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Supplementary Note 1: Systems Genomics of Parkinson’s Disease 
Collaborators  
 
Tim Anderson (New Zealand Brain Research Institute, Christchurch, New Zealand; 
Department of Medicine, University of Otago, Christchurch, New Zealand), Steven Bentley 
(Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia), John 
Dalrymple-Alford (Dept. Psychology, University of Canterbury, New Zealand Brain 
Research Institute), Javed Fowdar (Griffith Institute for Drug Discovery, Griffith University, 
Brisbane, Australia), Jacob Gratten (Mater Research Institute, University of Queensland, 
Brisbane, Australia), Glenda Halliday (Brain and Mind Centre, Sydney Medical School, 
University of Sydney, Sydney, Australia), Anjali K. Henders (Institute for Molecular 
Bioscience, University of Queensland, Brisbane, Australia), Ian Hickie (Brain and Mind 
Centre, Sydney Medical School, University of Sydney, Sydney, Australia), Irfahan Kassam 
(Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia), Martin 
Kennedy (Department of Pathology, University of Otago, Christchurch, New Zealand), John 
Kwok (Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, 
Australia), Simon Lewis (Brain and Mind Centre, Sydney Medical School, University of 
Sydney, Sydney, Australia), George Mellick (Griffith Institute for Drug Discovery, Griffith 
University, Brisbane, Australia), Grant Montgomery (Institute for Molecular Bioscience, 
University of Queensland, Brisbane, Australia), John Pearson (Department of Pathology, 
University of Otago, Christchurch, New Zealand), Toni Pitcher (New Zealand Brain 
Research Institute, Christchurch, New Zealand; Department of Medicine, University of 
Otago, Christchurch, New Zealand), Julia Sidorenko (Institute for Molecular Bioscience, 
University of Queensland, Brisbane, Australia), Peter A. Silburn (Queensland Brain Institute, 
University of Queensland, Brisbane, Australia), Costanza L. Vallerga (Laboratory of 
Population Genomics, Department of Internal Medicine, Erasmus MC, Rotterdam, The 
Netherlands), Peter M. Visscher (Institute for Molecular Bioscience, University of 
Queensland, Brisbane, Australia; Queensland Brain Institute, University of Queensland, 
Brisbane, Australia), Leanne Wallace, (Institute for Molecular Bioscience, University of 
Queensland, Brisbane, Australia), Naomi R. Wray (Institute for Molecular Bioscience, 
University of Queensland, Brisbane, Australia; Queensland Brain Institute, University of 
Queensland, Brisbane, Australia), Angli Xue (Garvan-Weizmann Centre for Cellular 
Genomics, Garvan Institute of Medical Research, Sydney, Australia; School of Biomedical 
Sciences, University of New South Wales, Sydney, Australia), Jian Yang (Institute for 
Molecular Bioscience, University of Queensland, Brisbane, Australia; Queensland Brain 
Institute, University of Queensland, Brisbane, Australia), Futao Zhang (Institute for 
Molecular Bioscience, University of Queensland, Brisbane, Australia) 
 
 
  



Supplementary Note 2: Cohort acknowledgements 
 
Brisbane Systems Genomics Study (BSGS) 
The study samples were collected in the context of the BSGS within the Brisbane 
Longitudinal Twin Study 1992-2016. This work was supported by the Australian National 
Health and Medical Research Council (NHMRC) (project grant 1087407, 1031119, 1010374, 
496667 and 1046880), the National Institutes of Health (NIH) (grants GM057091 and 
GM099568), Australian Research Council (A7960034, A79906588, A79801419, 
DP0212016, DP0343921, DP1093900) and NHMRC Medical Bioinformatics Genomics 
Proteomics Program (grant 389891) for building and maintaining the adolescent twin family 
resource, through which samples were collected. We gratefully acknowledge the participation 
of the twins and their families. We thank Marlene Grace, Ann Eldridge, and Kerrie 
McAloney for sample collection and processing and the staff of the Molecular Epidemiology 
Laboratory at QIMR for DNA sample processing and preparation.  
 
Lothian Birth Cohorts of 1921 and 1936 (LBC) 
The authors thank all LBC1921 and LBC1936 study participants and research team members 
who have contributed, and continue to contribute, to ongoing studies. LBC1921 was 
supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), 
The Royal Society, and The Chief Scientist Office of the Scottish Government. LBC1936 is 
supported by the BBSRC, and the Economic and Social Research Council [BB/W008793/1] 
(which supports SEH), Age UK (Disconnected Mind project), and the University of 
Edinburgh. SRC is supported by a Sir Henry Dale Fellowship jointly funded by the 
Wellcome Trust and the Royal Society (221890/Z/20/Z). Genotyping of the cohorts was 
funded by the BBSRC (BB/F019394/1). Methylation typing was supported by Centre for 
Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, The Wellcome 
Trust Institutional Strategic Support Fund, The University of Edinburgh, and The University 
of Queensland. 
 
Systems Genomics of Parkinson’s Disease (SGPD) 
We thank all SGPD participants for donating their time, data, and biological samples, without 
which this study would not have been possible. This research was supported by the National 
Health and Medical Research Council (NHMRC: 1078037, 1078901, 1103418, 1107258, 
1127440, 1113400), the Australian Research Council (ARC: DP160102400 and 
FT180100186) and the Mater Foundation. Support also came from ForeFront, a large 
collaborative research group dedicated to the study of neurodegenerative diseases and funded 
by the NHMRC (Program Grant 1132524, Dementia Research Team Grant 1095127, 
NeuroSleep Centre of Research Excellence 1060992) and ARC (Centre of Excellence in 
Cognition and its Disorders Memory Program CE10001021). The Queensland Parkinson’s 
Project (QPP) was supported by a grant from the Australian National Health and Medical 
Research Council (1084560). The New Zealand Brain Research Institute (NZBRI) cohort 
was funded by a University of Otago Research Grant, together with financial support from 
the Jim and Mary Carney Charitable Trust (Whangarei, New Zealand). We thank Allison 
Miller for processing and handling of NZBRI samples. 
 
Chinese Motor Neuron Disease Cohort (CHNMND) 
We also thank staff and researchers at the Peking University Third Hospital (Beijing, China) 
and Matthew A. Brown for their role in generating this dataset. 
 



 
Tibetan Han Chinese high-altitude (THCH) 
The research was partly supported by the Leading Innovative and Entrepreneur Team 
Introduction Program of Zhejiang (2021R01013, JY), the National Natural Science 
Foundation of China (81522014, 82125007, ZBJ) and the Dr Jian Zhou Memorial 
Scholarship (FFC). We thank the High-Performance Computing Center and the Research 
Center for Industries of the Future (RCIF) at Westlake University for their assistance in 
computing. 
 
  



Supplementary Tables 
Supplementary Table 1: Characteristics of the study cohorts.  
Abbreviations: SGPD, Systems Genomics of Parkinson’s Disease; LBC, Lothian Birth 
Cohorts; BSGS, Brisbane Systems Genomics Study; CHNMND, Chinese Motor Neuron 
Disease Cohort; THCH, Tibetan-Han Chinese high-altitude; PD, Parkinson’s disease; ALS, 
Amyotrophic lateral sclerosis; EUR, European; EAS, East Asian; DNAm DNA methylation; 
SNPs, single nucleotide polymorphisms; #, Number; QC, quality control. 

Cohort SGPD LBC BSGS CHNMND THCH 
Sample size 1659 1437 605 651 1448 
Data type PD case-

control 
Longitudinal Familial ALS case-

control 
Cohort study 

Ancestry EUR 
(Australian, 

New 
Zealand) 

EUR 
(Scottish) 

EUR 
(Australian) 

EAS 
(Chinese) 

EAS 
(Chinese) 

DNAm 
array 

Illumina 
450K 

Illumina 
450K 

Illumina 
450K 

Illumina 
450K 

Illumina 
450K 

Genotype 
array 

Illumina 
PsychArray-

B.bpm 

Illumina 610-
Quad 

Beadchip 
arrays 

Illumina 610-
Quad 

Beadchip 
arrays 

Illumina 
Human 

OmniZhong
Hua 

Illumina 
HumanCoreE

xome-12 
BeadChip 

# SNPs post 
imputation 

and QC 

7,664,320 8,297,026 8,240,066 7,330,123 6,461,686 



Supplementary Table 2: Relationship between increase in sample size and reduction in 
fine mapping causal set size determined via simulation. Subsets of the UK Biobank 
(UKB) were selected to match the number of individuals in mQTL cohorts; EUR (n=3,701) 
and combined across ancestries (n=5,800), as well as increases by 1,000 sample increments 
(n=6,800, 7,800, 8,800, 9,800). 4,528 mQTLs in the stringent set with the same lead SNP in 
both ancestries were utilised for simulation, with a single DNAm phenotype simulated for 
each for mQTL assuming the lead EUR SNP as causal. The resulting mQTLs were fine 
mapped using SuSiE, with mean credible set size and standard error of the mean (SE) 
recorded across DNAm probes and UKB subsets and the mean percentage reduction 
calculated. This has been compared to the observed data for the same mQTLs.  
 
 Sample  Mean causal 

set size (SE) 
Mean % reduction  

Real 
mQTL 
data 

EUR n=3,701 3.1 (0.04)  
EAS n=2,099 3.3 (0.05)  
Cross-ancestry 
n=5,800 1.5 (0.01) 

26.1% compared to EUR n=3,701 
29.9% compared to EAS n=2,099 

Simulated 
mQTL 
data 

UKB n=3,701 2.9 (0.06)  
UKB n=5,800 2.3 (0.05) 5.7% compared to UKB n=3,701 
UKB n=6,800  2.2 (0.05) 8.4% compared to UKB n=3,701 
UKB n=7,800  2.1 (0.04) 11.0% compared to UKB n=3,701 

 UKB n=8,800 2.0 (0.04) 13.4% compared to UKB n=3,701 
 UKB n=9,800 1.9 (0.03) 14.7% compared to UKB n=3,701 

  



Supplementary Table 3: Identification of ancestry-specific mQTL at 21,084 EUR and 
7,841 EAS DNAm probes. a) EUR and b) EAS ancestry-specific mQTL.  
Ancestry-specific mQTLs were identified using the Bonferroni corrected, two-sided p-values 
threshold of p<10−10 in the given ancestry and p>10-6 in the other. P-values were calculated at 
the cohort level from linear regression and mixed linear regression models, and at the 
ancestry level using inverse variance-weighted meta-analysis. For a given ancestry, the 
ancestry specific mQTL are classified by the number of cohorts of that ancestry in which the 
mQTL was significant prior to meta-analysis. 
 
a) 21,084 EUR ancestry-specific mQTL 
 

# of EUR cohorts # DNAm probes with ancestry-
specific mQTL (%) 

All 3 cohorts 1,255 (6.0%) 
2 cohort 5,014 (23.8%) 
1 cohort 7,929 (37.6%) 

No cohort 6,886 (32.7%) 
 
b) 7,841 EAS ancestry-specific mQTL 
 

# of EAS cohorts # DNAm probes with ancestry-
specific mQTL (%) 

Both cohorts 2,250 (28.7%) 
1 cohort 3,252 (41.5%) 

No cohort 2,339 (29.8%) 
 



Supplementary Figures 
 

 
Supplementary Figure 1: The correlation (rb) of cis-mQTL SNP effects across cohorts. 
Shown are effect sizes of the lead SNPs from the discovery cohort and the corresponding 
SNP effect in the replication cohort. Correlations are presented with corresponding standard 
errors in parentheses. Cohorts of the same ancestry, boxed in red (EUR) and purple (EAS), 
have more similar effect sizes than across ancestries. 
  



 
Supplementary Figure 2: The significance of cis-mQTL associations increases as the 
distance between the genetic variant and DNAm site decreases (n=404,503). Shown is the 
relationship for between mQTL significance (–log10 p-value) and distance between the 
DNAm probe and genetic variant in each ancestry. The colour of the points reflects the 
density of observations at that location. The two-sided p-values from an inverse variance-
weighted meta-analysis with the the ceiling in –log10 p-value due to numerical limitations in 
analysis software.  
 
  



 
Supplementary Figure 3: The correlation (rb) of cis-mQTL SNP effects between meta-
analysed ancestries. Shown are effect sizes of the lead SNPs from the discovery ancestry 
and the corresponding SNP effect in the other ancestry. Correlations are presented with 
corresponding standard errors in parentheses. EUR mQTL discovery (n=113,976), EAS 
mQTL discovery (n=95,583). 
  



 
Supplementary Figure 4: Comparing the distribution of DNAm probes associated with 
mQTL between genic and CpG island regions by ancestry. Bar-plots demonstrating the 
location of DNAm probes with associated mQTL in individuals of EUR ancestry (blue bars; 
n=113,976) compared to individuals of EAS ancestry (red bars; n=95,583).  
a) annotation relative to CpG islands. Shores are defined as island flanking regions ranging to 
up to 2,000 bp and shelves are defined as island flanking regions ranging from 2,001 bp to 
4,000 bp. Northern and southern shores and shelves (noted N_ and S_) are respectively 
defined as the upstream and downstream shores or shelves according to chromosomal 
coordinates.  
b) gene region feature category describing the CpG position. Genic features include  
Gene features listed include: promoter region ranging from 1 bp to 200 bp upstream of the 
TSS (TSS200), promoter region ranging from 201 bp to 1,500 bp upstream of the TSS 
(TSS1500), 5’ untranslated region (5’UTR), first exons (1stExon), gene bodies, excluding the 
5’ and 3’ UTRs and first exons (Body) and 3’ untranslated region (3’UTR).  
We observed no difference in the distribution of DNAm sites associated with mQTLs 
between ancestries, across genic or CpG island features. 
 
  



 

Supplementary Figure 5: Identification of 21,084 EUR and 7,841 EAS DNAm probes 
with ancestry-specific mQTL. Shown is the number of those mQTL-probes which were 
significant in each of the cohorts of the same ancestry and the overlap between cohorts.  
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Supplementary Figure 6: Concordance of lead SNP effects by LD between lead SNPs 
for a) EUR lead SNP in EUR-mQTL and b) EAS lead SNP in EAS-mQTLs. Top: 
Agreement in SNP effects. Bottom: Agreement in SNP effect by LD between lead SNPs. We 
observe there is greater agreement between SNP effects when there is stronger LD, indicating 
some residual overlap in effect sizes attributable to mQTL that did not achieve significance 
due to power constraints. 
  



Supplementary Figure 7: Manhattan plots of the 163 ancestry-specific pleiotropic 
associations.  
For each mQTL-trait pair the Manhattan plots display:  

a) mQTL associations in individuals of EUR ancestry 
b) mQTL associations in individuals of EAS ancestry 
c) Trait associations in individuals of EUR ancestry 
d) Trait associations in individuals of EUR ancestry 

The blue line indicates the significance threshold (p < 10-10) in mQTL analysis, the grey line 
is the replication threshold (p <10-6), and the green line indicated the significance threshold (p 
< 5x10-8) in GWAS. The SNP highlighted in red is the ancestry-specific lead SNP used as the 
exposure outcome in SMR analysis.  
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