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Glossary of Abbreviations

Technical Abbreviations

IMC: Imaging Mass Cytometry

PSNR: Peak Signal-to-Noise Ratio

SSIM: Structural Similarity

SR: Super-Resolution

LR: Low-Resolution

HR: High-Resolution

GT: Ground Truth

SRCNN: Super-Resolution Convolutional Neural Network

KernelGAN: Kernel Generative Adversarial Network

RCAN: Residual Channel Attention Network

SOTA: State-Of-The-Art.

OE: Operating Environment

SFTMD: Spatial Feature Transformer Multiple Degradations

IoU: Intersection over Union

NA: Numerical Aperture

CH: Calinski-Harabasz score

DB: Davies-Bouldin score

t-SNE: t-distributed Stochastic Neighbor Embedding

Conv: Convolution computing layer

PPI: Protein-Protein Interaction

Biological Abbreviations

PFA: Paraformaldehyde

IAA: Iodoacetamide

FA: Formic Acid

SDS: Sodium Dodecylsulfate

DTT: DL-Dithiothreitol

LC-MS/ MS: Liquid Chromatography-tandem Mass Spectrometry

javascript:;
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G-: Gram-Negative Bacteria

G+: Gram-Positive Bacteria

HER2: Human Epidermal Growth Factor Receptor 2

LA: Luminal A

LB: Luminal B

TNBC: Triple Negative Breast Cancer

FFPE: Formalin Fixed Paraffin Embedded

LPS: Lipopolysaccharide

LTA: Lipteihcoicacid

ER: Estrogen Receptor

IFI6: Interferon alpha-inducible protein 6

ISG15: Interferon-Stimulating Gene 15

Ki67: marker of proliferation Ki-67

PKCD: Prkcd - protein kinase C, delta Gene

PR: Pathogenesis-Related Protein

GO: Gene Ontology

KEGG: Kyoto Encyclopedia of Genes and Genomes

Other Abbreviations

RT: Room Temperature
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Supplementary Notes

Supplementary Note 1. Theorem Proof

There are two images � and � with the same ground truth �. The gap between

the underlying clean images is

ε = E�ǀ�(�) − E�ǀ�(�) ≠ 0.

Theorem Let � and � be two independent noisy images conditioned on �, and

assume that there exists an ε ≠ 0 such that E�ǀ�(�) = � and E�ǀ�(�) = � + �. Let the

variance of � be σz
2. Then the following equation holds:

E�,�‖��(�) − �‖2
2 = E�,�,�‖��(�) − �‖2

2 − σz
2 + 2 ε E�,�(��(�) − �).

Proof

E�,�‖��(�) − �‖2
2 = E�,�ǀ�‖��(�) − � + � − �‖2

2

= E�,�ǀ�‖��(�) − �‖2
2 + E�ǀ�‖� − �‖2

2 + 2 E�,�ǀ�‖��(�) − �‖T(� − �)

= E�,�ǀ�‖��(�) − �‖2
2 + σz

2 + 2 E�,�ǀ�(��(�) − � + � − �)T(� − �)

= E�,�ǀ�‖��(�) − �‖2
2 + σz

2 + 2 E�,�ǀ�(��(�) − �)T(� − �) + 2 E�ǀ�(� − �)T(� − �)

= E�,�ǀ�‖��(�) − �‖2
2 − σz

2 + 2 E�,�ǀ�(��(�) − �)T(� − �)

Since � and � given � are independent of each other, the following equation holds:

E�ǀ�‖��(�) − �‖2
2 = E�,�ǀ�‖��(�) − �‖2

2 − σz
2 + 2 E�ǀ�(��(�) − �)T E�ǀ�(� − �)

= E�,�ǀ�‖��(�) − �‖2
2 − σz

2 + 2 ε E�ǀ�(��(�) − �)

Since E�,� = E� E�ǀ�, the following equation holds:

E�,�‖��(�) − �‖2
2 = E�,�,�‖��(�) − �‖2

2 − σz
2 + 2 ε E�,�(��(�) − �).

Theorem states that when the gap ε ≠ 0, since E�,�(��(�) − �) ≠ 0, optimizing

E�,�,�‖��(�) − �‖2
2 does not yield the same solution as the supervised training loss
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E�,�‖��(�) − �‖2
2. If ε → 0, which means the gap is sufficiently small,

2 ε E�,�(��(�) − �) → 0, so the network trained with paired noisy image � and �

works as a reasonable approximate solution to the supervised training network. For

detailed discussions, refer to references6, 7, 8.

Noise with spatial correlation is not taken into primary account in the network

construction since existing studies generally assume that the noise is independently

sampled9,10. And for IMC images, the distribution of proteins is generally correlated

with the spatial structure of the specimen. If the noise has spatial correlations, the

denoising module may encounter issues in distinguishing whether the single is a valid

protein expression signal or simply just noise. Fortunately, our experimental results

show that SpiDe-Sr is practically suitable for IMC images.
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Supplementary Note 2. Pseudo Code

Step SpiDe-Sr
Input: A set of raw noisy images � = �� �=1

� ;
Denoising network ��;
Hyper-parameter �;
Neighbor sub-sampler � = (�1, �2);
Predictor �� ;
Corrector ��;
SR network ��;

While not converged do
1 Input a raw noisy image � ∈ �;
2 Generate sub-sampled noisy image pairs (g1(y), g2(y)) by � , g1(y) is the

network input and g2(y) is the network target;
3 Input �1(�) into the �� to obtain the denoised image ��(�1(�));
4 Calculate ����= ‖��(�1(�) − �2(�))‖2

2;
5 Input raw noisy image � into the �� to obtain the denoised image without

gradients ��(�);
6 Generate sub-sampled denoised image pairs (g1(��(�)), g2(��(�)));
7 Calculate ���� = ‖��(�1(�)) − �2(�) − (�1(��(�)) − �2(��(�)))‖2

2;
8 Update denoising network �� by � = ���� + ����;

end
9 Output denoised LR image ���;
10 Initialize counter � = 0;
11 Predict the initial blur kernel �0 = �� (���)
12 Input �0 and ��� into �� to obtain the initial SR results �0

�� = �� (���, �0)
12 while � < � do
13 Update counter � = � + 1;
14 Input predicted kernel and SR result from the previous iteration into �� and

calculate the error ∆�� = ��(��−1
�� , ��−1);

15 Update the predicted blur kernel �� = ��−1 + ∆��;
16 Update the SR result ��

�� = ��(���, ��);
17 return Output the final SR result ��

��

javascript:;
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Supplementary Note 3. Sample Pre-staining for Laser Microdissection

The protocol of immunohistochemical staining for FFPE sections was consistent

with conventional steps1-3. Briefly, the tissue section was dewaxed in xylene for 20

min twice, followed by rehydrated in a gradient series of alcohol (100%, 95%, 80%,

70%, 0%) for 5 min each. Subsequently, antigen repair was performed by immersing

the sections in preheated citrate buffer (pH= 6.0) in a water bath at 90 degrees Celsius

for 30 min. In order to detect the bacteria in the cells, 0.2% Triton X-100 was used to

help the antibody enter the cell smoothly. Then, the sections were treated with 3%

hydrogen peroxide in PBS for 15 min at room temperature (RT) to quench the activity

of endogenous peroxidase. After rinsing with PBS, the sections were blocked with 3%

BSA in PBS for 20 min at 37 degrees Celsius. Antibodies targeted to bacterial LPS

(1:1000 dilution) or LTA (1:400 dilution) were then added and incubated overnight at

4 degrees Celsius. The following day, a peroxidase-conjugated polymer system was

used to detect the presence of G- or G+ bacteria. Diaminobenzidine was used as a

chromogen, followed by counterstaining of cell nuclei on the sections with

hematoxylin to visualize bacterial and cellular expression.
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Supplementary Note 4. Laser Microdissection of Bacterial Enrichment Regions

Laser microdissection was carried out on consecutive sections (with film) of the

stained sections to collect the bacterial enrichment tissue. The designated tissue area

was cut and catapulted into a collection tube cap by a laser spot with appropriate

energy (PALM, Zeiss). The collection tube was pre-filled with an appropriate amount

of lysis buffer (1.5% SDS; 50mM DTT; 100mM Tris-HCl) on the cap, whose volume

would be brought up to 100 µl after cutting completion. The sample was stored at -80

degrees Celsius for future use.
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Supplementary Note 5. Label-free Quantitative Proteomics

The sample stored at -80 degrees Celsius from the previous step was thawed in a

37 degrees Celsius water bath, followed by ultrasonication in an ice-water bath for 1

hour. The sample was then placed in a metal bath at 99 degrees Celsius for 1 hour,

followed by ultrasonication again in an ice-water bath for 1 hour. The whole protein

extract was obtained by collecting the supernatant after centrifuging at 16,000g for 10

min and the protein concentration was measured by a micro-spectrophotometer

(Nano-100, ALLSHENG). Then, the supernatant was transferred to a 10 kD

ultrafiltration column with additional 250 µl of wash buffer (8M urea; 100mM DTT;

100mM Tris-HCl), followed by centrifugation at 10,000g for 25 min for six times.

After that, the sample was incubated with 100 µl of iodoacetamide (IAA) buffer (50

mM IAA; 100 mM Tris-HCl) for 30 min and centrifuged at 10,000g for 10 min. The

samples were then washed with wash buffer (200 µl/time for three times) and 50mM

bicarbonate (300 µl/time for three times). Subsequently, each sample was incubated

with 100 µl of 50mM bicarbonate and trypsin (1:50 dilution) at 37 degrees Celsius

overnight, followed by centrifugation with a new collection tube at 12,000g for 20

min. The samples were resuspended in 100 µl of 50mM bicarbonate and centrifuged

at 12,000g for 10 min at RT. Then, the ultrafiltration column was removed. Formic

acid (FA) was added to the collection tube to a final concentration of 1%, followed by

centrifugation at 1,000g for 1 min at RT. For desalination of the sample, a desalting

column was activated with 600 µl of methanol (mass spectrometry-grade) and

centrifuged at 1,000g for 1 min at RT. The column was equilibrated twice with 200 µl

of 0.1% FA and centrifuged at 950g for 1 min at RT. Next, an equal volume of 0.1%

FAwas added to the sample and loaded onto the desalting column, followed by

centrifugation at 950g for 1 min at RT. The column was then rinsed twice with 200 µl

of 0.1% FA and centrifuged at 950g for 1 min at RT. For elution, a new collection tube

was used, and 100 µl of 60% acetonitrile-0.1% FAwas added, followed by

centrifugation at 950g for 1 min at RT. The flow-through was then reloaded onto the

column and centrifuged at 5,000g for 3 min at RT. Finally, the samples were dried
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under vacuum (Eppendorf) and stored at -80 degrees Celsius, which would be

redissolved with 0.1% FA to a concentration of 0.5 µg/µL for Liquid

Chromatography-tandem Mass Spectrometry (LC-MS/MS).

Sample analysis was performed on an EASY-nLC 1200 system (Thermo Fisher

Scientific) coupled to an Orbitrap mass spectrometer (Q Exactive HF-X, Thermo

Fisher Scientific). Peptides were loaded to an AcclaimPepMapTM100 C18 trap

column (75 μm×2cm,3 μm, Thermo Fisher Scientific) at 2 μL/min with solvent A

(0.1% formic acid in water) and eluted with a 120min gradient on an

AcclaimPepMapTMRSLCC18 analytical column (75 μm×25 cm, 2 μm, Thermo

Fisher Scientific) at a flow rate of 300 nL/min. The gradient elution program was as

follows: 0–1min, 1% to 8% solvent B (acetonitrile-water (8:2, v/v) with 0.1% formic

acid); 1–98min, 8% to 28% solvent B; 98–112min, 28% to 36% solvent B; 112–116

min, 36%-100% solvent B; 116–120min, 100% solvent B.

Mass Spectrometry parameters were set to: (1) MS: 350–1200 scan range (m/z);

60,000 resolution; 3e6 AGC target; 50ms maximum injection time (MIT); The 20

most intense ions were fragmented by HCD; (2) HCD-MS/MS: 17m/z isolation

window; 15,000 resolution; 2e5 AGC target; 25ms MIT; NCE: 28.
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Supplementary Note 6. Analysis of label-free proteomics data

A total of 40 samples from 20 patients (2 samples per patient) were analyzed using

mass spectrometry (Q Exactive HF-X). Mass spectrometry raw files were searched

against the UniProtKB database (UniProt, 2021), then analyzed in Protein

Discovery©2.4 (developed by Thermo Fisher Scientific) with default parameters. Up

to two missed cleavages were allowed. 1% false discovery rate (FDR) threshold was

used in both protein and peptide identifications. Totally, 5,117 proteins were yielded

and subsequently utilized for downstream analysis.

In the HER2/ LA/ LB/ TNBC breast cancer samples, 179/ 35/ 52/ 83 proteins were

significantly up-regulated and 27/ 40/ 20/ 26 proteins were significantly

down-regulated in the bacterial-enrichment region relative to the bacterial

non-enrichment region. There were 9/ 6/ 6/ 5/ 3/ 3 significantly different proteins

expressed in TNBC and HER2/ LB and TNBC/ LB and HER2/ LA and HER2/ LA

and LB/ LA and TNBC. In HER2 breast cancer samples, 7 proteins significantly

up-regulated in bacterial enrichment regions were associated with positive immune

function. In LA breast cancer samples, 2 proteins significantly down-regulated in

bacterial enrichment regions were associated with negative immune function. Volcano

and Venn diagrams were drawn using the OmicStudio tools4 at

https://www.omicstudio.cn/tool.

Significant difference proteins were entered into the website of Metascape5 for Gene

Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis. As for

protein interaction network, input significant difference proteins into STRING

website to get comprehensive results.

https://www.omicstudio.cn/tool.
http://metascape.org/gp/index.html


13

Supplementary Note 7. Calculate the accuracy of cell extraction

We used the fluorescent/metal-dual labeling approach to obtain both IMC images, and

confocal images with the same underlying scene as the IMC images. Because

confocal image had higher PSNR and resolution, we used it as the ground truth to

evaluate performance.

The confocal images were fed into the Cellpose program running with default

parameters to obtain preliminary cell segmentation results. The default parameter

settings according to the literature11 were shown in the Supplementary Table 10. Then

the expertise researcher adjusted the Cellpose program parameters to obtain the

accurate segmentation results as the ground truth of cell segmentation. When the raw

IMC and SpiDe-Sr enhanced IMC were fed into the Cellposs program, for the control

variable, the program was only run with the default parameters, and the parameters

were no longer manually adjusted. It should be noted that the output of Cellpose was

only the mask of cell segmentation of image. And whether the cells were accurately

extracted, or missed or extra extracted, should be manually counted by the researcher.

Specifically, in the SpiDe-Sr performance validation phase, we used Cellpose for cell

segmentation of confocal and IMC images. The confocal images were input into the

Cellpose program and run with default parameters (Supplementary Table 10) to obtain

preliminary cell segmentation results. The two parameters, namely cell diameter

(pixels) and model zoo, were then readjusted. The calibrated cell diameter was a

numerical value that could be manually readjusted for specific conditions. The model

zoo was set to cytoplasm pattern (cyto). As for IMC images, in order to avoid adding

artificial bias as much as possible, we did not manually correct the 2 parameters again.

In the stage of breast cancer microenvironment analysis, we first used the default

parameters for cell segmentation of breast cancer images. The model zoo was set to

cytoplasm pattern (cyto). And then we readjusted the value of approximate cell

diameter one by one in the user interface to make the segmentation as accurate as

possible.
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Supplementary Tables

Supplementary Table 1. Antibody Information

Antibody
Mental
Tag

Clone Vendor
Catalog
number

Concentration
(µg/ml)

Tubulin / / Beyotime AF1216 20
CD45 / / Beyotime AF7839 20
CD34 / / Beyotime AF1387 20

Secondary
antibody

165Ho Poly4064 Biolegend 406416 10

PKCD 144Nd EPR17075 Abcam ab222229 5
PR 145Nd YR85 Abcam ab206926 1
IFI6 147Sm / Abcam ab192314 5
HER2 148Nd EP1045Y Abcam ab194979 0.25
Ki67 152Sm SP6 Abcam ab197547 0.15
ISG15 153Eu / Abcam ab285370 5
ER 163Dy EPR4097 Abcam ab167610 3

ZC3HAV1 168Er / Abcam ab154680 5
LPS 165Ho WN1 222-5 HycultBiotech HM6011 1
LTA 169Tm mAb 55 HycultBiotech HM2048 0.5
CD45 141Pr HI30 Biolegend 304045 0.15
CD68 174Yb / Abcam ab283667 5
CD8a 175Lu CAL66 Abcam ab251596 1
CD19 176Yb 6OMP31 Invitrogen 14-0194-95 2.5
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Supplementary Table 2. Reagent Information

Regent Catalog Vendor Region
Dulbecco’s modified
Eagle’s medium

SH30243.01 HyClone USA

fetal bovine serum 10099141C Gibco USA
penicillin-streptomycin 15140163 Gibco USA

positively charged slides 188105W CITOTEST Jiangsu, China

PBS B540627 Sangon Biotech Shanghai, China
paraformaldehyde C104188-100g Aladdin Shanghai, China

sucrose 10021418 Sinopharm Beijing, China

OCT 6502,
Thermo Fisher
scientific

USA

Maxpar antibody
labelling kit

201165A, Fluidigm Sciences USA

protein stabilizing
cocktail

89806
Thermo Fisher
scientific

USA

xylene A69925 Innochem Beijing, China
ethanol 100092680 Sinopharm Beijing, China

Triton X-100 A110694-0100 Sangon Biotech Shanghai, China
BSA B09354 Innochem Beijing, China
DAPI D9542 Sigma-Aldrich USA

191Ir/ 193Ir DNA
intercalator

201192a Fluidigm Sciences USA

hydrogen peroxide A001847 Sangon Biotech Shanghai, China
hematoxylin C0105S Beyotime Shanghai, China

urea B20910 yuanye Shanghai, China
SDS R21371 yuanye Shanghai, China
DTT ST043 Beyotime Shanghai, China
IAA B21810 yuanye Shanghai, China

methanol R40121
Thermo Fisher
scientific

USA

trypsin VA9000 Promega USA

FA 28905
Thermo Fisher
scientific

USA
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Supplementary Table 3. Program Operating Environment

Important Package Version
python 3.7.11

tensorflow 1.15.0
torch 1.9.1+cu111

torchvision 0.10.1+cu111
numpy 1.20.3
scipy 1.7.2
sklearn 0.0
scanpy 1.8.2

tensorflow-estimator 2.6.0
yaml 0.2.5

opencv-python 4.5.4.58
pandas 1.3.4
imageio 2.12.0

scikit-image 0.19.3
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Supplementary Table 4. Significantly different proteins (Top 25) in bacterial

enrichment regions of HER2 breast cancer samples

Accession Description
Average expression in
enrichment regions

Average expression in
non-enrichment regions

Q9NQT8 Kinesin-like protein KIF13B 87.075 27.925

Q9NVV4
Poly(A) RNA polymerase,

mitochondrial
197.225 98.95

Q9P0S3 ORM1-like protein 1 317 192.1

P36551
Oxygen-dependent

coproporphyrinogen-III oxidase,
mitochondrial

82.175 186.65

P02745
Complement C1q subcomponent

subunit
90.725 160.825

Q96L21 60S ribosomal protein L10-like 86.35 284.4
O00142 Thymidine kinase 2, mitochondrial 492.475 137.1
Q6ZMG9 Ceramide synthase 6 280.6 126.8
Q9Y6A9 Signal peptidase complex subunit 1 263.325 146.85
Q969U7 Proteasome assembly chaperone 2 217.25 79.3

O15160
DNA-directed RNA polymerases I

and III subunit RPAC1
189 56.975

Q3ZAQ7
Vacuolar ATPase assembly integral

membrane protein VMA21
140.575 73.225

Q9BY43
Charged multivesicular body protein

4a
321.825 121.2

Q14894 Ketimine reductase mu-crystallin 165.025 81.375
Q9UMX5 Neudesin 174.4 101.675

Q99447
Ethanolamine-phosphate
cytidylyltransferase

251.75 110.04

Q8NCL4
Polypeptide

N-acetylgalactosaminyltransferase 6
516.525 133.375

O76015 Keratin, type I cuticular Ha8 137.3 86.95

Q7L5N7
Lysophosphatidylcholine

acyltransferase 2
134.025 77.975

Q02318 Sterol 26-hydroxylase, mitochondrial 160.6 84.45
Q96EE3 Nucleoporin SEH1 189.075 103.575
Q15382 GTP-binding protein Rheb 416.925 183.675
O15400 Syntaxin-7 175.98 48.02

Q969E4
Transcription elongation factor A

protein-like 3
62.6 27.92

Q8NFU3
Thiosulfate:glutathione

sulfurtransferase
86.06 32.08
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Supplementary Table 5. Significantly different proteins (Top 25) in bacterial

enrichment regions of LA breast cancer samples

Accession Description
Average expression in
enrichment regions

Average expression in
non-enrichment regions

Q9P206 Uncharacterized protein KIAA1522 219.05 440.825
Q86W10 Cytochrome P450 4Z1 51.64 109.9
Q15154 Pericentriolar material 1 protein 194.55 326.925
P07476 Involucrin 70.925 247.325
O95232 Luc7-like protein 3 146.425 400

Q13546
Receptor-interacting

serine/threonine-protein kinase 1
77.8 147.375

Q9Y679
Lipid droplet-regulating VLDL

assembly factor AUP1
36.75 61.525

Q86TJ2 Transcriptional adapter 2-beta 156 361.575

P51531
Probable global transcription

activator SNF2L2
110.86 211.1

Q27J81 Inverted formin-2 43.16 119.425
Q99572 P2X purinoceptor 7 164.1 92.7
O43291 Kunitz-type protease inhibitor 2 75.525 21.925
Q00587 Cdc42 effector protein 1 181.525 61.875
Q86TD4 Sarcalumenin 52.525 279.675
Q92619 Rho GTPase-activating protein 45 60.94 26.38
P49756 RNA-binding protein 25 76.175 119.525

O75822
Eukaryotic translation initiation

factor 3 subunit J
98.24 53.74

Q9NTX5 Ethylmalonyl-CoA decarboxylase 26.1 66.675
O60656 UDP-glucuronosyltransferase 1A9 85.05 46.2
Q96EY8 Corrinoid adenosyltransferase 122.9 207.875

Q03169
Tumor necrosis factor alpha-induced

protein 2
93.875 25.175

P02679 Fibrinogen gamma chain 54.5 38.14
Q6P1A2 Lysophospholipid acyltransferase 5 44.24 138.1

Q12907
Vesicular integral-membrane protein

VIP36
95.16 51.76

Q9C075 Keratin, type I cytoskeletal 23 96.12 140.22
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Supplementary Table 6. Significantly different proteins (Top 25) in bacterial

enrichment regions of LB breast cancer samples

Accession Description
Average expression in
enrichment regions

Average expression in
non-enrichment regions

O95340
Bifunctional 3'-phosphoadenosine
5'-phosphosulfate synthase 2

47.475 18.96

P45877 Peptidyl-prolyl cis-trans isomerase C 92.5 50.45
Q03692 Collagen alpha-1(X) chain 62.725 21.225
Q7L5D6 Golgi to ER traffic protein 4 homolog 108.35 45.975

P36507
Dual specificity mitogen-activated

protein kinase kinase 2
113.05 33.1

P40616 ADP-ribosylation factor-like protein 1 118.38 26.26
P36952 Serpin B5 48 20.92

Q9BRJ7
Tudor-interacting repair regulator

protein
199.475 61.125

O43819 Protein SCO2 homolog, mitochondrial 48.925 175.1

O15321
Transmembrane 9 superfamily

member 1
46.05 14.175

P05166
Propionyl-CoA carboxylase beta

chain, mitochondrial
148.275 58.7

O43688 Phospholipid phosphatase 2 171.525 84.6
Q8IYQ7 Threonine synthase-like 1 77.95 26.575
Q9UBX7 Kallikrein-11 326.675 182.125
P49863 Granzyme K 244.775 121.575

Q9UI10
Translation initiation factor eIF-2B

subunit delta
112.075 30

O14880
Microsomal glutathione S-transferase

3
208.55 69

Q7LG56
Ribonucleoside-diphosphate reductase

subunit M2 B
79.26 151.225

Q8WUW1 Protein BRICK1 135.3 60.225
Q92817 Envoplakin 128.1 72.075

P51531
Probable global transcription activator

SNF2L2
143.25 276.9

Q9Y5L2
Hypoxia-inducible lipid
droplet-associated protein

67.02 138.42

Q8NCN5
Pyruvate dehydrogenase phosphatase
regulatory subunit, mitochondrial

45.7 133.075

Q6E0U4 Dermokine 142.9 272.825
Q9BUL8 Programmed cell death protein 10 58.55 77.825
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Supplementary Table 7. Significantly different proteins (Top 25) in bacterial

enrichment regions of TNBC breast cancer samples

Accession Description
Average expression in
enrichment regions

Average expression in
non-enrichment regions

P46939 Utrophin 64.26666667 205.3333333

Q96HR9
Receptor expression-enhancing

protein 6
24.23333333 44.76666667

Q9UJZ1
Stomatin-like protein 2,

mitochondrial
188.25 45.5

Q93009
Ubiquitin carboxyl-terminal

hydrolase 7
184.025 71.925

P35813 Protein phosphatase 1A 125.8666667 57.36666667
Q12884 Prolyl endopeptidase FAP 150 56.43333333
P53680 AP-2 complex subunit sigma 170.675 82.7
P47736 Rap1 GTPase-activating protein 1 75.76666667 32.76666667
P17655 Calpain-2 catalytic subunit 97.825 51.175

Q9Y3D9
28S ribosomal protein S23,

mitochondrial
149.35 33.3

Q9GZN8 UPF0687 protein C20orf27 220.175 68.4
Q9C030 Tripartite motif-containing protein 6 164.675 61.1

O75821
Eukaryotic translation initiation

factor 3 subunit G
156.875 83.23333333

P51159 Ras-related protein Rab-27A 211.25 83.76666667

P61803
Dolichyl-diphosphooligosaccharide--
protein glycosyltransferase subunit

DAD1
166.8 78.075

Q01105 Protein SET 169.025 97.975
Q969H8 Myeloid-derived growth factor 144 65.175
P35637 RNA-binding protein FUS 227.775 103.275

Q8WVV9
Heterogeneous nuclear
ribonucleoprotein L-like

312.1666667 186.6

Q9NQT8 Kinesin-like protein KIF13B 144.3333333 77.96666667
Q14108 Lysosome membrane protein 2 95 27.85
P21926 CD9 antigen 230 99.275
P22105 Tenascin-X 51.75 135.875
O60701 UDP-glucose 6-dehydrogenase 76.15 51.875

P82909
28S ribosomal protein S36,

mitochondrial
85.2 198.8



21

Supplementary Table 8. Correlation between LPS expression and other

biomarker expressions

Sub-types of breast cancer Positively associated with LPS
(P> 0.50)

Negatively associated with LPS
(P> 0.50)

HER2 ISG15, IFI6, HER2, ZC3HAV1 CD45, CD68

LA
IFI6, PKCD, CD19, ZC3HAV1,
ISG15

\

LB IFI6 CD68

TNBC
CD19, CD45, PKCD,
ZC3HAV1, ISG15

CD8a

(P, Pearson correlation coefficient)
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Supplementary Table 9. Correlation between LTA expression and other

biomarker expressions

Sub-types of breast
cancer

Positively associated with LTA
(P> 0.75)

Negatively associated with LTA
(P> 0.75)

HER2 CD45, PR, CD8a, Ki67 HER2, LPS
LA CD68, LPS, IFI6, ZC3HAV1 Ki67, PR
LB LPS \

TNBC ER, ISG15, PR, CD45, IFI6 \

(P, Pearson correlation coefficient)
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Supplementary Table 10. Default parameters for Cellpose

Parameters Settings
Up/down or W/S RGB
page up/down image
brush size 3
MASK ON Yes
single stroke Yes
outlines on No
scale disk on Yes
use GPU Yes

flow_threshold 0.7
cellprob_threshold 0.0
stitch_threshold 0.0

cell diameter (pixels) calibrate
model zoo default
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Supplementary Figures

Supplementary Fig. 1
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Supplementary Fig. 1 The architecture of the �� and training process of

denoising module. a, The architecture of the ��. b-c, The PSNR (b) and SSIM (c) of

the validation set for models trained on different training set sizes with different

number of trainings. The green/ purple/ gray line indicated the result for a training set

size of 13,176/ 6,000/ 3,000. Dashed line indicated the number of iterations when the

model converged. When the training set size was 13,176/ 6,000/ 3,000, the model was

trained 350/ 200/ 50 times to converge. The model trained with a training set size of

13,176 images was able to obtain images with maximum PSNR and SSIM. d, Output

of denoising module for different number of trainings before convergence (training set

size= 13,176). The Fig. 1d showed that with the increase in the number of model

training, the noise of the output image gradually decreased, and the PSNR and SSIM

of the output image were gradually improved. The cells in the image were getting

clearer and clearer. Abbreviations and remarks: PSNR, peak signal-to-noise ratio,

larger means less noise. SSIM, structural similarity, larger means more similar to the

ground truth.
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Supplementary Fig. 2
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Supplementary Fig. 2 The architecture of the super-resolution (SR) module. a-c,

The architecture of (a) the blur kernel predictor (��), (b) the SR network (��) and (c)

the blur kernel corrector (��). d, Output of SR module at different number of

iterations. The number of iterations corresponded to the number of blur kernel

corrections. We could see that with the increase in the number of the blur kernel

corrections, the cells in the image output by the super-resolution model became

clearer and clearer.
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Supplementary Fig. 3
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Supplementary Fig. 3 The sensitivity of super-resolution to blur kernel mismatch

and test results for different noisy scenarios. a, The sensitivity of super-resolution

to blur kernel mismatch. The ��� was the width of the blur kernel for

down-sampling and the ��� was the width of the blur kernel for up-sampling. The

images in the red boxes had the same blur kernels for up-sampling (super-resolution)

as for down-sampling. We could see that the images were best restored when the

up-sampling and down-sampling blur kernels matched. Iteratively adjusting the blur

kernel could avoid the gap between the predicted blur kernel and the real blur kernel

to be too large. b-c, The PSNR, SSIM and the number of extracted cells of test set

with different Gaussian (b)/ pepper (c) noise levels before and after the SpiDe-Sr. d,

The PSNR, SSIM and the number of extracted cells of test set with Poisson noise. We

could see whether the images were superimposed with Gaussian noise, Peper noise, or

Poisson noise, the SpiDe-Sr could effectively optimize the images to improve the

PSNR and SSIM of the images, as well as the accuracy of the subsequent cell

extraction. The improvement of the PSNR and SSIM of the images, and cell

extraction accuracy were statistically significant (two sided paired-samples t-test, P<

0.001).
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Supplementary Fig. 4
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Supplementary Fig. 4 Validation of different SR methods (SRCNN/ KernelGAN/

RCAN/ SpiDe-Sr) on IMC images of cells. a, The precision and recall of cell

extraction in images for Tubulin/ CD45/ CD34 being labeled. n=52 (Tubulin)/ 36

(CD45)/ 71 (CD34) images. The precision and recall were both complementary to

accuracy, in order to fully illustrate that SpiDe-Sr improved the accuracy of cell

extraction in cell IMC images. (two-sided t-test, **P< 0.01, ***P< 0.001). b,

Violin-scatter plots showed the distribution of �1 score of accurately extracted cells

in IMC images before and after SpiDe-Sr enhancement vs. extracted cells in GT

images. Each line represented one of 216/ 241/ 357 cells. Increasing pairs were

colored gray and decreasing pairs were colored red. The �1 score was

complementary to the IoU, in order to fully illustrate that cell boundaries were

segmented more accurately (two-sided paired-samples t-test, ***P< 0.001). c, Images

before and after SRCNN/ KernelGAN/ RCAN/ SpiDe-Sr enhancement and the

corresponding cell segmentation. The confocal images (20x) were treated as ground

truth (GT). Individual cell boundaries were colored green. The SpiDe-Sr enhanced

image was visually better and cell segmentation in it was more accurate compared to

the other three methods. d, The PSNR and SSIM comparisons of the four SR methods

with the GT images. Each point indicated one of 159 (The sum of the number of

images labeled by the three biomarkers) images. e, The accuracy (gray), precision

(green) and recall (purple) of cell extraction after enhancement by four SR methods.

n= 159 images. f-g, The distribution of IoU (f) and �1-score (g) of accurately

extracted cells in IMC images before and after enhancement of four SR methods vs.

extracted cells in GT images. Each line represented one of n= 202 cells. h, The

normalized marker expression in accurately extracted cells before and after

enhancement of four SR methods. The ground truth was colored in gray.
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Supplementary Fig. 5
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Supplementary Fig. 5 Validation of different SR methods (SRCNN/ KernelGAN/

RCAN/ SpiDe-Sr) on IMC images of mouse fatty liver tissues. a, The

histogram-scatter plots illustrated the precision (above) and recall (below) of cell

extraction in IMC images for Tubulin/ CD45/ CD34 being labeled. The precision and

recall were both complementary to accuracy, in order to fully illustrate that SpiDe-Sr

improved the accuracy of cell extraction in cell IMC images. (two sided t-test, **P<

0.01, ***P< 0.001). b, The violin-scatter plots illustrated the �1 score distribution of

accurately extracted cells in IMC images before and after SpiDe-Sr enhancement. n=

235/ 422/ 203 cells. The �1 score was complementary to the IoU, in order to fully

illustrate that cell boundaries were segmented more accurately (two sided

paired-samples t-test, ***P< 0.001). c, Images before and after enhancement of

SRCNN/ KernelGAN/ RCAN/ SpiDe-Sr and the corresponding cell segmentation.

The SpiDe-Sr enhanced image had the best visual performance and the least amount

of extra and missed extraction of cells in the image. d, The violin-scatter plots showed

the PSNR (gray) and SSIM (green) before and after enhancement by four methods. n=

75 images. e, The histogram-scatter plots showed the accuracy (gray), the precision

(green) and the recall (purple) of cell extraction before and after enhancement by four

methods. f-g, The violin-scatter plots illustrated the IoU (f) and the �1 score (g)

distribution of accurately extracted cells in IMC images before and after enhancement

by four methods. n= 127 cells. h, The histogram-scatter plots illustrated the

normalized marker expression in accurately extracted cells before and after

enhancement by four methods.
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Supplementary Fig. 6
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Supplementary Fig. 6 Validation of different SR methods (SRCNN/ KernelGAN/

RCAN/ SpiDe-Sr) on IMC images of human breast cancer tissues. a, The

precision and recall of cell extraction in images for Tubulin/ CD45/ CD34 being

labeled before and after enhancement of SpiDe-Sr. The precision and recall were both

complementary to accuracy, in order to fully illustrate that SpiDe-Sr improved the

accuracy of cell extraction in cell IMC images. (two sided t-test, *P< 0.05, **P<

0.01). b, The �1 score distribution of accurately extracted cells in images of Tubulin/

CD45/ CD34 being labeled before and after SpiDe-Sr enhancement. n= 244/ 207/ 240

cells. The �1 score was complementary to the IoU, in order to fully illustrate that cell

boundaries were segmented more accurately (two sided paired-samples t-test, ***P<

0.001). c, Confocal images (considered as GT in our work) and IMC images before

and after enhancement by SRCNN/ KernelGAN/ RCAN/ SpiDe-Sr, and the

corresponding cell segmentation. d-e, Quantitative evaluation (PSNR (d, gray)/ SSIM

(d, green)) of image quality and the accuracy (e, gray)/ the precision (e, green)/ the

recall (e, purple) of cell extraction in images before and after the enhancement of the

four SR methods. n= 104 images. f-g, Quantitative evaluation of the accuracy of cell

boundary detection (f, IoU, g, �1 score) in images before and after enhancement by

four SR methods. n= 48 cells. h, The normalized marker expression in accurately

extracted cells in images before and after enhancement by four SR methods.
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Supplementary Fig. 7
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Supplementary Fig. 7 Application of SpiDe-Sr to spatial proteomics data of four

major subtypes of breast cancer patients. a-b, The percentage of expression of 14

markers (a) and the percentage of cell number in 33 clusters (b) in four breast cancer

subtypes. The two panels were shown to illustrate the data (biomarker expressions

and cell clustering result) in detail. c, Map using t-distributed stochastic neighbor

embedding (t-SNE) of 86,968 (HER2)/ 55,496 (LA)/ 73,161 (LB)/ 53,931 (TNBC)

sub-sampled single cells from high-dimensional images of breast tumors colored by

cell-type metacluster identifier. The gray dots were normal cells and the blue-tinted

dots were breast cancer cells. Normal and breast cancer cells were well distinguished

in the data for all four breast cancer subtypes. Immune cells (B cells were colored in

yellow, T cells were colored in orange, macrophages were colored in red, and CD8+ T

cells were colored in pink. ) were generally distributed between normal cells and

breast cancer cells. d-e, The regression analysis between LPS (d)/ LTA (e) and

markers positively or negatively correlated with LPS/ LTA in four subtypes of breast

tumors. Specific biomarkers were listed in Supplementary Table 8 and Supplementary

Table 9.
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Supplementary Fig. 8
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Supplementary Fig. 8 Analysis of raw spatial proteomics data (without SpiDe-Sr

enhancement) from patients with four major subtypes of breast tumor. a,

Normalized expression of 14 markers in single cells of four breast cancers. Each point

indicated one of 6,611 (HER2)/ 3,941 (LA)/ 5,075 (LB)/ 3,618 (TNBC) cells. b, The

percentage of each marker expression among all marker expressions. This panel was

designed to specify the expression of 14 biomarkers. c, (left) Heat map showing

normalized mean marker expression for each PhenoGraph cluster. (middle) Proportion

of four subtypes of breast tumor cells in each cluster. (right) The absolute cell counts

of each cluster. d, The proportion of cells in each of the 21 clusters relative to the total

number of cells. Without SpiDe-Sr enhancement, B cells and T cells could not be

distinguished and only 4 tumor cell clusters were identified based on the same IMC

dataset because of noise interference or insufficiently precise details. e, Map using

t-SNE of 192,445 (all) sub-sampled single cells from high-dimensional images of

breast tumors colored by cell-type metacluster identifier. In the panel, normal cells

and breast cancer cells could be distinguished, but it was clear that normal cells and

immune cells were not well distinguished. f, Map using t-SNE of 66,110 (HER2)/

39,411 (LA)/ 50,746 (LB)/ 36,178 (TNBC) sub-sampled single cells from

high-dimensional images of breast tumors colored by cell-type metacluster identifier.

g, (left) Number of cells extracted in all breast cancer samples. (middle) The

proportion of HER2/ LA/ LB/ TNBC cells in C19 with the highest expression of G-

bacteria marker to the total number of HER2/ LA/ LB/ TNBC cells. (right) The

proportion of HER2/ LA /LB/ TNBC cells in C15 with the highest expression of G+

bacteria marker to the total number of HER2/ LA/ LB/ TNBC cells. h, The absolute

expression of 14 markers in cells of (above) C19 and (below) C15. i, Heat map

showing the Pearson correlation coefficients of the 14 markers in (left) C19 and (right)

C15 with each other. There was no indication that G- or G+ bacteria had any

particular correlation in the breast cancer microenvironment.
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Supplementary Fig. 9
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Supplementary Fig. 9 Acquisition and analysis of label-free proteomics with

clinical breast cancer specimens. a, Acquisition of label-free proteomics data. b, The

20 proteins with the greatest differences in expression between bacterial enrichment

and bacterial non-enrichment tissues in HER2/ LA/ LB/ TNBC. Proteins in bacterial

enrichment region were colored green. In bacterial non-enrichment regions, proteins

significantly up-regulated were colored yellow and significantly down-regulated

proteins were colored gray. c, The volcano plots showed the proteins significantly up-

and down-regulated in the bacterial enrichment region compared to the

non-enrichment region in four subtypes of breast tumor. In the bacterial-enrichment

region, the expressions of 27/ 40/ 20/ 26 (in HER2/ LA/ LB/ TNBC) proteins were

significantly increased and 179/ 35/ 52/ 83 (in HER2/ LA/ LB/ TNBC) proteins were

significantly decreased. d, Venn plots showed co-expression of significantly different

proteins in four subtypes of breast tumor. e, Normalized expression of co-expressed

proteins. f-g, Absolute expression of co-expressed proteins in each patient sample.

The upper half of the y-axis was for protein expression in bacterial enrichment

regions, and the lower half of the y-axis was for protein expression in bacterial

non-enrichment regions. This figure was mainly to illustrate the label-free proteomic

data in detail. Proteins with significantly increased or significantly decreased

expression compared to non-bacterial enrichment regions were visualized.
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Supplementary Fig. 10
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Supplementary Fig. 10 Functional protein signaling pathways and

protein-protein interaction network from label-free proteomics data. a, Gene

Ontology Biological Processes (GOBP) analysis of proteins with significant

differences in expression. Those marked in red were immune-related proteins. b,

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of significantly

different proteins. Those marked in purple were immune-related proteins. c,

Protein-Protein Interaction Network (PPI) of significantly different proteins. Proteins

with the name PSMXX were immune-related proteins. The Supplementary Fig. 9 and

Supplementary Fig.10 illustrated that the proteins with significantly high expression

in the bacterial-enrichment region were associated with immunity.
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Supplementary Fig. 11

Supplementary Fig. 11 Four features output from each of the 9 middle layers of

denoising module. The denoising module had 20 layers and 48 features were

incorporated into the training. Four features output from the each of 9 middle layers

were shown in Supplementary Fig. 11. It can be seen that the cellular features were

effectively captured and maintained as the convolutional network deepens.
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Supplementary Fig. 12

Supplementary Fig. 12 Western blot information. a, Brightfiled image for protein

ladder (15~180 kDa). b, Electrochemiluminescence (ECL) signal of CD45. c, merged

results of brightfiled image and ECL image. Line 1# and Line 3#: CD45 in two

replicates. Line 2# 15~180kDa protein ladder. Source data are provided as a Source

Data file.
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