[carust Supplementary Materials

1 Supplementary figures

Guppy Basecaller

(Chunk base-callingd

Iearust

"The device’
0 Rust CLI code
rf;o\oll 2na 'l?asi—;: ec " to start up server Threads toi
Signen eod fragments Produce signal from each
chunks

channel at correct rate,
ready to be sent off over

Commands, requests for

Tonic

RPC vired;
7 data Implements rust RPC server, ZI‘t wf‘ f‘ctl resi
just like MinkNOWs, bare- e out reacls when
Readfish ll-mes IS g 4000 reads are ready
readfish [Frest

/) RPC r b
tronsfers singJ
chunks,
calbration values,

Generates rust
protobufs to send
data from

ONT proto files

any information
readfish wants about _
the seauencer

\ v

Supplementary Figure 1 — Software architecture of Icarust. The Tonic
crate (https://github.com/hyperium/tonic) provides the GRPC implemen-
tation, Prost (https://github.com/tokio-rs/prost) compiles the protobufs,
and the simulated sequencing device responsible for creating signal data is writ-
ten in pure rust. ReadFish communicates with Icarust using GRPC calls, in
the same structure as ONT’s provded MinKNOW API (https://github.com/
nanoporetech/minknow_api).

https://github.com/hyperium/tonic
https://github.com/tokio-rs/prost
https://github.com/nanoporetech/minknow_api
https://github.com/nanoporetech/minknow_api

* The get live reads endpoint

slices correct amount of read
based on time stamps using

o separate asyne call before

se,r'v]n?

* Starting Icarust parses c.cnPig

Unblock threads

* Tterate all received actions
n o loop

* Access shared vee and Mark
o choannel as "was unblocked”
or "stotn re,qe,iv?ns."

P‘\[e,s then starts all the
threods

Tonic (Rust GRPC server)

Data 3e,ne,m‘tion thread

Manager
Pol"‘t 10000
Shared Vee
I
Position /" S;"Dxl
port 10001

Vec of read 513nm| is
locked in an ARC Mutex
and shared

between threads

A\,

1. Comnects to Icarust manager server
ot this point Icarust is just generating
dota nor‘ma”y

2. Gets position nfo (port) i retum

3. Comnects to Icarust position server
d, Starts ?et‘tinf! live_ l‘e_o.ols, processing
and sending unblocks

START HERE

* Represents each chonnel

as o Posi‘tlon n o Vec

* Read in Pf‘e&e,nemteo! Ra Sc{uifﬁ.le or
5’e_ngrm‘te_ R10

¢ starts 400ms (Default) Loo

* If o channeg| was marked unL.Ex_kecl or has
been "se,que_nc‘m?" for as [onﬁ. as

@cpe_c‘te_rl, rano!omllf selects new read s‘uj«nal
Por each clnanngl c_hmnngf

Sends copy

of any comple,tea!/unuocke_ol
reao' us'mi, clnmne_' C moux [:uppe_r
6000 reads)

Doto writeout thread

* Loops, P"‘”""? down comple_‘te;}.
read info

* When it has 4000, creates and
writes inte FASTS or Pods.

FINISH HERE

Supplementary Figure 2 - Data flow throughout Icarust. When Icarust
launches, it listens for ReadFish connections on port 10000, on a “manager”
GRPC server. It also serves a GRPC server ”position“ on port 10001, which
it can serve live data from to readfish. There are three threads, an unblock
thread, a data generation thread and a data write out thread. The unblock
thread handles any actions that ReadFish has sent via the RPC, either unblock,
or stop receiving. The thread labels each channel with the action it has received
in the shared vec, which represent all channels. The data generation thread is
in charge of selecting signal for each channel, and replacing reads when they
would have either been unblocked or trans-located the pore. The data write out
thread constantly receives finished reads from the data generation thread over a
memory channel, and when it has received 4000, writes them out into a FAST5
or POD5 file. The GRPC server is in a separate asynchronous run time, and
access the shared vec of channels to serve signal at the correct rate (roughly
4000 samples a second). This rate is controlled as well by the break_read_chunks
parameter, serving data at most every break_read_chunks ms for a given channel.

Median read length

20 k:
® 15k
‘©
[=8
[
@ 10k
o
5k
0
Other barcode01 barcode02 barcode03
Yield
200M
175M
150 M
L 125M .
g Condition
@ 100M B Adaptive
©
@ 75M . Control
50 M
25M
0
Other barcode01 barcode02 barcode03
Yield ratio
1
800m
]
=)
S 600m
<
o
k=]
I.E 400 m
200m
0
Other barcode01 barcode02 barcode03
Barcode

Supplementary Figure 3 - Barcode R10 selection. The control and adap-
tive experiments were run for an hour each using the same TOML simulation
profile in Icarust. Control represents no adaptive sampling applied. Adaptive
sampling is configure to reject any read except Barcode03. The upper panel
shows median read lengths for each barcode between the two conditions. The
middle panel shows the total yield per barcode for each condition. The lower
panel shows the yield ratio between control and adaptive conditions.

1_0- e, TP L% 0T 00T 070 ,0,"0000000%00000" 000000000 "

0.8 -

0.6

0.4

0.2 o

R9/DNA
Simulated read blast Identitiy

0.0 1 1 1 1 1 1

1.0

0.6 -

R10/DNA
Simulated read blast Identitiy

0.2 +

0.0 1 1 1 1 1 1

1.0

0.6

0.2

RANO2
Simulated read blast Identitiy

0.0 = T T T T T
0 500 1000 1500 2000 2500

Original read length

Supplementary Figure 4 — Barcode R10 selection. Alignment Identities
of Reads of increasing length for the labelled model types.

2 Supplementary methods

2.1 Chromosome 20 and 21 selection.

Experiments were run for one hour each with and without readfish adaptive
sampling enabled. The readfish targets TOML was identical for each run. Ex-
periments were repeated across MinKNOW playback, Icarust R9 and R10 sim-
ulation. All basecalling was run using HAC models for the appropriate chem-
istry. The version of readfish code used can be found at https://github.com/
LooseLab/readfish/commit/fb01ea308ddeleeec0a859d3655c15192eacfbea.
The Icarust docker container used was digest a2bd0973c6a2. All simulation and
readfish TOMLs are provided in the Supplementary data repository, https:
//github.com/Looselab/Icarust_supplementary_data.

2.1.1 MinKNow Playback

MinKNOW playback used a Promethion BETA 48 tower, as described in the
ReadFish README.md (https://github.com/LooselLab/readfish#testing).

2.1.2 R9 Icarust simulation

To generate R9 squiggle, hg38 reference seqeunce (RefSeq assembly accession:
GCF_000001405.40) was filtered to include the 25 complete chromosomes remov-
ing alternative assemblies. Filtering used seqkits’ (https://bioinf.shenwei.
me/seqkit) grep command. R9 squiggle was then created using icarust as de-
scribe in the github README.md.

2.1.3 R10 Icarust simulation

To simulate R10 squiggle, we used the same hg38 reference but with the R10
pore model.

2.2 Barcode selection

A simple barcoded experiment was simulated serving R10 squiggle. The control
(no adaptive sampling) and adaptive (adaptive sampling) conditions were run
for an hour each. The experiment was setup to serve barcodes 01, 02 and
03 with equal probability. In the adaptive condition, any read which was not
demultiplexed to barcode03 was rejected, as shown in Supplementary fig. 4.
The reference served contained two bacterial sequences, Bacillus anthracis str.
Ames and Pseudomonas aeruginosa PA01. This reference file can be found in
the supplementary data repository, under experimental files.

https://github.com/LooseLab/readfish/commit/fb01ea308dde1eeec0a859d3655c15192eacf6ea
https://github.com/LooseLab/readfish/commit/fb01ea308dde1eeec0a859d3655c15192eacf6ea
https://github.com/LooseLab/Icarust_supplementary_data
https://github.com/LooseLab/Icarust_supplementary_data
https://github.com/LooseLab/readfish#testing
https://bioinf.shenwei.me/seqkit
https://bioinf.shenwei.me/seqkit

	Supplementary figures
	Supplementary methods
	Chromosome 20 and 21 selection.
	MinKNow Playback
	R9 Icarust simulation
	R10 Icarust simulation

	Barcode selection

