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Peer Review File



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The article presents a method for post-processing images from a technique called Imaging Mass 

Cytometry (IMC). This post-processing primarily involves the removal of unknown noise and up-

sampling of the images. A major challenge is that the distribution of noise and the down-sampling 

degradation model are unknown. For noise, this paper employs a method similar to Noise2noise, 

and uses a sub-pixel shuffle method to create training data from noisy data. This is a clever 

approach. It works well when the noise is independently sampled for each pixel, but may 

encounter issues if the noise has spatial correlations. Fortunately, the examples shown in the 

article demonstrate that this method is suitable for IMC images. Regarding up-sampling, an older 

algorithm called IKC is utilized. This method was introduced in 2019 (which is considered old in the 

rapidly advancing field of computer vision. IKC is likely the first deep learning-based blind SR 

method). Although it seems outdated, I think the selection of IKC is quite appropriate. Firstly, I 

believe the SR of IMC images is different from the general SR research in computer vision. For 

natural images, visual quality is the priority. Therefore, many Blind SR methods have emerged 

post-IKC to enhance visual quality, such as Real-ESRGAN and BSRGAN. However, these come at 

the cost of objectivity in the resulting images. For the processing of IMC images proposed in this 

paper, these methods are not suitable. Instead, methods based on pre-defined degradation models 

are more conducive to ensuring the objectivity and authenticity of the resulting images. I didn’t 

see relevant discussions in the article, but I believe these discussions are important. 

From a computational standpoint, the method presented in this paper has lower innovation, but is 

reasonable and effective. It's hard for me to evaluate the application value as I am not familiar 

with IMC and its related industries and applications. I can see that the method improves the 

accuracy of subsequent detection and segmentation, but I am not quite sure about the real-world 

value of these numerical improvements. 

Reviewer #2: 

Remarks to the Author: 

Chen at al. proposes a new algorithm, called SpiDe-Sr, for denoising of IMC images with the gaol 

of improving the assay resolution. The SpiDe-Sr potentially addresses a very important limitation 

of IMC data analysis. However, the evaluation of manuscript in its current form is almost 

impossible due several reasons, some of which are noted here. I hope these comments would help 

the authors in revising their manuscript. 

The major issue is that Che et al. fails to clearly communicate its findings, especially for broad 

readership of Nature Communications. 

There are numerous grammatical mistakes throughout the manuscript. Several figure panels are 

not discussed (why are they include in the first place?) 

In summary, it is utterly impossible to evaluate the scientific merit of the manuscript given its poor 

presentation. Some of the sentences are incomprehensible. There are many unnecessary 

abbreviations (do the authors really need to abbreviate “state-of-the-art” to SOTA?). On the other 

hand, there are abbreviations with unclear definition (e.g. LA, LB, TNBC, etc.) 

Performance metrics are not defined. What is SSIM? What is pSNR? How “accuracy of cell 

extraction” is defined / calculated Definition of terminologies/ metrics / etc should be clarified, 

especially for a journal such as Nature Communications with a broader readership. A short 

introduction of methods included in comparative analysis, tools used in throughout the paper, 

metrics used for evaluation, etc. would help potential readers (as well as reviewers). This is not an 

IEEE journal. 

Here are a non-exhaustive list of examples that hopefully could guide authors in their revision. 



What do authors mean by “the same underlying scene were required”, given imaging the same 

section used for IMC is impossible? How “same” is determined? 

Figures are unclear. The legends are missing. Considering Figure 3 as an example, what is GT? 

What do red / gray legends in panel i represent? In the same panel, what are those numbers? This 

is just an example. Similar problems exist throughout the manuscript. 

What is the difference between “penetrating” and “existing” tumor microenvironment studies? By 

the way, what is the meaning of penetrating analysis? 

Line 588: what do authors mean by “8 diverse tumor cell phenotype”? How do they know the 

phenotype of cells? 

IFI6 is just a marker of apoptosis. What do the author mean my stating that “correlated with 

tumor makers, especially IFI6” (Line 596)? 

What do the authors mean by “associated with malignant appreciation, namely HER2 and Ki67” 

(Lines 600-601). How malignancy can be appreciated? 

The authors stated that "The most straightforward strategy to obtain IMC images with high PSNR 

is to manually eliminated pixel values above and below empirical thresholds". How are empirical 

thresholds chosen? A brief explanation is neede. 

At line #216, the authors stated that “In addition, SpiDe-Sr was visually superior to three state-of-

the-art (SOTA) single image SR methods including SRCNN, KernelGAN and RCAN”. Quantitative 

superiority should be established by showing results from "SOTA" SR methods in Figures 1c, d, e 

and all other figures, where breast tumors and mouse samples are discussed. 

Where did the authors get the Ground truth of cell segmentation? In other words, how exactly is it 

known that which cell "extraction" (which the reviewer is unsure of its meaning) is 

correct/missing/extra when the sample is analyzed by Cellpose? 

How does SpiDe-Sr compare with original images which were down-sampled (lines 207-208). 

Many details of methods and procedures are missing. For instance, what parameters were used for 

Cellpose. Did the authors attempt to train a model for Cellpose (which is obviously possible and 

should be done). This would be a more accurate comparison. 

Why Field of View 1 is chosen in Figure 1 1f and View 2 chosen for fig 1g even though View 1 is 

larger than View 2? 

The authors stated that “All methods except SpiDe-Sr treated the CD8 (red pixel points) that was 

artificially judged as not being expressed in View 2 as effective information”. What is meant by 

artificially judged here? 

The authors should visualize the learnt mappings by the networks for interpretability and 

explanation of the results. 

Line #207, raw images were downsampled to 1/4th of original size. Why was this ratio chosen? 

Were other ratios tried by the authors? Preliminary results on the same can be included. 

There is no discussion on the statistical significance of the improved results. 

Besides technical ambiguities, I have concerns about the biological data presented in the 

manuscript. For example, would authors explain why leukocyte marker CD45 can be detected in 

MCF7 breast cancer cells? 

Immune cells and epithelial cells are morphologically very different. Could the authors, use two cell 



types with more similar morphology as the basis of their experiments. Lets say CD8 vs CD19? 



RESPONSES TO REVIEWER COMMENTS (NCOMMS-23-42220-T)  

Reviewers’ comments are in blue, with authors’ responses immediately following each 

Reviewer's comment and in black. Modifications to the manuscript are highlighted with a 

yellow background. Page numbers refer to the revised manuscript.  

 

Response to Comments from Reviewer #1 

 

Reviewer #1: 

 

The article presents a method for post-processing images from a technique called Imaging Mass 

Cytometry (IMC). This post-processing primarily involves the removal of unknown noise and 

up-sampling of the images. A major challenge is that the distribution of noise and the 

down-sampling degradation model are unknown. For noise, this paper employs a method similar 

to Noise2noise, and uses a sub-pixel shuffle method to create training data from noisy data. This is 

a clever approach. It works well when the noise is independently sampled for each pixel, but may 

encounter issues if the noise has spatial correlations. Fortunately, the examples shown in the 

article demonstrate that this method is suitable for IMC images. Regarding up-sampling, an older 

algorithm called IKC is utilized. This method was introduced in 2019 (which is considered old in 

the rapidly advancing field of computer vision. IKC is likely the first deep learning-based blind 

SR method). Although it seems outdated, I think the selection of IKC is quite appropriate. Firstly, I 

believe the SR of IMC images is different from the general SR research in computer vision. For 

natural images, visual quality is the priority. Therefore, many Blind SR methods have emerged 

post-IKC to enhance visual quality, such as Real-ESRGAN and BSRGAN. However, these come 

at the cost of objectivity in the resulting images. For the processing of IMC images proposed in 

this paper, these methods are not suitable. Instead, methods based on pre-defined degradation 

models are more conducive to ensuring the objectivity and authenticity of the resulting images. I 

didn’t see relevant discussions in the article, but I believe these discussions are important. 

 

From a computational standpoint, the method presented in this paper has lower innovation, but is 

reasonable and effective. It's hard for me to evaluate the application value as I am not familiar 

with IMC and its related industries and applications. I can see that the method improves the 

accuracy of subsequent detection and segmentation, but I am not quite sure about the real-world 

value of these numerical improvements. 

 

We sincerely appreciate reviewer’s time in reading and commenting on our manuscript. We have 

briefly summarized the Reviewer’s inquiries in the following three aspects, and please do let us 

know if additional concerns remain unaddressed: 

1. The denoising module may not work well for noise with spatial correlations. 

2. There is no discussion that the method we used is appropriate and reasonable for IMC images. 

3. Uncertainty about the practical value of the IMC image quality improvement. 

 

Here are our responses to these three inquiries: 

Response to Inquiry 1  

We are very appreciative to the reviewer for pointing out the current limitations of our model. In 



fact, as our background was more in analytical chemistry and proteomics, we did not take the 

spatial correlation noise into primary account when constructing our model. There are two main 

reasons for this: (1) most current studies in images denosing assume that the noise is sampled 

independently and do not consider the spatial correlation noise (Nat Methods, 2021, 18, 1395–

1400, Nat Methods, 2023, 20, 1581–1592). (2) the distribution of proteins on IMC images is 

closely related to the spatial structure of the specimen, as shown in the Figure 1 below. If spatial 

correlation noise is taken into account, it will be challenging to distinguish whether a pixel is a 

valid protein distribution or just noise. Fortunately, the experimental results show that our method 

is practically suitable for IMC images. 

 

Figure 1 Protein distribution correlates with the spatial structure of the specimen 

 

According to the reviewer’s request, we have added more discussions of spatial correlation noise 

in the Supplementary Information.  

Page 6, lines 135: Noise with spatial correlation is not taken into primary account in the network 

construction since existing studies generally assume that the noise is independently sampled 9, 10. 

And for IMC images, the distribution of proteins is generally correlated with the spatial structure 

of the specimen. If the noise has spatial correlations, the denoising module may encounter issues 

in distinguishing whether the single is a valid protein expression signal or simply just noise. 

Fortunately, our experimental results show that SpiDe-Sr is practically suitable for IMC images. 

9   Eom, M., Han, S., Park, P.et al. Statistically unbiased prediction enables accurate denoising of voltage 

imaging data. Nat Methods 20, 1581–1592 (2023). 

10  Li, X., Zhang, G., Wu, J. et al. Reinforcing neuron extraction and spike inference in calcium imaging using 

deep self-supervised denoising. Nat Methods 18, 1395–1400 (2021). 

 

Response to Inquiry 2  

We are very grateful to the reviewer for the comment that we should discuss whether our method 

is appropriate and reasonable for IMC images. We have thus discussed the differences between 

IMC images and natural images in the Introduction of the revised manuscript. We have also 

discussed in the Method session that the strategies we used were indeed appropriate and 

reasonable for IMC. 



Page 2, lines 64: For natural images, visual quality is the priority. But for IMC images, rational 

enhancement is the necessary foundation for subsequent analysis. The IMC images enhanced by 

the existing unsupervised SR network lacks rationality due to the absence of ground truth19, 22. 

19  Qiao, C., Li, D., Liu, Y. et al. Rationalized deep learning super-resolution microscopy for sustained live 

imaging of rapid subcellular processes. Nat Biotechnol 41, 367–377 (2023). 

22  Kim, J., Rustam, S., Mosquera, J.M. et al. Unsupervised discovery of tissue architecture in multiplexed 

imaging. Nat Methods 19, 1653–1661 (2022). 

 

Page 22, lines 727: The rationality of the enhanced IMC image was the primary consideration 

when selecting the appropriate strategies. And the methods based on predefined degradation 

models were more conducive to ensure the objectivity and authenticity of the resulting images. 

Therefore, the idea of iteratively correcting the predefined blur kernel was opted in our study for 

super-resolution of IMC images after denoising. 

 

Response to Inquiry 3  

The significance of spatial proteomic research is to link proteomic data with spatial landscape and 

typological layout of cells, so as to gain insights into the spatial microenvironment of tissues and 

discover more precise biomarkers or new functional mechanisms (Nature, 2020, 578, 615–620; 

Nature, 2022, 601, 658-661; Cell, 2022, 185(2), 299-310).  

 

There is a standardized data processing procedure for discovering new biomarkers from raw 

spatial proteomic data. This process includes image pre-processing, cell segmentation, cell protein 

expression calculation, cell clustering, and cell information analysis for practical applications. 

Each step in the process generates errors that accumulate as the process progresses. When it comes 

to the endpoint biological investigation analysis step, the accumulated errors largely determine the 

accuracy of the analysis conclusions. Some studies have proposed methods to make cell 

segmentation more accurate (Nat Methods, 2021, 18, 100-106) and some to make cell clustering 

more accurate (Cell. 2015, 2, 162(1):184-97, Genome Biol, 2019, 20, 297). Herein, what we have 

improved is the image pre-processing step by proposing the SpiDe-Sr to optimize the raw images, 

which also effectively reduces the accumulated errors and achieves more accurate application 

analysis.  

 

As indicated in our practice, if IMC data from breast cancer patients were not processed by 

SpiDe-Sr, there was no indication that Gram-negative or Gram-positive bacteria had any particular 

correlation in the breast cancer microenvironment. The results were shown in Supplementary Fig. 

8. But with the same raw data after SpiDe-Sr optimization (the methods in all steps remained the 

same), we found that the expression of Gram-negative bacterial marker was negatively correlated 

with the expression of immune cell marker, and the expression of Gram-positive bacterial marker 

was positively correlated with the immune cell marker. Similar conclusions were obtained in the 

analysis of label-free proteomics data, which cross-verified the accuracy of our results. The results 

of the analysis of the label-free proteomic data were presented in Supplementary Fig. 9 and 

Supplementary Fig. 10. 

 

Obtaining spatial proteomic data from clinical cohorts is time-consuming and expensive, and it is 



disappointing that new biological knowledge cannot be accurately discovered from the data. Thus, 

our method allows the clinical raw data to be analyzed more accurately, increasing the potential 

for discovering new biological insights, which we believe is the major practical value of our 

method. 

 

Accordingly, we have added the results of data analysis without SpiDe-Sr enhancement in the 

revised manuscript. 

Page 17, lines 556: Without SpiDe-Sr enhancement, B cells and T cells could not be distinguished 

and only 4 tumor cell clusters were identified based on the same IMC dataset because of noise 

interference or insufficiently precise details (Supplementary Fig. 8e-f). And in subsequent 

analyses, there was no indication that G- or G+ bacteria had any particular correlation in the breast 

cancer microenvironment (Supplementary Fig. 8i). After SpiDe-Sr enhancement, more biological 

information was mined. 

 

Reviewer #2: 

 

Chen at al. proposes a new algorithm, called SpiDe-Sr, for denoising of IMC images with the gaol 

of improving the assay resolution. The SpiDe-Sr potentially addresses a very important limitation 

of IMC data analysis. However, the evaluation of manuscript in its current form is almost 

impossible due several reasons, some of which are noted here. I hope these comments would help 

the authors in revising their manuscript. 

 

The major issue is that Che et al. fails to clearly communicate its findings, especially for broad 

readership of Nature Communications. 

 

There are numerous grammatical mistakes throughout the manuscript. Several figure panels are 

not discussed (why are they include in the first place?) 

We sincerely appreciate the reviewer for the time in reading and commenting on our manuscript. 

We do apologize for the unclarity in our previous manuscript. We have carefully studied each 

comment and revised our manuscript accordingly.  

 

The presentation and grammar of the entire manuscript have been thoroughly revised. We have 

also employed native speakers to facilitate the grammatical proofread of the revised manuscript.  

 

The figures, which the reviewer felt were not fully discussed, should have been the extended data 

figures. In previous manuscript, we placed these extended data figures (Extended data 

Fig1-Extended data Fig10) at the end of the manuscript. And we then uploaded Fig. 1 to Fig. 6 

separately without figure legends because we were concerned that the figures imbedded in the 

manuscript were not clear enough after compression. This may have caused the figures to be 

misplaced in the final merged PDF file. We do apologize that this issue had made your reading 

disjointed. For this issue, we have removed the Extended data figures from the manuscript and 

placed them on page 14-33 in the Supplementary Information in the revised manuscript. We also 

provide detailed elaborations under each supplementary figure in the Supplementary Information. 

And all panels of figures in the revised manuscript were also discussed. 



 

In summary, it is utterly impossible to evaluate the scientific merit of the manuscript given its poor 

presentation. Some of the sentences are incomprehensible. There are many unnecessary 

abbreviations (do the authors really need to abbreviate “state-of-the-art” to SOTA?). On the other 

hand, there are abbreviations with unclear definition (e.g. LA, LB, TNBC, etc.) 

We sincerely appreciate your criticism. We have employed native speaker to revise the grammar 

and diction throughout the manuscript. And the presentation of the entire manuscript was also 

carefully revised.  

 

In the process of completing the manuscript, we have carefully referenced high-quality articles. 

We noticed that “State-of-the-art” was abbreviated as SOTA in previous references in our field 

(Nat Biotechnol, 2023, 41, 367–377, Nat Mach Intell,2021, 3, 581–589). In the revised manuscript, 

we have also carefully checked all the abbreviations to ensure they were defined in the text or in 

the figure legend when they were first used. We clarified the definition of the abbreviation (HER2, 

LA, LB, TNBC) in the figure legend of Fig. 5 in the manuscript according to the general 

denotation in tumor research community.  

Page 16, lines 501: HER2, human epidermal growth factor receptor 2 breast cancer. LA, luminal A 

breast cancer. LB, luminal B breast cancer. TNBC, triple negative breast cancer.  

 

Considering the general readers of Nature Communications and the reviewer’s comment, we have 

avoided the use of unnecessary abbreviations in the main text of revised manuscript. 

 

Performance metrics are not defined. What is SSIM? What is pSNR? How “accuracy of cell 

extraction” is defined / calculated Definition of terminologies/ metrics / etc should be clarified, 

especially for a journal such as Nature Communications with a broader readership. A short 

introduction of methods included in comparative analysis, tools used in throughout the paper, 

metrics used for evaluation, etc. would help potential readers (as well as reviewers). This is not an 

IEEE journal.  

We greatly appreciate the detailed comments from the reviewer. According to the reviewer’s 

request, we have clarified the definitions of the abbreviations PSNR, SSIM and other metrics in 

the manuscript where they were used for the first time. 

Page 4, lines 107: Abbreviations and remarks: PSNR, peak signal-to-noise ratio, larger means 

less noise. SSIM, structural similarity, larger means more similar to the ground truth. SOTA, 

state-of-the-art.  

Page 4, lines 138: The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were 

calculated between the ground truth and the blurred images before and after SpiDe-Sr 

enhancement (Details are provided in the Methods section).  

Page 8, lines 238: Therefore, intersection over union score (IoU) was calculated to evaluate the 

accuracy of cell segmentation0,Error! Reference source not found.. 

20   Li, X., Zhang, G., Wu, J. et al. Reinforcing neuron extraction and spike inference in calcium imaging using 

deep self-supervised denoising. Nat Methods 18, 1395–1400 (2021). 

32   Jia Y., Yuning J., Zhangyang W., et al. UnitBox: An Advanced Object Detection Network. In Proceedings of 

the 24th ACM international conference on Multimedia (MM 16). Association for Computing Machinery, 

New York, NY, USA, 516–520 (2016). 



Page 16, lines 499: Abbreviations: CH, Calinski-Harabasz score; DB, Davies-Bouldin score; 

t-SNE, t-distributed stochastic neighbor embedding; G-, gram-negative bacteria; G+, gram-positive 

bacteria; HER2, human epidermal growth factor receptor 2 breast cancer; LA, luminal A breast 

cancer; LB, luminal B breast cancer; TNBC, triple negative breast cancer; ER, estrogen receptor; 

PR, progesterone receptor. 

Page 17, lines 525: Calinski Harabasz (CH) score0, which evaluated the degree of dispersion 

between clusters, was increased by 38.29± 24.23%, indicating the identified clusters were more 

discrete. Meanwhile, the Davies-Bouldin (DB) score0, which evaluated the intra-cluster tightness, 

was reduced by 11.12± 8.73%, indicating more similarity within the identified clusters (Fig. 5e). 

38   Calinski, T., and Harabasz, J. A Dendrite Method for Cluster Analysis, Communications in Statistics, 1974, 3, 

1-27. 

39   William, H.E. Day, Validity of clusters formed by graph-theoretic cluster methods. Mathematical 

Biosciences, Volume 36, Issues 3–4, 1977, 299-317, ISSN 0025-5564. 

 

Meanwhile, we have also described in details the definition of each performance metrics and how 

it was calculated in the Performance Metrics section in the manuscript. 

Page 26, lines 900~ Page 28, lines 958. 

 

Here are a non-exhaustive list of examples that hopefully could guide authors in their revision. 

What do authors mean by “the same underlying scene were required”, given imaging the same 

section used for IMC is impossible? How “same” is determined? 

We sincerely appreciate the reviewer’s inquiry. In the phrase "the same underlying scene", we 

have followed the wording in the reference (Nat Methods,2021, 18, 1395–1400). For instance, as 

shown in Figure. 1 below, a is considered a clean image, which is also usually considered to be 

ground truth. b is generated by a overlaid with Gaussian noise and c is generated by a overlaid 

with pepper noise. We consider b and c to have the same underlying scene. Gaussian noise and 

pepper noise simulate noises that may be generated during different imaging processes, 

respectively. 

 

Figure. 1 a. The clean image, which is considered ground truth in the three images. b. Image in a. 

added with Gaussian noise. c. Image in a. added with pepper noise.  

 

When photographing a field of view under a microscope, different focuses or different lighting 

will result in different images. Images taken at different focuses or under different lighting are 



considered to have the same underlying scene because essentially the biological content in images 

is the same. The imaging principle of IMC is that the laser ablates the sample and then mass 

spectrometry detects the products of the ablation to identify the proteins in the sample. Different 

from the microscope that can repeatedly photograph the same sample, for IMC, the same sample 

can only be ablated once, and the instrument can only image the same sample once. Thus, 

obtaining multiple IMC images with the same underlying scene is practically not feasible. 

 

Figures are unclear. The legends are missing. Considering Figure 3 as an example, what is GT? 

What do red / gray legends in panel i represent? In the same panel, what are those numbers? This 

is just an example. Similar problems exist throughout the manuscript. 

We appreciate the comments from the reviewer. We apologize for unclear figures and disappearing 

legends caused by irregularities in our original manuscript. We have made the details clearer in the 

legends for each figure in the manuscript, including an overview of each small panel, what the 

different colors represent, the abbreviations involved, and the notes.  

 

Page 3, lines 92: Fig. 1 SpiDe-Sr method. a, The architecture of SpiDe-Sr. The network was 

comprised of the denoising module and the super-resolution module. The denoising module 

included the neighbor sub-sampler and the U-net denoising network. And the super-resolution 

module had three components: the blur kernel predictor (𝑃𝜃), the blur kernel corrector (𝐶𝜃) and the 

image super-resolution network (𝑆𝜃). b, Inference using the trained SpiDe-Sr network. The 

architectural details and interpretability of the SpiDe-Sr were illustrated in Supplementary Fig. 1 

and Supplementary Fig. 2. c, Quantitative evaluation of SR image quality with different iterations 

of blur kernel estimation. Dashed line indicated the optimal number of iterations. n= 4392 images. 

d, Quantitative evaluation of image PSNR and SSIM with different noise levels before and after 

the SpiDe-Sr enhancement, n= 4392 images. e, The number of cells extracted based on images 

with different noise levels before and after the SpiDe-Sr enhancement. Total number of cells in the 

field of view is 200. f, Visual comparison of SpiDe-Sr method with the three SOTA 

super-resolution methods including SRCNN, KernelGAN, and RCAN. g, Spatial profiles of 

extracted cells in the field of View 1. Correctly segmented regions (true positives) were colored in 

green. Missing (false negatives) and extra regions (false positives) were colored in red and gray, 

respectively. All cell segmentation tasks in our work were implemented with the Cellpose 

algorithm. Abbreviations and remarks: PSNR, peak signal-to-noise ratio, larger means less 

noise. SSIM, structural similarity, larger means more similar to the ground truth. SOTA, 

state-of-the-art. 

 

Page 6, lines 185: Fig. 2 Validation of SpiDe-Sr on IMC images of MCF-7 cell line. a, 

Schematic of acquiring paired images of cells with fluorescent/ metal dual-labeled antibodies. b, c, 

d, Confocal microscopy (left), raw IMC (middle), and SpiDe-Sr enhanced IMC (right) images of 

nucleus and examples of relatively high/ moderate/low expression markers (b, Tubulin/ c, CD45/ 

d, CD34). Cell segmentation was conducted with Cellpose. Missed (false negatives) and extra 

segmentations (false positives) were respectively indicated by yellow and green arrows. Correctly 

extracted but wrongly bounded regions were indicated by red arrows. e- f, Violin-scatter plots 

showing the distribution of (e) peak signal-to-noise ratio (PSNR) and (f) structural similarity 

(SSIM) with ground truth (GT) images before and after SpiDe-Sr enhancement. Each gray line 



represented the variation of a single image before and after enhancement. n=52 (Tubulin)/ 36 

(CD45)/ 71 (CD34) images. g, Accuracy of cell extraction before and after SpiDe-Sr enhancement. 

h, Violin-scatter plots showed the distribution of intersection over union (IoU) of accurately 

extracted cells in IMC images before and after SpiDe-Sr enhancement vs. GT images. Each line 

represented the variation of a single cell before and after enhancement. Increasing and decreasing 

pairs were colored in gray and red, respectively. i, Violin-scatter plots showed the distance of 

biomarker expressions in accurately extracted cells from IMC images with and without SpiDe-Sr 

enhancement to the corresponding cells in GT images. Each line represented the variation of a 

single cell before and after enhancement. Increasing and decreasing pairs were colored red and 

gray, respectively. j, Normalized marker expressions in accurately extracted cells. In h- j, the 

number of cells was 216/ 241/ 357. k, Comparison of SpiDe-Sr method with the three competitive 

SR methods in PSNR, SSIM, and running time. l, Visual comparison of SpiDe-Sr method with the 

three competitive super-resolution methods. In e-f, asterisks indicated statistical significancy by 

paired-samples t-test, **P< 0.01, ***P< 0.001. 

 

Page 9, lines 280: Fig. 3 Validation of SpiDe-Sr on IMC images of mouse fatty liver tissues. a, 

Schematic of acquiring paired images of mouse fatty liver tissues with fluorescent/metal 

dual-labeled antibodies. b, c, d, Confocal microscopy (left), raw IMC (middle), and SpiDe-Sr 

enhanced IMC (right) images of nucleus and examples of relatively high/moderate/low expression 

markers (b, Tubulin/ c, CD45/ d, CD34). Cell segmentation was conducted with Cellpose. Missed 

(false negatives) and extra segmentations (false positives) were respectively indicated by yellow 

and green arrows. Correctly extracted but wrongly bounded regions were indicated by red arrows. 

e- f, Violin-scatter plots showing the distribution of (e) peak signal-to-noise ratio (PSNR) and (f) 

structural similarity (SSIM) with ground truth (GT) images before and after SpiDe-Sr 

enhancement. Each gray line represented the variation of a single image before and after 

enhancement. n= 37 (Tubulin)/ 37 (CD45) / 21 (CD34) images. g, Accuracy of cell extraction 

before and after SpiDe-Sr enhancement. h, Violin-scatter plots showed the distribution of 

intersection over union (IoU) of accurately extracted cells in IMC images before and after 

SpiDe-Sr enhancement vs. GT images. Each line represented the variation of a single cell before 

and after enhancement. Increasing and decreasing pairs were colored in gray and red, respectively. 

n= 235 (Tubulin)/ 422 (CD45)/ 203 (CD34) cells. i, Violin-scatter plots showed the distance of 

biomarker expressions in accurately extracted cells from IMC images with and without SpiDe-Sr 

enhancement to the corresponding cells in GT images. Each line represented the variation of a 

single cell before and after enhancement. Increasing and decreasing pairs were colored red and 

gray, respectively. j, Normalized marker expressions in accurately extracted cells. k, Comparison 

of SpiDe-Sr method with the three competitive SR methods in PSNR, SSIM, and running time. l, 

Visual comparison of SpiDe-Sr method with the three competitive super-resolution methods. In 

e-f, asterisks indicated statistical significancy by paired-samples t-test, ***P< 0.001. 

 

Page 12, lines 375: Fig. 4 Validation of SpiDe-Sr on IMC images of human breast cancer 

tissues. a, Schematic of acquiring paired images of breast cancer tissues with fluorescent/metal 

dual-labeled antibodies. b, c, d, Confocal microscopy (left), raw IMC (middle), and SpiDe-Sr 

enhanced IMC (right) images of nucleus and examples of relatively high/moderate/low expression 

markers (b, Tubulin/ c, CD45/ d, CD34). Cell segmentation was conducted with Cellpose. The 



missed (false negatives) and extra segmentations (false positives) were respectively indicated by 

yellow and green arrows. Correctly extracted but wrongly bounded regions were indicated by red 

arrows. e- f, Violin-scatter plots showing the distribution of (e) peak signal-to-noise ratio (PSNR) 

and (f) structural similarity (SSIM) with ground truth (GT) images before and after SpiDe-Sr 

enhancement. Each gray line represented the variation of a single image before and after 

enhancement. n= 47 (Tubulin)/ 25 (CD45)/ 54 (CD34) images. g, Accuracy of cell extraction 

before and after SpiDe-Sr enhancement. h, Violin-scatter plots showed the distribution of 

intersection over union (IoU) of accurately extracted cells in IMC images before and after 

SpiDe-Sr enhancement vs. GT images. Each line represented the variation of a single cell before 

and after enhancement. Increasing and decreasing pairs were colored in gray and red, respectively. 

i, Violin-scatter plots showed the distance of marker expressions in accurately extracted cells from 

IMC images with and without SpiDe-Sr enhancement to the corresponding cells in GT images. 

Each line represented the variation of a single cell before and after enhancement. Increasing and 

decreasing pairs were colored red and gray, respectively. j, Normalized marker expressions in 

accurately extracted cells. In h- j, n= 244 (Tubulin)/ 207 (CD45)/ 240 cells. k, Comparison of 

SpiDe-Sr method with the three competitive SR methods in PSNR, SSIM, and running time. l, 

Visual comparison of SpiDe-Sr method with the three competitive super-resolution methods. In e- 

f, asterisks indicated statistical significancy by paired-samples t-test, *P< 0.05, **P< 0.01, ***P< 

0.001. 

 

Page 15, lines 470: Fig. 5 Application of SpiDe-Sr to spatial proteomics data from four major 

subtypes of breast cancer patients. a, Workflow of IMC image acquisition. b, A raw breast 

cancer IMC image and cells extracted by Cellpose based on it (left), compared with the 

corresponding SpiDe-Sr enhanced image and cells extracted based on it (right). c, Number of cells 

extracted in all breast cancer samples. d, Normalized expressions of 14 markers in four breast 

cancer subtypes at single-cell level (n= 8,697/ 5,550/ 7,316/ 5,393 for HER2/ LA/ LB/ TNBC). e, 

Comparison of CH and DB scores of FlowSOM clustering results of cells extracted from all 

acquired images with and without SpiDe-Sr enhancement. The clustering was repeated 10 times 

for each cluster number interval. f, Comparison of CH and DB of PhenoGraph clustering results of 

cells extracted from all acquired images with and without SpiDe-Sr enhancement. The clustering 

was repeated 120 times without preset cluster number. Histogram showed the frequency 

distribution of output cluster numbers. In e-f, both CH and DB were statistically different before 

and after SpiDe-Sr enhancement (t-test, P< 0.001). g, The clustering results with the highest CH 

score. The heatmap (left) showed normalized mean marker expressions of each PhenoGraph 

cluster. The stacked bar plot showed (middle) the proportions of four subtypes of breast tumor 

cells in each cluster. The bar plot (right) showed the absolute cell counts in each cluster. h, t-SNE 

map of 269,556 cells sub-sampled from all acquired images. Cell types were manually identified 

and marked by different colors. i-j, The proportion of cells of each breast cancer subtype in the 

clusters which had the highest expression of G- (i, C12, n= 144/ 506/ 76/ 121 cells) and G+ (j, C10, 

n= 21/ 78/ 3,654/ 101 cells) bacterial markers, compared to the total cell count of each subtype. k, 

(below) Heat map showing the Pearson correlation coefficients of the 14 markers in C12 with 

each other. (above) Heat map showing the Pearson correlation coefficients of the 14 markers in 

C10 with each other. Positively and negatively correlated markers were colored in orange and blue, 

respectively. LPS and LTA were colored in red. G- bacteria were universally positive correlated to 



tumor markers (ISG15 and IFI6) and negative correlated to immune markers (CD45 and CD68) in 

all four subtypes of breast cancers, while G+ bacteria showed completely reversed patterns. l-m, 

Box plots showed the absolute expressions of 14 markers in C12 (l, n= 847 cells) and C10 (m, n= 

3,854 cells) of the four breast cancer subtypes. Red and blue asterisks respectively represented the 

statistical significance of proteins positively and negatively associated with LPS/ LTA versus LPS/ 

LTA (t-test, **P< 0.01, ***P< 0.001). Abbreviations: CH, Calinski-Harabasz score; DB, 

Davies-Bouldin score; t-SNE, t-distributed stochastic neighbor embedding; G-, gram-negative 

bacteria; G+, gram-positive bacteria; HER2, human epidermal growth factor receptor 2 breast 

cancer; LA, luminal A breast cancer; LB, luminal B breast cancer; TNBC, triple negative breast 

cancer; ER, estrogen receptor; PR, progesterone receptor. 

 

Page 18, lines 565: Fig. 6 Migrating SpiDe-Sr to fluorescence microscopy images. a, Paired 

images at different magnifications (10x and 40x) was acquired for MCF-7 cell line, mouse retina, 

and breast tissue. b-d, Raw images at 10x magnification (left) of MCF-7 cell (b), Mouse retina (c), 

and breast tissue (d), and corresponding 40x images reconstructed from the 10x images using 

SpiDe-Sr (middle), along with the true blur kernels and the blur kernels between the 10x and 

SpiDe-Sr enhanced 40x images (right). e, Comparison of the super resolution images 

reconstructed by SRCNN, KernelGAN, RCAN and SpiDe-Sr for the three sample types. f- g, 

Comparisons of PSNR (f) and SSIM (g) among the four super resolution methods in different 

sample types. n=65/ 16/ 22 for MCF-7 cells/ mouse retina tissues/ human breast tissues. h, Overall 

comparison of the PSNR, SSIM, and running time among the four super resolution methods. i, 

Visual comparison of 40x ground truth image of F-actin and 40x super-resolution image 

reconstructed from 10x image using SpiDe-Sr, as well as the other three methods. Abbreviations: 

FFPE, formalin fixed paraffin embedded. 

 

What is the difference between “penetrating” and “existing” tumor microenvironment studies? By 

the way, what is the meaning of penetrating analysis? 

We sincerely appreciate the reviewer’s inquiry and apologize for the unclear wording choices in 

the manuscript. We realize the use of “penetrating” does not deliver accurate meaning to readers 

and reviewers, thus we have changed all “penetrating” to “precise” in the revised manuscript: 

Page 16, lines 505: SpiDe-Sr facilitates precise spatial proteomics analysis of breast cancer 

microenvironment 

Page 16, lines 509: Therefore, SpiDe-Sr was adopted to enhance the multiplex IMC images for 

higher resolution so that bacterial signals could be precisely analyzed.  

 

For IMC data analysis in mass spectrometry community, there is a recognized standard process 

(Nature, 2020, 578, 615–620) that includes image pre-processing, cell segmentation, cell protein 

expression calculation, cell clustering, and practical application analysis. Each step in the process 

generates errors that accumulate as the process progresses. The accumulated error impacts the 

accuracy of the actual biological application analysis. Some studies have proposed methods to 

reduce the errors in cell segmentation (Nat Methods, 2021, 18, 100-106) and clustering (Genome 

Biol, 2019 20, 297), and our method is to directly optimize the raw image so that the errors in the 

subsequent steps can be reduced as a whole. 

 



As indicated in your clinical application, if IMC data from breast cancer patients were not 

processed by SpiDe-Sr, there was no indication that Gram-negative or Gram-positive bacteria had 

any particular correlation in the breast cancer microenvironment. The analysis results of the data 

without SpiDe-Sr enhancement under the standard process were shown in Supplementary Fig. 8. 

But when the same data was processed by SpiDe-Sr and then analyzed under the standard process 

(the methods in all steps remained the same), we found that the expression of Gram-negative 

bacterial marker was negatively correlated with the expression of immune cell marker, and the 

expression of Gram-positive bacterial marker was positively correlated with the immune cell 

marker. Similar conclusions were obtained in the analysis of label-free proteomic data, which 

cross-verified the accuracy of our analyzed results. The results of the analysis of the label-free 

proteomic data were presented in Supplementary Fig. 9 and Supplementary Fig. 10. Thus, after 

using our method, more biological information was indeed mined. 

 

Line 588: what do authors mean by “8 diverse tumor cell phenotype”? How do they know the 

phenotype of cells? 

We truly appreciate the reviewer’s inquiry. We followed the definition of “phenotype” in reference 

(Nature, 2020, 578, 615–620), referring to the type and expression of proteins in a cell in the 

specific environment. Taking into account the reviewer’s comments and in order to make the 

manuscript comprehensible to the reader, we have replaced the terminology "cell phenotype" with 

"cell cluster" in the manuscript. 

Page 17, lines 534: Normal healthy cells (C1- C9), B cells (C32 and C33 with highest expression 

of CD19), T cells (C26 with highest expression of CD45), macrophage (C11 with highest 

expression of CD68), and cells containing G-/ G+ bacteria (C12/ C10), as well as 8 diverse tumor 

cell clusters were identified clearly (Fig. 5g-h). 

Page 20, lines 630: We focused on G- and G+ bacteria relevant tumor cell cluster. 

 

We obtained the expression of 14 proteins in 269,556 cells after cell segmentation. Cells with 

similar protein expression were divided into a cluster based on the expression of these 14 proteins. 

As shown in Fig. 5g, all cells were divided into 33 cell clusters based on the expression of proteins. 

The redder the color in the heat map, the higher the protein expression. 

 

CD19 is highly expressed in B cells and is a marker for B cells, therefore we classified the two 

clusters C32 and C33, which highly express CD19, as B cell clusters. Similarly, we classified the 

C26/ C11/ C27 cluster with high expression of CD45/ CD68/ CD8a as a T cell/ Macrophages/ 

CD8+T cells cluster, respectively. 

 

ER, HER2, IFI6, ISG15, Ki67, PKCD, PR and ZC3HVI are common markers of breast cancer 

according to WHO website and references (Nature, 2020, 578, 615–620). As shown in Fig. 5g, 

the C16 cluster with high expression of ER was classified to be an ER+ cell cluster, a tumor cell 

cluster. C18 with high expression of HER2 is classified as a HER2+ tumor cell cluster. Using the 

same classification pipeline, 6 other tumor phenotype clusters were distinguished, including 

ISG15+, Ki67+, PR+, PKCD+, IFI6+ISG15+ and PKCD+ZC3HV1+. If biomarkers of neither 

immunity nor tumor were expressed, as in the case of C1 to C9, they were considered normal 

healthy cells. As shown in the Figure 2, starting from the protein columns, we identified the 



clusters with the highest biomarker expressions and determined the corresponding cell phenotype 

clusters. 

 

Figure 2 Determining cell clusters from heat map. 

 

IFI6 is just a marker of apoptosis. What do the author mean my stating that “correlated with tumor 

makers, especially IFI6” (Line 596)? 

We sincerely appreciate the reviewer’s inquiry. We agree with the reviewer that, on its own, IFI6 is 

really just a marker of apoptosis. However, since IFI6 is abundantly expressed in many cancer 

tissues, it is also considered as a tumor marker in many references (Nat Microbiol, 2018, 3, 

1214-1223, Cell Dev Biol, 2021, 25;9:677697, Br J Cancer, 2018, 119, 52-64). 

 

And in our data from the breast cancer microenvironment, we found that the expression of 

gram-negative bacterial marker (LPS) was positively correlated with IFI6, indicating that cells 

with high LPS expression also had high IFI6 expression. As shown in the Figure. 3 below, 

positive correlations were in red and negative correlations were in blue. Pearson correlation 

coefficients greater than 0.75 were marked with two asterisks, while Pearson correlation 

coefficients greater than 0.5 were marked with one asterisk. 



 

Figure. 3 Correlation between LPS expression and other biomarker expressions. 

 

The conclusions from the above figure were summarized in the following Table 1. 

Table 1 Correlation between LPS expression and other biomarker expressions 

Sub-types of breast cancer Positively associated with LPS 

(P> 0.5) 

Negatively associated with LPS 

(P> 0.5) 

HER2 ISG15, IFI6, HER2, ZC3HV1 CD45, CD68 

LA IFI6, PKCD, CD19, ZC3HV1, 

ISG15 

\ 

LB IFI6 CD68 

TNBC CD19, CD45, PKCD, ZC3HV1, 

ISG15 

CD8a 

 

From the Table 1, we found that the expression of LPS was positively correlated with tumor 

markers, such like IFI6.  

 



According to the reviewer’s inquiry, we have also added the Table 1 to the Supplementary 

Information at Page 43, lines 646. Supplementary Table 8 Correlation between LPS expression 

and other biomarker expressions 

 

What do the authors mean by “associated with malignant appreciation, namely HER2 and Ki67” 

(Lines 600-601). How malignancy can be appreciated? 

We sincerely appreciate the reviewer’s inquiry. Based on reviewer’s inquiry, we realize that 

“malignant appreciation” is an inaccurate expression, and we apologize for this misleading 

terminology. We have changed the wording in the revised manuscript. 

Page 17, lines 543: Inversely, in C10, the expression of immune markers, such as CD45, was 

positively correlated with LTA expression in all four breast cancer subtypes except LB, and the 

expression of LTA was negatively correlated with the expression of breast cancer markers 

associated with abnormal cell growth, namely HER2 and Ki67 (upper half of Fig. 5k, 

Supplementary Fig. 7e and Table 9). 

 

Similar to our responses to the last question, the heat maps of Pearson correlation coefficient 

between LTA expression and other biomarker expressions are shown in Figure 4. And we have 

summarized the Figure 4 in the Table 2 below.  

 



Figure. 4 Correlation between LTA expression and other biomarker expressions. 

 

Table 2 Correlation between LTA expression and other biomarker expressions 

Sub-types of breast 

cancer 

Positively associated with LTA 

(P> 0.75) 

Negatively associated with LTA 

(P> 0.75) 

HER2 CD45, PR, CD8a, Ki67 HER2, LPS 

LA CD68, LPS, IFI6, ZC3HV1 Ki67, PR 

LB LPS \ 

TNBC ER, ISG15, PR, CD45, IFI6 \ 

 

Because both HER2 and Ki67 are associated with abnormal cell growth, we thus identify that LTA 

may be associated with abnormal cell growth based on the Table 2.  

Per the reviewer’s inquiry, we have also added the Table 2 to the Supplementary Information at 

Page 44, lines 680. Supplementary Table 9 Correlation between LTA expression and other 

biomarker expressions 

 

The authors stated that "The most straightforward strategy to obtain IMC images with high PSNR 

is to manually eliminated pixel values above and below empirical thresholds". How are empirical 

thresholds chosen? A brief explanation is needed. 

We sincerely appreciate the reviewer’s inquiry. Manual elimination of pixel values above and 

below empirical thresholds is usually done in MCD Viewer, the software that accompanies IMC 

instruments. Specific instructions are available on the Fluidigm instrument's official website 

(https://www.standardbio.com/products/technologies/imaging-mass-cytometry). To do so, we 

import the original file into the MCD Viewer, then select the channel of interest, and adjust the 

two parameters of Threshold Min and Threshold Max so that there is no background noise on the 

image and the cell nuclei are clear.  

 

As shown in Figure 5, take the cell nucleus channel (DNA_191Ir) image as an example. If the 

background noise is too high, IMC users would adjust the parameter Threshold Min to remove the 

pixels below the threshold. If the cell nucleus is too bright, resulting in unclear cell boundaries or 

too many discrete bright spots, the Threshold Max can be adjusted to remove pixels above the 

threshold. In our experience, the Threshold Min is generally adjusted between 0.5- 5, while the 

adjustment range of Threshold Max will be larger, generally according to the specific channel. 

Adjustment panel is shown in Figure 5.a, where the image before adjustment is b, the image after 

adjustment is c. In Figure 5.c, there is less noise and the cell boundaries are clearer than b. 



 

Figure 5 a, Operation interface. b, Image with low PSNR, c. Image with high PSNR. 

 

At line #216, the authors stated that “In addition, SpiDe-Sr was visually superior to three 

state-of-the-art (SOTA) single image SR methods including SRCNN, KernelGAN and RCAN”. 

Quantitative superiority should be established by showing results from "SOTA" SR methods in 

Figures 1c, d, e and all other figures, where breast tumors and mouse samples are discussed. 

We appreciate the reviewer’s suggestion. IMC samples archived in our laboratory, including 91 

breast cancer samples, 67 liver cancer samples, and 63 mouse samples were cropped to obtain a 

total of 21,960 raw images. In order to obtain the maximum amount of data, we did not 

differentiate the images according to the sample type, but rather mixed all the images and divided 

them into the 1) training set, 2) the validation set, and 3) the test set for subsequent model 

construction. All three datasets contained breast cancer samples, liver cancer samples, and mouse 

samples, as presumed. The parameters of the model were determined based on the results obtained 

from the overall validation set. The results in Fig. 1c and d were obtained on the test set. All three 

types of samples were involved together in the construction and evaluation of the model. Hence, 

the main purpose of Fig. 1 was to illustrate the structure and benchmark performance of the 

model. 

 

According to the reviewer’s inquiry, we have further described the use of the images in the 

manuscript for better clarity.  

Page 21, lines 691: The IMC samples archived in our laboratory (including 91 breast cancer 

samples, 67 liver cancer samples and 63 mouse organs samples) were prepared into 21,960 raw 

images of 300 × 300 pixels in TIFF format using MATLAB scripts. These 21,960 raw images 

constituted a dataset named SpiSet. Three-fifths of images in SpiSet were allocated for training the 

denoising network, and one-fifth were employed for validation. The remaining one-fifth of SpiSet 



were randomly superimposed with Gaussian or Poisson or pepper noise through the utilization of 

built-in function within MATLAB for testing. 

 

Where did the authors get the Ground truth of cell segmentation? In other words, how exactly is it 

known that which cell "extraction" (which the reviewer is unsure of its meaning) is 

correct/missing/extra when the sample is analyzed by Cellpose? 

We truly appreciate the detailed reading and questions. We used the fluorescent/metal-dual 

labeling approach to obtain both IMC images, and confocal images with the same underlying 

scene as the IMC images. Because confocal image had higher PSNR and resolution, we thus used 

confocal image as the ground truth to evaluate performance. The confocal images were fed into 

the Cellpose program running with default parameters to obtain preliminary cell segmentation 

results. The default parameter settings according to the literature (Nat Methods,2021, 18, 1395–

1400) were shown in the Table 3. Then the expertise researcher adjusted Cellpose program 

parameters to obtain the accurate segmentation results from confocal images as the ground truth of 

cell segmentation. There are two parameters that should be adjusted, namely cell diameter (pixels) 

and model zoo. When the raw IMC and SpiDe-Sr enhanced IMC were fed into the Cellposs 

program, the program was only run with the default parameters, and the parameters were no 

longer manually adjusted.  

Table 3 Default parameters for Cellpose 

Parameters Settings 

Up/down or W/S RGB 

page up/down image 

brush size 3 

MASK ON Yes 

single stroke Yes 

outlines on No 

scale disk on Yes 

use GPU  Yes 

flow_threshold 0.7 

cellprob_threshold  0.0 

stitch_threshold 0.0 

cell diameter (pixels) calibrate 

model zoo default 

 

It should be noted that the output of Cellpose was only the mask of cell segmentation of image. 

For the calculation of the accuracy of the cell extraction, we referred to the literature (Nat 

Methods,2021, 18, 1395–1400). Whether the cells were accurately extracted, missed or extra 

detected, should be manually counted by the researcher. In Figure 6, we explained this pipeline 

with an example.  



 

Figure 6 Example of the cell missing and extra. a, Example of the missing cell. b, Example of the 

extra cell. 

 

The cell boundaries in red (a)/ green (b) color in Figure 6 were drawn from the cell segmentation 

mask output by Cellpose. There were 4 cells in the confocal that were extracted in a. There should 

be 4 cells in the raw IMC as well, but none of them were extracted in Cellpose, so before SpiDe-Sr, 

all 4 cells were missed. After SpiDe-Sr enhancement, all 4 cells were accurately detected in the 

image. In another example, there were 2 cells in the confocal in b, but 3 cells were extracted in the 

raw IMC image, so the cell ③ was considered to be extra. 

 

According to the reviewer’s inquiry, we have also added a discussion of the ground truth for cell 

segmentation and Table 3 in the Supplementary Information.  

Page 13, lines 319: The confocal images were fed into the Cellpose program running with default 

parameters to obtain preliminary cell segmentation results. The default parameter settings 

according to the literature11 were shown in the Supplementary Table 10. Then the expertise 

researcher adjusted the Cellpose program parameters to obtain the accurate segmentation results as 

the ground truth of cell segmentation. When the raw IMC and SpiDe-Sr enhanced IMC were fed 

into the Cellposs program, for the control variable, the program was only run with the default 

parameters, and the parameters were no longer manually adjusted. It should be noted that the 

output of Cellpose was only the mask of cell segmentation of image. And whether the cells were 

accurately extracted, or missed or extra extracted, should be manually counted by the researcher. 

11   Stringer, C., Wang, T., Michaelos, M. et al. Cellpose: a generalist algorithm for cellular segmentation. Nat 

Methods 18, 100–106 (2021). 

 

Page 45, lines 716: Supplementary Table 10 Default parameters for Cellpose. 



Parameters Settings 

Up/down or W/S RGB 

page up/down image 

brush size 3 

MASK ON Yes 

single stroke Yes 

outlines on No 

scale disk on Yes 

use GPU  Yes 

flow_threshold 0.7 

cellprob_threshold  0.0 

stitch_threshold 0.0 

cell diameter (pixels) calibrate 

model zoo default 

 

How does SpiDe-Sr compare with original images which were down-sampled (lines 207-208). 

We appreciate the inquiry. In the phase of testing model benchmark performance, the raw IMC 

images were served as ground truth because of the lack of clean and high-resolution images. The 

raw images were superimposed with noise and down-sampled with bicubic interpolation to 

one-fourth of the original size to form blurred images. The blurred images were fed into SpiDe-Sr, 

and the images were denoised and enlarged by a factor of 4. At this stage, the images after 

SpiDe-Sr were as large as the raw images. Then we can calculate the PSNR and SSIM of 

enhanced images between the raw mages and the SpiDe-Sr enhanced images. The PSNR and 

SSIM of blurred images were calculated between the raw images and the blurred images after 

bicubic interpolation up-sampling. 

 

According to the reviewer’s inquiry, we have also added these details to the revised manuscript.  

Page 4, lines 135: To quantitatively evaluate the benchmark performance of SpiDe-Sr, the raw 

IMC images were served as ground truth because of the lack of clean and high resolution images. 

The raw images were superimposed with noise and down-sampled to one-fourth of the original 

size to form blurred images. The peak signal-to-noise ratio (PSNR) and structural similarity 

(SSIM) were calculated between the ground truth and the blurred images before and after 

SpiDe-Sr enhancement (Details are provided in the Methods section). 

Page 23, lines 758: For testing or validation, bicubic interpolation was used to align the image 

sizes when the SpiDe-Sr was not required. 

 

Many details of methods and procedures are missing. For instance, what parameters were used for 

Cellpose. Did the authors attempt to train a model for Cellpose (which is obviously possible and 

should be done). This would be a more accurate comparison. 

We truly appreciate the reviewer’s inquiry and comments. We apologize for the unclear details of 

methods and procedures in the original manuscript. We used Cellpose V1.0 (Nat Methods 2021, 

18, 100-106), which cannot be retrained on the existing model to get specific parameters.  

 

In the SpiDe-Sr performance validation phase, we used Cellpose for cell segmentation of confocal 



and IMC images. The confocal images were input into the Cellpose program and run with default 

parameters (in Table 3) to obtain preliminary cell segmentation results. The two parameters, 

namely cell diameter (pixels) and model zoo, were then adjusted. The calibrated cell diameter was 

a numerical value that could be manually adjusted. The model zoo was set to cytoplasm pattern 

(cyto). As for IMC images, in order to avoid artificial bias, we did not manually correct these 

parameters again.  

 

In addition, in the stage of breast cancer microenvironment analysis, we first used the default 

parameters for cell segmentation of breast cancer images. The model zoo was set to cytoplasm 

pattern (cyto). And then we adjusted the value of approximate cell diameter one by one in the user 

interface to make the segmentation as accurate as possible.  

 

According to the reviewer’s inquiry, we have added the setting of the Cellpose parameter to the 

manuscript:  

Page 25, line 857: Step 4 The regions of individual cells in all images were segmented at the pixel 

level using cytoplasm pattern with adaptive calibration diameter in Cellpose to generate masks. 

Other default parameters were shown in Supplementary Table 10. The mask for single-cell 

segmentation in each ROI was manually adjusted and selected. 

Page 27, line 918: Cell extraction was regarded as an instance segmentation problem, accuracy 

and object-level metrics (IoU and 𝐹1) were adopted to evaluate the segmentation performance of 

Cellpose before and after enhancement. Further details were in Supplementary Note 7 and Table 

10. 

 

Also, we have added the details of the parameter tuning to the supplementary information. 

Page 13, line 329: Specifically, in the SpiDe-Sr performance validation phase, we used Cellpose 

for cell segmentation of confocal and IMC images. The confocal images were input into the 

Cellpose program and run with default parameters (in Supplementary Table 10) to obtain 

preliminary cell segmentation results. The two parameters, namely cell diameter (pixels) and 

model zoo, were then adjusted. The calibrated cell diameter was a numerical value that could be 

manually adjusted for specific conditions. The model zoo was set to cytoplasm pattern (cyto). As 

for IMC images, in order to avoid artificial bias as much as possible, we did not manually correct 

these 2 parameters again. In the stage of breast cancer microenvironment analysis, we first used 

the default parameters for cell segmentation of breast cancer images. The model zoo was set to 

cytoplasm pattern (cyto). And then we readjusted the value of approximate cell diameter one by 

one in the user interface to make the segmentation as accurate as possible.  

 

In addition to this, we have tried the trainable segmentation method CellProfiler (Nat Methods, 

2012, 9(7), 714-716), which could be retrained to characteristically calibrate the parameters. The 

cell segmentation results of CellProfiler were not superior to those of Cellpose with default 

parameters. As shown in Figure 7, round nuclei could also be well segmented by CellProfiler, but 

for shuttle-shaped nuclei, the segmentation result of CellProfiler was not better than Cellpose.  

 



 

Figure 7 The segmentation results of Cellpose and CellProfiler.  

 

Why Field of View 1 is chosen in Figure 1 1f and View 2 chosen for fig 1g even though View 1 is 

larger than View 2? 

We appreciate the inquiry. Fig. 1g was intended to allow the readers to visualize the results of cell 

segmentation, so field of View 1 was set as large as possible when the cell boundaries can be 

clearly seen. Fig. 1f was to allow the readers to visualize that SpeDe-Sr was able to remove noise 

better and enhance the details more reasonably. Focusing on a smaller field of view was more 

likely to make out the magnified details. If the field of view was as large as View 1, the readers 

would not be able to see the details of each cell as well as in View 2. 

 

The authors stated that “All methods except SpiDe-Sr treated the CD8 (red pixel points) that was 

artificially judged as not being expressed in View 2 as effective information”. What is meant by 

artificially judged here? 

We appreciate the inquiry. There were no cells in the black part of the View 2 and thus there 

shouldn't be any protein expressed on this part. However, we can see that there were red pixels in 

the black area in Fig. 1f, and we determined that these red pixels were background noise. Some of 

red aggregated areas were the cells that expressed CD8. So the expertise researcher judged that 

CD8 was not expressed in the region of View 2. 

 

We are very grateful to the reviewers for the inquiry and we have revised the wording in the 

manuscript. 

Page 5, line 149: All methods, except SpiDe-Sr, accidentally treated CD8 (red pixel points) that 

should not be expressed in View 2 as effective information.  

 

The authors should visualize the learnt mappings by the networks for interpretability and 

explanation of the results. 

We truly appreciate the reviewer’s comment and suggestion. In fact, we had tried to visualize the 

middle layer features of the model, but this did not lead to a better understanding of the model by 



the reader. The denoising module had 20 layers and 48 features were incorporated into the training. 

Four features output from the each of 9 middle layers were shown in Figure 8. It can be seen that 

the cellular features were effectively captured and maintained as the convolutional network 

deepens. For the SR module, which was a complex model combining 3 networks, the complex 

network structure made it very difficult to output meaningful variations of features layer by layer.  

 

Figure 8 Four features output from each of the 9 middle layers of denoising module. 

 

We put the output of the denoising module after different training times in Supplementary Fig. 1d, 

and we could see that the noise of the output image was gradually reduced. In Supplementary Fig. 

2d, we put the outputs of the SR model after adjusting the blur kernel in each iteration, and we 

could see that the output was more and more clear. The end-to-end output with different number of 

blur kernel corrections may be more conducive to understanding the SR model.  

 

According to the reviewer’s inquiry, we have revised the Figure 8 to the Supplementary 

Information as Supplementary Fig. 11 at Page 34, line 547. 



 

Line #207, raw images were downsampled to 1/4th of original size. Why was this ratio chosen? 

Were other ratios tried by the authors? Preliminary results on the same can be included. 

Thanks for the detailed questions. The reason for down-sampling the raw images to 1/4th of its 

original size was that our super-resolution module enlarges the images by a factor of four. In 

current super-resolution research, images were generally enlarged by a factor of 2, 4, or 8. For 

natural images, it was difficult to ensure that the image details were reasonable when enlarged 8 

times using the model trained on real high-resolution images. For IMC images that required higher 

reasonableness and did not have real high-resolution images, it was difficult to get good results 

with the 8x magnification. In fact, we tried to train the super-resolution model by down-sampling 

the raw images to 1/8th of the original size, but the test results were not as desired. We then tried 

enlarging the images by a factor of 4 and were able to get results with reasonable details. As 

shown in Figure 9, we can see less artifacts and clearer cells in the 4x images compared to the 8x 

image. 

 

In addition to this, in the real experiments, the size of the IMC image after 4x enlargement was 

similar to the size of the confocal image with the common magnification (20x, 0.4NA, resolution: 

830nm). 



 

Figure 9. Image enlargement of 8x (a)/ 4x (b). 

 

There is no discussion on the statistical significance of the improved results. 

Thanks for the comment. We have added the discussion of statistical significance to the 

manuscript.  

Page5, line 146: The improvement of the PSNR and SSIM of the images, and cell extraction 

accuracy were statistically significant (paired-samples t-test, P< 0.001). 

Page7, line 206: In e-h, asterisks indicated statistical significancy by paired-samples t-test, **P< 

0.01, ***P< 0.001. 



Page10, line 301: In e-h, asterisks indicated statistical significancy by paired-samples t-test, 

***P< 0.001. 

Page13, line 396: In e- h, asterisks indicated statistical significancy by paired-samples t-test, *P< 

0.05, **P< 0.01, ***P< 0.001 

Page16, line 497: Red and blue asterisks respectively represent the statistical significance of 

proteins positively and negatively associated with LPS/ LTA versus LPS/ LTA (t-test, **P< 0.01, 

***P< 0.001).  

Page28, line 966: The asterisk in the violin plots indicated the statistically significant difference 

between the two arrays as determined by two sided paired-samples t-test analysis. The t-tests were 

done in IBM SPSS Statistics 25 following standard procedure. 

Page28, line 971: In Fig. 5k, Pearson correlation coefficients greater than 0.75 were marked with 

two asterisks and greater than 0.5 were marked with one asterisk. The number of replicates in each 

experiment was labeled in the figure legends. 

 

Besides technical ambiguities, I have concerns about the biological data presented in the 

manuscript. For example, would authors explain why leukocyte marker CD45 can be detected in 

MCF7 breast cancer cells? 

We appreciate the reviewer for the detailed comment. To address your question, we have checked 

the official website of ABcam for the antibodies we used (ab40763), and their positive control 

experiments included the MCF-7 cell line. The link to the website is 

https://www.abcam.com/products/primary-antibodies/cd45-antibody-ep322y-ab40763.html. 

 

The full name of the protein corresponding to CD45 is Protein tyrosine phosphatase receptor type 

C (PTPRC). We looked up PTPRC on the Protein Atlas website and found that it was indeed 

expressed in the MCF-7 cell line. The result was shown in Figure 10. The link to the lookup is 

https://www.proteinatlas.org/ENSG00000081237-PTPRC/cell+line. It is an official website of the 

Protein Atlas program. In fact, according to the results found on the website, CD45 is expressed in 

a variety of breast cancer cell lines, such as CAL-51 and HDQ-P1. In addition, CD45 is also 

expressed in other tumor cell lines, such as brain cancer cell lines (DK-MG, SW1783), colorectal 

cancer cell lines (COLO320, COLO320DM).  

 

Figure 10 Breast cancer cell lines expressing CD45. 

 

Partial information of CD45 in the human protein atlas is shown in Figure 11. 

https://www.abcam.com/products/primary-antibodies/cd45-antibody-ep322y-ab40763.html
https://www.proteinatlas.org/ENSG00000081237-PTPRC/cell+line


 

Figure 11 The information of CD45 in the human protein atlas. 

 

According to Figure 11, PTPRC (CD45) is a cancer-related gene, and is not only enriched in 

leukemia, but also in lymphoma. PTPRC is part of the Lymphoma-Humoral immune response 

cluster. It is probably because CD45 is a cancer-related gene and is expressed in a variety of tumor 

tissues so that it can be detected in MCF-7. 

 

In addition, we also repeated the same experiment as in the manuscript again. The raw IMC and 

confocal images were shown in Figure 12. The results of our experiment confirmed that CD45 

was expressed in MCF-7.  

 



Figure 12 a, Immunofluorescence images of CD45 in MCF-7. b, IMC image of MCF-7 labeled 

CD45. Green (nucleus)/ Red (CD 45). 

 

In addition, we also did Westen Blot for CD45 on MCF-7, the result was shown in Figure 13. The 

Westen Blot result also indicated that CD45 was expressed in MCF7. The raw images of Westen 

Blot were uploaded as an additional supplementary file.  

 

 

Figure 13. Westen Blot for CD45 on MCF-7.  

 

And we sent the MCF-7 cell line from our laboratory to a biotechnology company for STR (Short 

Tandem Repeat) cell line identification. The identification report showed that our cell line was 

indeed MCF-7 cell line. The STR identification report was uploaded as an additional 

supplementary file.  

 

Immune cells and epithelial cells are morphologically very different. Could the authors, use two 

cell types with more similar morphology as the basis of their experiments. Lets say CD8 vs 

CD19? 

We appreciate the reviewer for the comment. Our understanding of this comment is that we need 

to experiment again with other cell lines that have similar morphology to MCF-7. In addition to 

this, the effect of the model on images with both CD8 and CD19 proteins needs to be seen. 

Accordingly, we did the dual-labeling experiment again by using the LINCAP cells that were most 

morphologically similar to MCF-7 among the cell lines available in our lab. The results were 

shown Figure 14. We can see that the noise caused by the nonspecific adsorption of the antibody 

was removed after SpiDe-Sr, and the nuclei and borders of the cells were clearer. The yellow 

arrows pointed to the noise created by nonspecific adsorption rather than cells. In the raw image, 

the noise was detected as cell, and there were more missing cells in the yellow box. 

 



 

Figure 14 The fluorescent/ metal-dual labeling experiment with LNCAP cells. The right side 

images were the cell segmentation results of the left side images.  

 

We labeled CD8 and CD19 on the same sample, and the images before and after SpiDe-Sr were 

shown in Figure 15. We can see that the background noise and the noise caused by the nonspecific 

adsorption of the antibodies were removed, and the boundaries and the nuclei of cells were clearer 

after SpiDe-Sr. 



 
Figure 15. IMC images before and after SpiDe-Sr on the same breast cancer sample labeled with 

CD8 and CD19. 

 

Overall, we would like to express our gratitude again to both reviewers for their time in reading 

and facilitating our manuscript. We sincerely appreciate the insightful comments and suggestions. 

We hope our additional experimental data and elaborations may adequately address the reviewer’s 

questions and inquiries. 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

I carefully read the comments of other reviewers, the revised paper, and the author's responses. 

In fact, I didn't raise too many questions. I just hope that the author can further clarify and 

explain some issues. The author adds some supplementary explanations. From my perspective, I 

think technically this article holds up. The author gives some work to demonstrate the significance 

of this task. Given that there is already so much relevant literature, it seems that this task makes 

sense. I'm still not quite sure though. 

Reviewer #2: 

Remarks to the Author: 

The authors adequately responded to all the reviewer comments. I would recommend the 

manuscript for publication. At the same time, I would suggest an extensive editorial revision of the 

writing. 
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