figure 13, we have
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fitted the energy distribution curves for a gap. The fit gives a peak separation of 14 meV,

which is smaller than our energy resolution of 26 meV for this dataset. Hence the upper

bound of the SOC gap is 26 meV. We also note that the SOC induced gap from the F6GT

calculation is estimate to be 52 meV and 34 meV, which is on par with our estimation. Finally,

we also compare the calculated band structure with our measured dispersions (Supplementary

Figure 5g). This is done by overlapping both the UUU and DDD band structure on top

of the measured dispersions to simulate an average of 50% occupancy of all the Fe(1) sites.

We see that the overall comparison is reasonable except the lack of crossings at K in the

calculation, due to the broken inversion symmetry of the UUU and DDD structures.

Next, we focus on the emergence of flat bands for the site-ordered phase. In Supplementary

Figure 4d3-d4 we compare the band structure for the UUU+DDD structure (representing the

site-disordered phase) and that for the UDD structure. Notably, with the same stoichiometry,

flat bands appear in the site-ordered calculation. As the only distinction in the crystal

structure is the Fe(1) site ordering, we ascribe these flat bands to the site-ordering that form

the clove units. To compare this directly to the measured dispersions, we unfolded this band

structure back to the original unfolded zone. We identify a number of flat bands in the

unfolded spectral. However, to match with the experimentally observed dispersions, we have

to shift the chemical potential of the calculation up by 1.0 eV. In Supplementary Figure 5d we

identify the dispersions that give reasonable resemblance between the measured dispersions

and the unfolded calculation, including hole-like dispersions around Γ, the electron band

around the K point, and the flat bands. In Supplementary Figure 5c we also show the density

of states projected unto the different Fe sites. In particular, we note that the flat bands have

a large contribution by the Fe sites that constitute the clover unit.

SUPPLEMENTARY NOTE 9: SYMMETRY ANALYSIS AND EFFECTIVE

MODEL FOR THE SITE-DISORDERED OCCUPATION

In this section, we focus on the case when the occupancy of the Fe(1) split-site is completely

random. In this case, the lattice structure belongs to the space group R3̄m (SG166). The

unit cell consists of three layers connected by the vdW interactions. The weak dispersion for

all the bands along the kz direction indicates that the interlayer vdW interaction is much

smaller than the intra-layer interactions, as typical for vdW materials. As such, the analysis
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FIG. Supplementary Figure 9. Tight binding model for d orbital clover unit. Tight
binding model for dz2 and dxz/dyz or dx2−y2/dxy in a clover unit with and without considering SOC.
When the SOC is included, the flat band(s) near EF are topologically non-trivial. Different color
represents different band.

for the single layer Fe5−δGeTe2 is important as a starting point.

Symmetry analysis for the single-layer case

The single layer Fe5GeTe2 belongs to the space group P 3̄1m (SG164), in which Fe and Te

atoms are central symmetrically distributed with respect to Ge. Four Fe (Fe(2) and Fe(3))

atoms occupy two pairs of Wyckoff position 2d, while the other Fe (Fe(1)) randomly occupies

one site of the Wyckoff position 2c. We take the Ge as the origin of the coordinate. As shown

in Supplementary Figure 11, the point group of the single layer system is generated by C3z,
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FIG. Supplementary Figure 10. In slow-cooled samples, the C2y and C3z symmetry. a
Side view of one sublayer, a C2y operation can bring each atom to allowed site. b Top view of one
sublayer, a C3z operation can bring each atom to allowed site.

FIG. Supplementary Figure 11. Tight binding model for d orbital magnetic crossings.
a The described sub-site used to construct the Hamiltonian in the Method. b Schematics of the
hopping between d orbitals. c Top view of the A and B sublayers. d Side view of the sublayers and
the hopping parameters.

C2y and P , which transforms the coordinate as

C3z : (x, y, z) → (x′, y′, z), (5)

C2y : (x, y, z) → (−x, y,−z), (6)

P : (x, y, z) → (−x,−y,−z), (7)

with x′ + iy′ = ei
2π
3 (x+ iy). The K point is invariant under C3z, C2y and PT , which allows

the existence of 2d irreducible representations.
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We first discuss the bands from orbitals of Fe(1) sites. The Fe(1) can be regarded as a

stacking of two layers of triangular lattices. The dispersion consists of two copies of bands

from the triangular lattice. For a triangular lattice, the band from the dz2 orbital is singly

degenerate with an 1d irreducible representation across the whole Brillouin zone. For the

dxy/dx2−y2 and dxz/dyz orbitals, at the K point, they form a 2d irreducible representation

and would yield a Dirac crossing. We can distinguish the two cases experimentally by

analyzing the ARPES matrix element effect. The band crossing at K is only observed under

LV polarized light in the ARPES measurement while not observed under LH polarization.

As can be seen in the ARPES setup (Supplementary Figure 12), the LV polarization is

completely in-plane and hence cannot probe the out-of-plane dz2 orbital. Therefore we can

discard the possibility that the crossing is of dz2 orbital.

We label the rest four Fe atoms from top to bottom as Fea=(1−4). Fe1/Fe4 (Fe2/Fe3)

constitutes a pair of sites in Wyckoff 2d, dubbed as Fe(2)(Fe(3)). We construct the bases

according to the angular momentum for each site as:

|L = ±0⟩a = |dz2⟩, (a = 1/4, 2/3),

|L = ±1⟩a =
1√
2
(|dxz⟩ ± i|dyz⟩) , (a = 1/4, 2/3),

|L = ±2⟩a =
1√
2
(|dx2−y2⟩ ± i|dxy⟩) , (a = 1/4, 2/3),

(8)

where L denotes the orbital angular momentum. Because Fe(2) and Fe(3) are two sets of

Wyckoff position 2d, we pick Fe(3) as the example for further symmetry analysis. In a real

system, the band structure is a linear mixing of these two set of orbitals. The transformation

of these bases at K point are summarized in Table I, in which the phase ϕ = k · a is related

to the relative position of the sublattice.

C3z C2y/PT

| ± L⟩2 e±i 2Lπ
3 eiϕ| ± L⟩2 | ∓ L⟩3

| ± L⟩3 e±i 2Lπ
3 e−iϕ| ± L⟩3 | ∓ L⟩2

Supplementary Table I. The additional phase ϕ = 4π
3 is because of the lattice position, eika = ei

4π
3 .

The phase ϕ = k · a is related to the relative position of the sublattice

For L = 0, the C3z rotation transforms the sublattice back to itself while C2y symmetry

connects the orbitals from different sublattices. This is reminiscent to the s-orbital honeycomb
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model, in which the bands cross at the K point and form a 2d irreducible representation. For

the L ̸= 0 case, the bands at the K point are consist of two 1d irreducible representations

and one 2d irreducible representation as A1 + A2 + E.

We further consider the effect of the spin-orbit coupling. We consider the on-site

Dresselhaus-type spin-orbit coupling described by Hamiltonian HSO = λSOL · S, where

λSO is the strength of SOC, L and S are the orbital and spin angular momenta, respectively.

The ferromagnetism with ⟨S ̸= 0⟩ effectively contributes a Zeeman term in the orbital basis

as HSO ≈ λSOL · ⟨S⟩. For the L = 0 case, HSO = 0, the crossing at the K point is stable

against SOC. While for L ≠ 0, the crossing at the K point is gapped by the SOC and

releases a large Berry curvature distribution. We do note that anomalous Hall effect has

been observed in Fe5−δGeTe2 [1], which may be consistent with the contribution of Berry

curvature from the gapped ferromagnetic Dirac nodal line, though the firm establishment of

this connection still awaits future work.

Effective model for the single-layer case

We next construct the tight binding model to describe the band structure for L ̸= 0.

Since the construction of the L = 1 and L = 2 are similar, we take dxy/dx2−y2 as example

for further illustration. This model follows all the symmetry constraints of the single layer

Fe5−δGeTe2 with orbitals from one set of Wyckoff position 2d. The Hamiltonian takes the

form as H = Ψ†(k)H2D(k)Ψ(k), with Ψ(k) = [cA1(k), cA2(k), cB1(k), cB2(k)]
T , where A/B

and 1/2 denote the sublattices and dx2−y2/dxy orbitals, respectively.

H2D(k) =


T 11
2 T 12

2 T 11
1 T 12

1

T 21
2 T 22

2 T 21
1 T 22

1

T 11∗
1 T 21∗

1 T 11
2 T 21

2

T 12∗
1 T 22∗

1 T 12
2 T 22

2

 , (9)
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with the elements of the nearest neighbor hoppings:

T 11
1 = ta1e

ikδ1 +
3tb1 + ta1

4
(eikδ2 + eikδ3)

T 12
1 = T 21

1 = −
√
3

4
(ta1 − tb1)(e

ikδ2 − eikδ3)

T 22
1 = tb1e

ikδ1 +
tb1 + 3ta1

4
(eikδ + eikδ3),

(10)

and the elements for the next nearest neighbor hoppings:

T 11
2 = ta2 cosk(δ2 − δ3) +

3tb2 + ta2
4

(cosk(δ2 − δ1) + cosk(δ3 − δ1))

T 12
2 = T 21

2 = −
√
3

4
(ta2 − tb2)(cosk(δ2 − δ1)− cosk(δ3 − δ1))

T 22
2 = tb2 cosk(δ2 − δ3) +

tb2 + 3ta2
4

(cosk(δ2 − δ1) + cosk(δ3 − δ1)) ,

(11)

where δ1 = (− 1√
3
, 0), δ2/δ3 = ( 1

2
√
3
,±1

2
) are vectors connects nearest neighbor A and B

sublattices. The ta and tb is the direct hopping between dx2−y2 −dx2−y2 and dxy−dxy orbitals,

as described in Supplementary Figure 11b.

We now include the spin-orbit coupling. When the ferromagnetism is along z direction,

HSO ∝ τz in the |L = ±2⟩ bases or HSO = ∆τy in the effective dxy, dx2−y2 bases. We now

include it in the effective tight binding model as we proposed in Eq. 9, the additional term

described the spin-orbit coupling is:

HSO(k) = ∆SO


0 2j 0 0

−2j 0 0 0

0 0 0 2j

0 0 −2j 0

 . (12)

The factor 2 is coming from the angular momentum L = ±2. The SOC generically gaps out

the Dirac crossing and contributes nontrivial Berry curvature.

Symmetry and the effective model of the ABC-stacked case

We next consider the symmetry constraints in the 3D bulk system. Before the analysis of

the ABC stacking of layers, we first examine the symmetry of a simpler AAA stacking. The
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hopping along z direction extends the 2D hexagonal Brillouin zone (BZ) into 3D hexagonal

prism. At arbitrary momentum along the KH line away from K and H point, C2y is no longer

a valid symmetry, while the crossing can still be preserved by C3z and PT symmetries. We

next turn to the ABC stacking of the layers. The system now belongs to a rhombohedral

space group R3̄m (No. 166), in whose BZ, the KH is no longer a high symmetry line. As

been proposed in other context of the ABC stacked materials like the rhombohedral graphite

or Fe3Sn2, without spin-orbit coupling, a helical nodal line can be realized if the interlayer

hopping is relatively smaller compared with the intralayer hoppings [4].

In order to capture this helical nodal line in the bulk of Fe5−δGeTe2, we stack the previously

proposed 2D d-orbital honeycomb model in a rhombohedral fashion and construct a 3D tight

binding. The Hamiltonian is

H3D(k) =


H2D(k) HT (k) H†

T (k)

H†
T (k) H2D(k) HT (k)

HT (k) H†
T (k) H2D(k)

 , (13)

where H2D(k) follows the 2D Hamiltonian defined in Eq. 9. The connecting Hamiltonian

HT (k) =


T

′11
mm T

′12
mm T

′11
mn T

′12
mn

T
′21
mm T

′22
mm T

′21
mn T

′22
mn

T
′11∗
mn T

′21∗
mn T

′11
nn T

′21
nn

T
′12∗
mn T

′22∗
mn T

′12
nn T

′22
nn

 , (14)
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where m/n denotes the two different sublattice in the rhombohedral unit cell, and

T
′11
mm = T

′11
nn = ta4 cos(k⊥ · δ1 + kzc) +

3tb4 + ta4
4

[cos(k⊥ · δ2 + kzc) + cos(k⊥ · δ1 + kzc)]

T
′22
mm = T

′22
nn = tb4 cos(k⊥ · δ1 + kzc) +

3ta4 + tb4
4

[cos(k⊥ · δ2 + kzc) + cos(k⊥ · δ1 + kzc)]

T
′12
mm = T

′21
mm = = T

′12
nn = T

′21
nn = −

√
3

4
(ta4 − tb4)(cos[k⊥(δ2 − δ1) + kzc]− cos[k⊥(δ3 − δ1) + kzc])

T
′11
mn = tc3e

ikzc + ta5e
i(−k⊥·δ1+kzc) +

3tb5 + ta5
4

(ei(−k⊥·δ2+kzc) + ei(−k⊥·δ3+kzc))

T 12
mn = T 21

mn = T 21
1 = −

√
3

4
(ta5 − tb5)(e

i(−k⊥·δ2+kzc) − e(−ik·δ3+kzc))

T
′22
mn = tc3e

ikzc + tb5e
i(−k⊥·δ1+kzc) +

3ta5 + tb5
4

(ei(−k⊥·δ2+kzc) + ei(−k⊥·δ3+kzc)),

(15)

where k⊥ = (kx, ky). H†
T (k) is the Hermitian conjugate of the matrix HT (k). Besides ta

and tb, we further include tc to denote the face-to-face hopping between dx2−y2 (dxy). The

distances 1− 5 are explicitly described in Supplementary Figure 11. As the strength of the

warping away from the K point depends on the layer-layer interaction, the weak interlayer

coupling in the vdW compounds prevent us from resolving the small warping of the nodal

lines.

SUPPLEMENTARY NOTE 10: DESTRUCTIVE INTERFERENCE AND EFFEC-

TIVE MODEL FOR THE SITE-ORDERED SAMPLE

In this section, we consider the case when the positions of the Fe(1) atoms are fixed and

develop a
√
3×

√
3 lattice order.

Flat band for the L = 0 orbital

We first discuss the bands from dz2 orbitals and only consider the nearest neighbor hoping

between the red and yellow sites t1 as shown in Fig. 4h. The Hamiltonian takes the simple

form as:

H(kx, ky) =

 0 ∗ 12×2 H(kx, ky)

H†(kx, ky) 0 ∗ 13×3

 (16)
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where H† is the Hermitian conjugate of the matrix H, and

H(kx, ky) = t1

 ei(
√
3
6
kx+

1
6
ky) e−i(

√
3

6
kx+

1
6
ky) e−i 1

3
ky

ei(−
√
3

6
kx+

1
6
ky) e−i 1

3
ky ei(

√
3
6
kx+

1
6
ky)

 . (17)

One can easily diagonalize the Hamiltonian and the dispersion is shown in Supplementary

Figure 9. The flat band is single degenerate and the corresponding localized wave function

for the flat band is:

(
0 0 e

ky
3 − e−

2
3
ky e

− kx
2
√
3
− ky

6 − e
kx√
3
+

ky
3 e

kx
2
√
3
− ky

6 − e
− kx√

3
+

ky
3

)
. (18)

The real-space orbital textures for the flat band eigenstate is shown in Fig. 4.

The on-site SOC described by L ·S will not influence the obtained band structure because

L = 0 for dz2 orbitals. While one can still introduce long-range SOC without further breaking

any symmetries. We consider the nearest spin-orbit coupling which takes the form as:

Hsoc(kx, ky) =

0 ∗ 12×2 0 ∗ 12×3

0 ∗ 13×2 Hsoc(kx, ky)

 , (19)

with

Hsoc(kx, ky) = λsoc


0 e−i(

√
3
6
kx+

1
2
ky) ei(

√
3

6
kx+

1
2
ky)

ei(
√
3

6
kx+

1
2
ky) 0 ei

3
3
kx

e−i(
√
3
6
kx− 1

2
ky) e−i 3

3
kx 0

 (20)

with λsoc the strength of the spin-orbit coupling. As shown in Supplementary Figure 9,

the spin orbit coupling gaps out the node at Γ and K. The isolated band is topologically

nontrivial.

Flat band for the L ̸= 0 orbital

We next consider the case with L ̸= 0. For illustration, we take dxz/dyz with |L| = 1 as

example. The Hamiltonian can be written in the basis

[cA1(k), cB1(k), cC1(k), cD1(k), cE1(k), cA2(k), cB2(k), cC2(k), cD2(k), cE2(k)] (21)
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FIG. Supplementary Figure 12. ARPES experimental setup. The measured geometry is
shown here with the BZ outlined by red lines. The analyzer slit is aligned to the Γ–K direction of the
sample. LV polarization is completely in-plane while LH polarization contains a finite out-of-plane
component.

FIG. Supplementary Figure 13. Topological nodal line gap fitting: Estimation of SOC
gap for site-disordered phase. a High symmetry cut spectra measured in site-disordered phase.
The crossing at the K point is marked by red arrow. b-d EDCs taken at the three colored arrows
shown in a together with the fitting of the two Lorentzian peaks (red and blue) on top of a Gaussian
background (green) multiplied by a Fermi-Dirac distribution function. The energy resolution was 26
meV.

where 1/2 and A-E denote the dxz/dyz and sublattices, respectively. And

H(kx, ky) =


0 ∗ 12×2 H11 0 ∗ 12×2 H12

H∗
11 0 ∗ 13×3 H∗

21 0 ∗ 13×3

0 ∗ 12×2 H21 0 ∗ 12×2 H22

H∗
12 0 ∗ 13×3 H∗

22 0 ∗ 13×3

 (22)
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FIG. Supplementary Figure 14. Flatness estimation for site-ordered phase. a-c Constant
energy contours at the energy of the flat dispersions. Shaded regions indicate the portion of the
BZ where each flat band is within 50 meV window. d-f Dispersions measured along indicated cuts,
where the dots are the fitted positions of the band dispersions. Red is associated with the flat band
near EF. Yellow is associated with the flat band near -0.22eV. Blue is associated with the flat band
near -0.56 eV.

with

Hab =

tAC
ab eik(δA−δC) tAD

ab eik(δA−δD) tAE
ab eik(δA−δE)

tBC
ab eik(δB−δC) tBD

ab eik(δB−δD) tBE
ab eik(δB−δE)

 , (23)

where δαs (α = A ∼ E) are the positions of the sublattices. And the coupling strength

tαβab s follow the Table. II, in which tx and ty represent the direct hoppings between dxz − dxz

ab
αβ AC AD AE BC BD BE

11 3
4
tx +

1
4
ty

3
4
tx +

1
4
ty ty

3
4
tx +

1
4
ty ty

3
4
tx +

1
4
ty

12
√
3
4
tx −

√
3
4
ty -

√
3
4
tx +

√
3
4
ty 0 -

√
3
4
tx +

√
3
4
ty 0

√
3
4
tx −

√
3
4
ty

21
√
3
4
tx −

√
3
4
ty -

√
3
4
tx +

√
3
4
ty 0 -

√
3
4
tx +

√
3
4
ty 0

√
3
4
tx −

√
3
4
ty

22 1
4
tx +

3
4
ty

1
4
tx +

3
4
ty tx

1
4
tx +

3
4
ty tx

1
4
tx +

3
4
ty

Supplementary Table II. The hopping table of tαβab , where a/b = 1/2 denotes the orbitals and
αβ = A ∼ E denotes the sublattices.

and dyz − dyz. The geometric destructive flat band is shown in Supplementary Figure 9. A
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distinct difference from the dz2 orbitals is that the flat band is doubly degenerate.

We further consider the influence from the spin orbit coupling. The L · S type of the

SOC takes the form as

Hsoc = λsocτy ⊗ 15×5, (24)

with τy the Pauli matrices in the orbital basis. As shown in Supplementary Figure 9, the

degenerate flat band splits into two with spin orbit coupling. Both bands are topologically

non-trivial.
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