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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): Expert in IPMN pathology and genomics 

 

The authors investigated spatial transcriptomics (ST) in IPMNs of various subtypes focusing on their 

progression from low‐grade dysplasia (LGD), high‐grade dysplasia (HGD), and invasion. They found novel 

subtype specific markers: HOXB3 and ZNF11 in LGD, SPDEF in borderline, and NKX6‐2 in HGD. They 

emphasized a role in IPMN malignant progression of THFalpha signaling via NFKb and Myc activation. 

This study is novel and seems to be highly significant because it provided detailed information of ST in 

IPMN with finding of several potential key molecules likely to play a role in malignancy progression of the 

neoplasm. Following concerns should be addressed. 

1. It is very curious that whether the key molecules could be validated in protein level. 

Immunohistochemistry could give information of the actual protein expression with evaluation of spatial 

associations. 

2. Genotypes could be associated with transcriptome data. Associations between spatial transcriptomics 

and genotypes, e.g., mutations in KRAS, GNAS, TP53, and RNF43, and amplification of MYC, could be 

analyzed. 

 

 

 

 

Reviewer #2 (Remarks to the Author): Expert in spatial transcriptomics and computational cancer 

genomics 

 

The study is designed in understanding the gene expression profiles of IPMN and the essential 

transcriptional networks associated with the progression to PDAC. The authors used two technologies to 

analyze two independent cohorts of IPMN samples and identified a few markers associated with 

different grades of dysplasia. The identification and validation of critical signaling pathways and 

transcription factors that may be responsible for the malignant transformation of cystic pancreatic 

lesions have the potential for developing clinical prognostic markers for the improved risk stratification 

and personalized management of IPMN patients. The motivation of this manuscript is clear, but the 

corresponding ST data was not provided and the simple biological analysis in the Results section is 

inefficient to demonstrate the marker discovery. However, 

 

1. The study is limited by the lack of functional experiments that would validate the roles of the 

identified transcription factors and oncogenic pathways in the progression of IPMN. The authors should 

consider addressing this limitation in future studies. 



 

2. The authors should provide the ST data and add more convincible biological analysis. 

 

3. Furthermore, the authors should provide more discussion on the potential clinical implications of their 

findings. Specifically, they should address how these markers could be used in practice to improve 

patient outcomes and further validation studies are needed. 

 

4. Although there are new findings in the work, additional experimental validation is necessary to 

support the findings. 

 

5. Except for very rough spatial trajectories, relevant biological validations have been performed using 

single‐cell or bulk analysis processes, and no cases have required SRT data to complete validation. In fact, 

from the perspective of the marker genes discovery, single cell or bulk data can also complete the work 

in this manuscript, so why use SRT data. 

 

6. Marker genes discovery requires comparison of SRT expression from different grade lesions, which 

involves comparability of expression data due to the batch effect of SRT data. The author should explain 

in detail how to eliminate the batch of SRT data to make gene expression comparable. Note that, 

Harmony method adopted in this paper can only compress SRT data from different sources for cluster 

analysis, which cannot guarantee the comparability of each gene expression data. Therefore, it is not 

convincible by the way of identifying marker genes in this paper. 

 

7. GSVA analysis is rough, and relevant results need to be further validated in space, and further 

explained in terms of biological processes or cell type functions. In addition, it is necessary to discuss 

whether these finding can be observed in most of the sample data. The marker selected in this paper is 

mainly TF, and the author should provide discussion on relevant TF regulation network or mechanism. 

 

8. Spatial trajectory inference can also be affected by data batch. In addition, the analysis of spatial 

trajectory inference is too rough, and relevant details need to be further provided. For example, pseudo‐

time and their display in situ, the related genes on the pseudo‐time heat map display and so on. 

 

9. The authors are unable to provide experimental verification of marker genes, whether to provide 

predictive analysis of these marker genes in clinical diagnosis. For example, the classification of 

validation ST data or other types of data. 

 

Minor issues: 

1. Does TMA refer to sections made up of tissue samples from different patients? Whether batch effect 

exists in one TMA and whether batch effect exists in different TMA? 

2. In Fig 3B, what are the IPMN Signature? 

3. In Fig 7E, what are the clade_69 and clade_11? 

4. The legend in the text is too brief, the author should enrich the related legend. 

5. There are some formatting or spelling mistakes in the manuscript, which should be checked carefully. 

 

 



 

 

 

Reviewer #3 (Remarks to the Author): Expert in spatial transcriptomics, cancer genomics, and tumour 

microenvironment 

 

In this manuscript, to identify novel biomarkers that could better stratify IPMN risk, Agostini et al. 

performed Visium spatial transcriptomics analysis on 18 core biopsies (4 TMAs) from 14 patients in the 

discovery cohort. They identified differentially expressed genes and pathways in LGD and HGD IPMN and 

further carried out GeoMx spatial transcriptomics analysis of 57 IMPN samples from an independent 

cohort to validate these findings. While this study may present a valuable resource for the community, 

this study is overall descriptive and the analysis of Visium data lacks depth, the 

significant analytical and conceptual limitations diminish its value and my enthusiasm for it. 

 

Major comments: 

 

1. In the current version of the Methods section, there's no detailed description of how the batch effects 

were assessed, how significant they were, and the method(s) applied for batch correction. There's also 

no evaluation of the performance of their batch correction method. it is known that Harmony is a 

method that normalizes embedding, but not data matrices. 

 

2. How did the unbiased approaches for the ST analysis correlate with the annotation of tissue regions by 

pathologists? How were correlations with histological features assessed (quantified)? By eyeballing Fig. 

2B and Fig. 1a, it appears TMA3 and TMA4 showed a lower correlation with pathology annotation. Fig. 

2B is for visualization purposes and had to eyeball the correlation. Visualization alone isn't sufficient; i 

would suggest the authors show spot‐level correlation. 

 

3. The study identified 23 spatial clusters. On what basis was the resolution (the optimal number) of 

their clustering analysis determined? How can they ensure that the tissues weren't overclustered or 

underclustered? 

 

4. In Fig. 2A, it's challenging to read the colors. It seems like the HGD intestinal IPMN formed a separate 

cluster, and HGD IPMN intermixed with ductal tissue. 

 

5. Using the main molecular classification of PDAC (i.e., Moffit activated or normal stroma), how does 

the Moffit activated signature inform the cell population of these clusters? The Moffit activated 

signature does not seem to be robust in distinguishing HGD and LGD; for multiple cores, the signature 

was all over the place. Does the Moffit classical correlate with the PDAC classical lineage state? How 

about the basal state? Visualization isn't sufficient; please show spot‐level correlation. 

 

6. What are the differences between the Moffit classical, Collisson classical, and Bailey pancreatic 

progenitor signatures? How many genes are overlapped among these signatures? 

 

7. On page 8, the authors stated, “Interestingly, even the low‐grade IPMN showed high expression of 



these signatures, highlighting the presence of classical‐like signatures, even in the more indolent IPMN.” 

I question this as, for all three cases with low‐grade IPMN, these signatures weren't only expressed by 

low‐grade IPMN but also by other tissues. Could there be another possibility? For example, some genes 

of these signatures are not specific and could also be expressed by immune/stromal cells. Have the 

authors ruled out such a possibility? Additional validation data would be needed to support this 

statement. 

 

8. In Fig. 3A, what criteria were used to select these genes? How many transcription factors were these 

six genes selected from, and how were they identified? Why do the authors find them “interesting”? 

Please provide more details. 

 

9. Both SPDEF and NR4A1 were high in Borderline IPMN, but their expression decreased in HGD IPMN 

samples. How can their negative correlation with survival be explained? 

 

10. HGD Gastric IPMN markers PSCA, SDC4, and VISIG1 showed significant variation across the histology 

subtypes and had the highest expression levels in gastric IPMN. Will this limit their prognostic 

significance? I suggest stratifying the survival analysis in Fig. 3C by histological features. Will these genes 

still be significant for survival after adjusting for histology? 

 

11. How were these signatures in Fig. 3B built, and how do they differ from those in Fig. 2C? 

 

12. In Fig. 4‐5 pathway analysis, can any of these pathways be validated? 

 

13. The analysis of Visium data lacks depth. The immune and stromal cell compartments of IPMN are 

largely overlooked. I would suggest running inferCNV and mapping KRAS mutations using Visium data 

and, if possible, profiling the immune infiltrates and stromal cell activities. 

 

14. Why were 23 out of 57 ROIs excluded from subsequent analysis? Even if they aren't covering IPMN, 

they could be close to IPMN and those ROIs. Could they still be used to study the immune and stromal 

cells of IPMN? 

 

15. Regarding the statement: “HOXB3 and ZNF117 were associated with LGD”. In Fig. 6B, HOXB3 was not 

included. ZNF117 was included but was also highly expressed in HGD. I would suggest adding normal 

tissue as a control, validating HOXB3, and conducting further experiments to support the “association”. 

 

16. Functional validation is needed to support statements such as, “This infers that ZNF117 may be a key 

transcription factor in the early stages of IPMN,” and, “suggesting that NKX6‐2 may be a major trigger of 

gastric‐type differentiation in IPMN.” The same goes for the statements about the pathway analysis. 

There are many overstatements in the manuscript. 

 

17. In Fig. 7A, how do these 12 clusters correlate with the clusters in Fig. 2? Why were these stromal cell‐

enriched clusters distinctly clustered? Could this be biologically relevant or influenced by batch effects? 

Can the authors interpret the results?" 

 



 

Minor comments: 

 

1. What was the median number of genes per spot? This information isn't provided in the manuscript or 

Methods. Also, what percentage of spots passed QC per core? 

 

2. For GeoMx, in addition to panCK and CD45, any additional (the 3rd) morphology marker was used? 

 

3. "Five of these clusters precisely defined the different grades of IPMN: the low‐grade IPMNN (LGD and 

Borderline), and the high‐grade IPMNS (HGD Gastric, HGD Intestinal, and HGD Pancreatobiliary) (Fig. 

2B)." Which five clusters were these? 

 

4. Is panCK able to label all IPMN cells? How sensitive and specific is it for GeoMx analysis? 

 

5. In Fig. 6A, please add a color key. In Fig. 6B, please add p‐values. 

 

6. The authors said, “Moreover, we again observed the association between SPDEF and NR4A1 

expression with Borderline IPMN.” I didn't find the gene “NR4A1” in Fig. 6B. 

 

 



 
Point-by-point response NCOMMS-23-14460-T 

We would like to thank the reviewers for their informative critique. We are 
confident that we have addressed the issues raised and feel that this has 
further improved the quality of the manuscript. 

A copy of the manuscript, where the changes are highlighted in yellow and as 
grey-crossed out (eliminated text) has been uploaded as Additional File for 
Review but NOT for Publication. 

Reviewers will find below the point-by-point response, which include several 
figures which have been produced exclusively for the purpose of the review and 
therefore not included in the revised version of the manuscript. 

For the new data that are instead included in the revised version of the 
manuscript, please see the reference to the figure number in the response to 
reviewers' comments. 

 
 
Reviewer #1 (Remarks to the Author): Expert in IPMN pathology and genomics 
 
The authors investigated spatial transcriptomics (ST) in IPMNs of various 
subtypes focusing on their progression from low-grade dysplasia (LGD), 
high-grade dysplasia (HGD), and invasion. They found novel subtype 
specific markers: HOXB3 and ZNF11 in LGD, SPDEF in borderline, and 
NKX6-2 in HGD. They emphasized a role in IPMN malignant progression 
of THFalpha signaling via NFKb and Myc activation. This study is novel 
and seems to be highly significant because it provided detailed 
information of ST in IPMN with finding of several potential key molecules 
likely to play a role in malignancy progression of the neoplasm. 
Following concerns should be addressed. 
 
 
1) It is very curious that whether the key molecules could be validated in 
protein level. Immunohistochemistry could give information of the actual 
protein expression with evaluation of spatial associations. 
 
R. We fully agree with your suggestion. The protein level of the key molecules 
were tested and validated by Opal Multiplex Immunofluorescence on IPMN 
Tissue Sections. A new picture, confirming the ST data, was added in panel of 
figure 8.  
 
2) Genotypes could be associated with transcriptome data. Associations 
between spatial transcriptomics and genotypes, e.g., mutations in KRAS, 
GNAS, TP53, and RNF43, and amplification of MYC, could be analyzed. 
 
R. This is a great point. We analyzed more than 500 hotspots for somatic 
mutations by targeted sequencing (Trusight Oncology 500, TSO500) on IPMN 



samples. Please, find the genomic data in Supplementary Figure 2. 
Specifically, since the quality of DNA extracted from the FFPE samples was 
not enough to perform WES in all samples, we used TSO500 panel that 
represents clinical routine in our institution for FFPE sample genomic 
screening. Moreover, the panel comprises the relevant IPMN and PDAC 
genes including KRAS, GNAS, TP53, CDKN2A, SMAD4 and RNF43. As 
expected, low-grade IPMN had RNF43 mutations which are typically 
associated with this early lesion; high-grade IPMN and PDAC shared instead 
more advanced and oncogenic mutations such as KRAS, TP53, CDKN2A, and 
SMAD4. MYC amplification was not detected in all of the analyzed samples 
and this could be due to the known limitations of targeted sequencing analysis. 
We added more details in the results section. 
Thank you again for this on point comment, we firmly believe that helped us to 
improve our results. 

 

Reviewer #2 (Remarks to the Author): Expert in spatial transcriptomics and 
computational cancer genomics 
 
The study is designed in understanding the gene expression profiles of 
IPMN and the essential transcriptional networks associated with the 
progression to PDAC. The authors used two technologies to analyze two 
independent cohorts of IPMN samples and identified a few markers 
associated with different grades of dysplasia. The identification and 
validation of critical signaling pathways and transcription factors that 
may be responsible for the malignant transformation of cystic pancreatic 
lesions have the potential for developing clinical prognostic markers for 
the improved risk stratification and personalized management of IPMN 
patients. The motivation of this manuscript is clear, but the 
corresponding ST data was not provided and the simple biological 
analysis in the Results section is inefficient to demonstrate the marker 
discovery. However, 
 
1. The study is limited by the lack of functional experiments that would 
validate the roles of the identified transcription factors and oncogenic 
pathways in the progression of IPMN. The authors should consider 
addressing this limitation in future studies. 

R. We recognize that a part of functional validation is missing. Further studies 
are planned to establish the specific role of IPMN markers, associated with 
different histology, in tumor evolution and progression. In particular, our plan is 
to validate the molecules identified in this study in a relevant model of IPMN. 
For this reason we are currently developing an array of organoid cultures 
derived from human IPMNs associated with pancreatic cancer (malignant 
IPMNs). We planned to knock-out the candidates herein identified and assess 
the consequences of the perturbation on the malignant behaviour of these 
cultures. Noteworthy, while our manuscript was under review, Sans and 
colleagues validated the transcription factor NKX6-2, which we link here to the 



gastric histotype, as a key factor in maintaining the gastric IPMN in the 
pancreas. This is an important point that further confirms our data. 

 
2. The authors should provide the ST data and add more convincible 
biological analysis. 

R. To address reviewer's concern, we now provide to the GEO numbers of ST 
sata (GSE229752; GSE229877) and new TriuSight genomic data 
(PRJNA1013719). Moreover, we have used orthogonal approaches to validate 
the ST analysis (multiplex IF, Figure 8) as well as performed an integrative 
analysis of genotype to phenotype (Supplementary Figure 2). 

3.  Furthermore, the authors should provide more discussion on the 
potential clinical implications of their findings. Specifically, they should 
address how these markers could be used in practice to improve patient 
outcomes and further validation studies are needed. 

R. Based on reviewer's suggestion, we have revised the discussion with the 
potential clinical implications of our findings.  
To date, IPMN management approach must strike a balance between 
over-utilization of surgery and timely recognition and treatment of patients with 
high-risk lesions.  
Thus, despite the numerous efforts we still lack biomarkers that would reliably 
allow distinguishing between IPMN that are destined to progress vs those that 
remain indolent diseases. The validation of the putative biomarkers can only 
be done within prospective clinical trials. The identification of such biomarkers 
and their clinical validation were beyond the scope of our manuscript, which 
has been designed to provide an initial overview of the gene regulatory 
network and gene expression programs underlying the different IPMN 
histotypes. We anticipate that our work will spur further investigation on the 
functional and clinical meaning of those expression programs, e.g. whether 
they could assist pathologist in determining the fate of IPMNs that have not yet 
acquired specific features like borderline IPMNs. 
 
 
4. Although there are new findings in the work, additional experimental 
validation is necessary to support the findings. 

R. See also response to comment to reviewers 1 and 3. As suggested, we 
validated the ST data by Opal Multiplex Immunofluorescence on IPMN tissue 
sections (Figure 8). As reported here for the first time, HOXB3 is confirmed to 
be a marker of LGD IPMN, while the expression of NKX6-2 seems to 
specifically drive dysplasia increasement of gastric-type IPMN, as described in 
the meantime of this revision by Sans and colleagues (Cancer Discovery 
2023). The protein expression validation by Opal Multiplex 
Immunofluorescence on IPMN tissue sections confirmed the ST data, thus, 
although we recognize that further validation study are needed, such as a 
large randomized clinical trial, we propose that the combined use of 3 binary 
markers could predict the IPMN type also in the early stages of IPMN 



progression. Below is a simple diagram capable of identifying the IPMN types 
(Supplementary Table S2). 
 

 

 
5. Except for very rough spatial trajectories, relevant biological 
validations have been performed using single-cell or bulk analysis 
processes, and no cases have required SRT data to complete validation. 
In fact, from the perspective of the marker genes discovery, single cell or 
bulk data can also complete the work in this manuscript, so why use SRT 
data. 

R. There are several reasons why SRT data have been used for this study. 
The main reason is that IPMNs are rarely surgically removed especially in the 
case of low-grade lesions. Most of these lesions have small dimensions (< 
5cm) and have to be carefully evaluated by pathologists to assess histology, 
invasion, and the possible concurrence of PDAC; so, it is uncommon to avail of 
fresh or frozen material to perform scRNA-seq. Additionally, FFPE is preferred 
material to link morphology/histology to molecular phenotypes as histological 
assessment from fresh-frozen tissue is not necessarily optimal. As we are 
dealing with different histological types, we deemed the choice of ST as the 
best experimental approach fitting for the purpose.  

At the same time, ST enabled us to easily recover information on all cell types 
within the lesion while dissociation protocol for sc-RNA-seq might have lead to 
down-representation of certain cell types as frequently observed for PDAC. 

In this study we included the high-grade dysplasia IPMN lesions (associated 
with, and from which could arise, pancreatic cancer), and the low-grade 
dysplasia IPMNs that have never led to pancreatic cancer. While for the 
high-grade dysplasia the tissue collection is active, the low grade-dysplasia 
are monitored over time and surgically removed only when they already show 
aspects of clear malignancy thus limiting the material for the study on early 
steps of transformation. To increase the number of low-grade dysplasia IPMNs, 
we included in the analysis the low-grade dysplasia IPMNs FFPE samples 
collected more than 10 years ago (this also allows us to speculate on the 
actual malignant potential of those lesions and to exclude a malignant 
development due to the patient's genetic background). For this reason, we 
opted for an analysis (almost a single cell) on paraffin-embedded tissues. 

	 	 	 	 	 	
		 LGD	 BR	

HGD	
GASTRIC	

HGD	
INTESTINAL	

HGD	
PANCREATOBILIARY	

HOXB3	 1	 1	 0	 0	 0	
SPDEF	 0	 1	 0	 1	 0	

NKX6-2	 0	 1	 1	 0	 0	

	 	 	 	 	 	
	

EXPRESSION	

	
EXPRESSION	LEVELS	

	
1	 YES	

	
		 LOW	

	
0	 NO	

	
		 HIGH	

	



Regarding the bulk RNA-seq, we think that this technique do not have enough 
resolution to answer to our specific questions. 

We know by experience and literature that tumors with low cellularity, such as 
pancreatic tumors, or for small and heterogeneous lesions such as IPMNs, 
bulk analysis could be misleading. An example is given precisely by the 
molecular classifications of pancreatic tumors (Collison et al, 2011; Moffitt et al 
2015, Bailey et al 2016, Puleo et al 2018) which have occurred over the years 
leading to an increasingly precise classification of pancreatic tumors. In my 
opinion, these classifications that integrate and refine regularly over time, are 
also an example of technological progress. Cellularity is therefore a critical 
aspect of current classification of these tumors (for example ADEX and 
Immungenic subtypes of the Bailey classification suffer from the presence of 
non-tumor cellular components). To date, the most precise classification is the 
one obtained in bulk, but only after microdissection of the tumor cells, which 
confirms three subtypes linked to intrinsic characteristics of the tumor cells 
(Pure classic, Immune Classic, Pure Basal) and two classifications 
(desmoplastic and Stroma) linked to the non-tumor cellular component (puleo 
et al 2018). For this reason, we decided to use a patient cohort for the 
identification, in which there is an almost single cell sequencing, and a patient 
cohort for the validation in which the ROIs are drawn arbitrarily but only on the 
IPMN's own tissue. 

 
6. Marker genes discovery requires comparison of SRT expression from 
different grade lesions, which involves comparability of expression data 
due to the batch effect of SRT data. The author should explain in detail 
how to eliminate the batch of SRT data to make gene expression 
comparable. Note that, Harmony method adopted in this paper can only 
compress SRT data from different sources for cluster analysis, which 
cannot guarantee the comparability of each gene expression data. 
Therefore, it is not convincible by the way of identifying marker genes in 
this paper. 
 

R. Thank you very much for your thorough review. The batch effect is indeed a 
serious problem that should be addressed carefully in this type of studies, and 
we understand that is the main concern regarding our study. As suggested, we 
improved the manuscript adding the missing information in a new paragraph 
“supplementary material 1”. Below is provided a detailed description of the ST 
analyses. 
 
Visium Analysis 1: Seurat (R)  
 
For most of the analyses, and in particular the discovery of IPMN markers we 
used two R packages: i) ST.Utility and ii) Seurat. We uploaded Visium data 
using ST.Utility wrapper function and after we proceeded with a Seurat 
analysis. We tried to correct the batch effect with the sctransform function 
regressing out the effect of the different capture areas. However as showed in 
images below, these function alone was not enough to remove batch effect 



from the embedding. Another common effect variable such as the percentage 
of mitochondrial genes was not taken in consideration as we used the probe 
based Visium for FFPE that do not detect those genes. We acknowledge that 
we used few details about the first step of correction in the methods description 
and we corrected accordingly. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
We proceeded to remove batch effect using the SCT assay obtained from 
sctransform to perform Harmony integration using the Seurat RunHarmony() 
function. Thanks to the correction of both counts and embedding we managed 
to identify clusters that matched the tissue architecture, see Figure 2. Harmony 
has become the best-practice algorithm for batch effect correction in Visium 
data, in fact it is recommended by VISIUM manufacturer (10X Genomics, 
please see the following resource:  
https://www.10xgenomics.com/resources/analysis-guides/correcting-batch-eff
ects-in-visium-data).  
 
Analysis 2. stLearn  
 
To confirm the clusters that we identified with Seurat and to perform spatial 
trajectory analysis we used the Python packages stLearn (revised Figure 7) 
that takes most of its core functions from the well-known Scanpy module. For 
these analyses we corrected the batch effect using the Scanpy regress_out 
(see figure below) that was inspired and work very similar to scTransfrom; 
trying to conduct two parallel but somehow comparable analyses. This function 
corrected the data matrix that was used for all downstream analysis. After, this 
batch correction we used again Harmony to correct the embeddings and 
obtain clusters in a similar way that was performed before (see figure below)  
 
 
 
 

seurat clusters 



 
 
 
As we also think that batch effect may be a principal flaw in this analyses, we 
tested also other batch effect correction method for python to check the 
reproducibility of the IPMN clusters and we obtained comparable results, 
strengthening in our opinion the quality of the data. See below data obtained 
with ComBat that use integrated empirical Bayes (EB) framework for batch 
effect correction, that is the best Scanpy-based algorithm for such purpose 
(10.1186/s13619-020-00041-9).  
 

 

Pre-batch effect correction  

regress_out batch effect correction 

Harmony batch effect correction 

Pre-batch effect correction  

ComBat batch 
effect correction 

Harmony batch effect correction 



 

Analysis 3. GeoMx 
 
For GeoMx data we performed all the QC, normalization, and batch effect 
correction following all the steps recommended by Nanostring using the 
GeoMxTools package. More details about the analysis can be found in the 
following link (https://github.com/Nanostring-Biostats/ GeomxTools). 
 
Regarding the doubt about the markers identification, it should be stated that 
count-matrix batch corrections are not much useful for DE analysis, or even 
suggested. In fact, it is recommended by Satija lab (the developers of Seurat) 
to not run Findmarkers function on sctransfrom assay data 
https://github.com/satijalab/seurat/issues/4081.  
For our analysis we used DESeq method for markers identification that is 
implemented Seurat FindMarkers() function that do not use a corrected matrix, 
however we did not specified in the methods that we used the capture area as 
the latent variable in the Findmarkers function to account for the batch effect. 
We corrected the methods accordingly, and we apologize again for the lack of 
info.  
 
 
7. GSVA analysis is rough, and relevant results need to be further 
validated in space, and further explained in terms of biological 
processes or cell type functions. In addition, it is necessary to discuss 
whether these finding can be observed in most of the sample data. The 
marker selected in this paper is mainly TF, and the author should provide 
discussion on relevant TF regulation network or mechanism. 
 

R. Thank you. We apologize and revised the analysis and the lack of details. 
We analyzed the entire Molecular Signature Database (Msigdb) interrogating 
both biological processes and cellular-type signatures.  As suggested, we 
also added the ssgsea calculated with the escape package for each IPMN spot 
of all the identified gene signatures of interest (Figure 4 and 5 and 
Supplementary Figure 6 and 9).  

Moreover, we assessed the activity of the main transcription factors by 
SCENIC analysis (Revised Figure 3). 

 
8. Spatial trajectory inference can also be affected by data batch. 

In addition, the analysis of spatial trajectory inference is too rough, and 
relevant details need to be further provided. For example, pseudo-time 
and their display in situ, the related genes on the pseudo-time heat map 
display and so on. 

R. We acknowledge the difficulties of data analysis due to batch data effect. In 
the revised Supplementary Methods section, we included a detailed 
description of methods and how the batch effect was corrected. 

https://github.com/satijalab/seurat/issues/4081.


In the manuscript we included all the visualizations allowed by stLearn 
package. We used stLearn pseudotime module specifically suited for spatial 
data and in particular developed to infer spatial trajectory of cancer cell 
populations.  As requested, we also included a pseudotime heatmap to show 
the transcription factors expression alongside pseudotime. 

 
 
9. The authors are unable to provide experimental verification of marker 
genes, whether to provide predictive analysis of these marker genes in 
clinical diagnosis. For example, the classification of validation ST data or 
other types of data. 

R. As requested also from other reviewers, we tested and validated data by 
Multiplex Immunofluorescence on IPMN Tissue Sections on an independent 
cohort of archival IPMN samples and on normal pancreatic duct. A new picture, 
confirming the ST data, was added in a panel of figure 8.  

 
Minor issues: 
1. Does TMA refer to sections made up of tissue samples from different 
patients? Whether batch effect exists in one TMA and whether batch 
effect exists in different TMA? 

R. The TMAs are composed by samples from different patients. Please refer to 
the batch effect correction (please check response to point 2) 

 

2. In Fig 3B, what are the IPMN Signature? 

We added details about IPMN signature in the results section and in figure 3.. 
 

3. In Fig 7E, what are the clade_69 and clade_11? 

R. stLearn use sub-clustering based on both spatial information and 
transcriptome to infer trajectory. For these sub-clusters the package use the 
term clade. So clade_69 and clade_11 represent two spatially localized 
sub-clusters of Borderline IPMN cluster.  

 

4. The legend in the text is too brief, the author should enrich the related 
legend 

R. We edited most of the figure legends to make them more understandable. 
We apologize for the lack of clarity. 

 
5. There are some formatting or spelling mistakes in the manuscript, 
which should be checked carefully. 



R. We have reviewed the manuscript for grammar, spelling, and formatting 
errors.Thank you for your attention. 

 
Reviewer #3 (Remarks to the Author): Expert in spatial transcriptomics, cancer 
genomics, and tumour microenvironment 
 
In this manuscript, to identify novel biomarkers that could better stratify 
IPMN risk, Agostini et al. performed Visium spatial transcriptomics 
analysis on 18 core biopsies (4 TMAs) from 14 patients in the discovery 
cohort. They identified differentially expressed genes and pathways in 
LGD and HGD IPMN and further carried out GeoMx spatial 
transcriptomics analysis of 57 IMPN samples from an independent 
cohort to validate these findings. While this study may present a valuable 
resource for the community, this study is overall descriptive and the 
analysis of Visium data lacks depth, the significant analytical and 
conceptual limitations diminish its value and my enthusiasm for it. 
 
Major comments: 
 
1. In the current version of the Methods section, there's no detailed 
description of how the batch effects were assessed, how significant they 
were, and the method(s) applied for batch correction. There's also no 
evaluation of the performance of their batch correction method. it is 
known that Harmony is a method that normalizes embedding, but not 
data matrices. 
 

R. We performed both batch effect corrections, please see supplementary 
material and a detailed explanation above (see response to reviewer 2 point 6). 
We improved the manuscript adding the missing information in the paragraph 
“supplementary material 1”.  

 
2A. How did the unbiased approaches for the ST analysis correlate with 
the annotation of tissue regions by pathologists?  

How were correlations with histological features assessed (quantified)?  

R. The quality of the clustering was confirmed by both histological evaluation 
and markers assessment. We added a new supplementary figure 5 to better 
show cluster correlation with pathological annotation. 

We carefully revised the clustering with the help of expert pathologists that 
confirmed the matching with histological features. They also suggested to 
assess the expression of the markers that they used in the routine to check the 
quality of the clusters (Supplementary Figure 3). These markers are general 
markers of IPMN and do not strongly associate with morphology or dysplasia 
grade with the only exception of MUC2 that is prevalently expressed in 
Intestinal IPMN. However, the expression pattern of ST makers matched the 
positivity commonly found in clinical routine diagnostic.  



2B. By eyeballing Fig. 2B and Fig. 1a, it appears TMA3 and TMA4 showed 
a lower correlation with pathology annotation. Fig. 2B is for visualization 
purposes and had to eyeball the correlation. Visualization alone isn't 
sufficient; i would suggest the authors show spot-level correlation. 

R. As you pinpointed in the TMA3 and 4, pathological annotations do not 
correlate for all cores because, as revised in the results section, the IPMN 
detached (precisely two gastric and three intestinal IPMN) during the Visium 
procedure. IPMN are a thin layer of epithelial cell that easily tend to detach 
from both tissues and slides specifically when they are not included inside 
tissue core like in the case of TMA3 and 4. 

 

3.The study identified 23 spatial clusters. On what basis was the 
resolution (the optimal number) of their clustering analysis determined? 
How can they ensure that the tissues weren't overclustered or 
underclustered? 
R. Thank you for your comment. We performed a Leiden clustering with a 
resolution of 0.85 assuring the optimal number of clustering matching the 
histological features, higher or lower parameters were tested but led to over or 
underclustering, resulting in clusters not matching the histological features. We 
followed a workflow similarly described by Zhang et al. 2021 
(https://doi.org/10.1016/j.cell.2021.10.024) 
 
4. In Fig. 2A, it's challenging to read the colors. It seems like the HGD 
intestinal IPMN formed a separate cluster, and HGD IPMN intermixed with 
ductal tissue. 

R. We would like to thank the reviewer for the informative critique as we have 
realized that the resolution of Fig 2A was not sufficient for cluster visualization. 
Therefore, we now added a supplementary figure (supplementary figure 5) to 
improve cluster visualization. Reviewer' s interpretation of fig 2a is correct and 
biologically consistent with the origin of IPMN which arise from ductal cells. 
However all the IPMN markers that we have found are not expressed in ductal 
tissue, please see Figure 3 and Figure 8 (new protein-level validation). It is still 
debated but in literature and in our opinion not only Intestinal but also 
Pancreatobiliary represent a more advanced and differentiated type of IPMN 
than Gastric IPMN and therefore remarkably separated from ductal tissue and 
gastric IPMN, not only by morphology but also at transcriptomic level. 

5. Using the main molecular classification of PDAC (i.e., Moffit activated 
or normal stroma), how does the Moffit activated signature inform the 
cell population of these clusters? The Moffit activated signature does not 
seem to be robust in distinguishing HGD and LGD; for multiple cores, the 
signature was all over the place. Does the Moffit classical correlate with 
the PDAC classical lineage state? How about the basal state? 
Visualization isn't sufficient; please show spot-level correlation. 

We would like to thank the reviewer for the informative critique. We added a 
supplementary figure to show the main markers of each signature at spot level 

https://doi.org/10.1016/j.cell.2021.10.024


(supplementary figure 4). We used these signatures to show the reliability of 
our ST data. 

Moffitt stromal activated signature indicates the presence of activated 
(fibronectin and collagen) producing fibroblasts. These fibroblasts are the main 
tumor microenvironment cell component of PDAC since it early stages and are 
the responsible of the desmoplastic stroma 
(10.1158/1078-0432.CCR-18-1955). This is the reason why this signature was 
shared by multiple cores and found across all stages of IPMN.  

Related to that, we have employed the known classification of PDAC 
molecular subtypes which were originally derived from expression profiles 
(either microarray and RNA-seq) of bulk tissues and cell lines. As the reviewer 
might know, there are two consensus molecular subtypes of neoplastic cells 
which reflect different degree of fidelity to the pancreatic endoderm. The 
classical subtype (as defined by Collisson and Moffitt) essentially overlap with 
the pancreatic progenitor subtype defined by Bailey and is driven by the 
activity of pancreatic endodermal differentiation markers (described in 
supplementary figure 4). This is often regarded as the pancreatic cancer with 
better clinical outcomes (classical type or less advanced). Conversely, 
progression of PDAC is associated with basal-like/squamous molecular 
subtypes which display loss of endodermal origin mostly contributed by the 
epigenetic silencing of endodermal differentiation markers. This subtype is 
enriched in advanced and metastatic diseases. It is now evident that these two 
subtypes co-exist within the same tissue, which further highlights the 
usefulness of spatial transcriptomic approaches to potentially disclose 
heterogeneous phenotypes. As basal-like/squamous cells accumulate in 
advanced diseases, we were expecting a lower fraction of cells displaying 
basal-like/squamous cell state. 

Based on reviewer suggestion, we expanded our analysis including data on 
basal markers (please see supplementary figure 4). 

 

6. What are the differences between the Moffit classical, Collisson 
classical, and Bailey pancreatic progenitor signatures? How many genes 
are overlapped among these signatures? 
 

Even if the classifications include different genes they all refers to neoplastic 
cell states with different degree of fidelity to the pancreatic endoderm. To 
respond to the reviewer question we are including here the list of genes 
comprising each of the signatures.  

A formal analysis with the regard to the ability of each of the classification 
system to identify cells displaying similar transcriptional states has been 
conducted within the TCGA (10.1016/j.ccell.2017.07.007).  

 



The authors convincingly demonstrated that, when applying the 3 different 
classifications to tumor tissues with high neoplastic cellularity, there is 
essentially overlap between the classical and pancreatic progenitor as well 
between basal-like and squamous. The other proposed subtypes (ADEX and 
immune) emerge when there is an elevated contamination by nonmalignant 
cells. Of the 3 classification systems, the one proposed by Moffitt and 
colleagues and generated through virtual microdissection of bulk tumor tissues 
is widely adopted by the scientific community to stratify PDAC cells.  

 

Please find below a table with the genes belonging to the different signatures. 

 

Moffitt 
Classical  

Collison 
Classical 

Bailey Pancreatic 
Progenitor 

Moffitt 
Activated 

Moffit Basal 

AGR2 AGR2 ABHD2 CDH11 ANXA8L1 

AGR3 ATP10B AHCYL2 COL10A1 AREG 

ANXA10 CAPN8 ANKS4B COL11A1 CST6 

BTNL8 CEACAM5 ANXA13 COL1A1 CTSV 

CDH17 CEACAM6 ATP7B COL1A2 DHRS9 

CEACAM6 ELF3 B3GALT5 COL3A1 FAM83A 

CTSE ERBB3 B3GALT5-AS1 COL5A1 FGFBP1 

CYP3A7 FOXQ1 BTNL8 COL5A2 GPR87 

FAM3D FXYD3 C11orf86 COMP KRT15 

KRT20 GPRC5A CALML4 CTHRC1 KRT17 

LGALS4 GPX2 CARD11 FAP KRT6A 

LRN3 LGALS4 CIDEC FN1 KRT6C 

LYZ MUC13 CLRN3 FNDC1 KRT7 

MYO1A PLS1 CRYL1 GREM1 LEMD1 

PLA2G10 S100P CTAGE3P INHBA LY6D 

REG4 SDR16C5 CYP2C18 ITGA11 S100A2 

SPINK4 ST6GALNAC1 CYP2C19 LUM SCEL 

ST6GALNAC1 TFF1 CYP2C9 MMP11 SERPINB3 

TFF1 TFF3 CYP4F12 POSTN SERPINB4 

TFF2 TMEM45B CYP4F3 SFRP2 SLC2A1 

TFF3 TOX3 DOK4 SPARC SPRR1B 

TSPAN8 TSPAN8 EDN3 SULF1 SPRR3 

VSIG2  FAM201A THBS2 TNS4 

  FAM3D VCAN UCA1 

  FMN1 ZNF469 VGLL1 

  FUT2   

  GIPR   

  IYD   

  KALRN   

  KIAA1211   

  KRTAP5-AS1   

  KY   

  LINC01597   

  LPCAT4   



  LRRC66   

  MUC17   

  MUCL3   

  MYO7B   

  NMNAT2   

  NPSR1   

  NPSR1-AS1   

  NR1I2   

  PDE11A   

  PDZD3   

  PHGR1   

  PLA2G10   

  RPL7P31   

  SEMA4G   

  SLC22A18   

  SLC25A23   

  SMPD3   

  TLDC2   

  TM6SF2   

  TMEM253   

  TSPAN3   

  ULK3   

  WSCD2   

  ZDHHC8P1   

 

Moffitt and Collisson share six genes out of 23, while Bailey Pancreatic 
Progenitor have a different set of genes.  

 

 
7. On page 8, the authors stated, “Interestingly, even the low-grade IPMN 
showed high expression of these signatures, highlighting the presence 
of classical-like signatures, even in the more indolent IPMN.” I question 
this as, for all three cases with low-grade IPMN, these signatures weren't 
only expressed by low-grade IPMN but also by other tissues. Could there 
be another possibility? For example, some genes of these signatures are 
not specific and could also be expressed by immune/stromal cells. Have 
the authors ruled out such a possibility? Additional validation data 
would be needed to support this statement. 

R. As described previously, Stromal activated markers are expressed in 
fibroblasts that represent the major cellular population of pancreatic cancer 
since its early stages. Thanks to the reviewers comment we improved the 
manuscript with supplementary figure 4 to show that classical and pancreatic 
progenitor markers are exclusively expressed by IPMN cells, while the stroma 
activated markers are present in the stroma component.  



8. In Fig. 3A, what criteria were used to select these genes? How many 
transcription factors were these six genes selected from, and how were 
they identified? Why do the authors find them “interesting”? Please 
provide more details. 

R. The gene markers that we selected were among the top 10 genes resulting 
from Findmarkers() function using DEseq method. The markers that we 
displayed in figure 3A were chosen according to log2 Fold Change (>2.5) and 
p.value < 0.05 and the percentage of expression in the spots above 60% in the 
cluster to ensure the reliability as markers. We added these parameters to text, 
and we apologize for the lack of details. The transcription factors that we have 
identified were never reported in IPMN and this is the reason why we decided 
to investigate deeper those genes. 

 
9. Both SPDEF and NR4A1 were high in Borderline IPMN, but their 
expression decreased in HGD IPMN samples. How can their negative 
correlation with survival be explained? 

R. We apologize for any misunderstanding arising from the survival analysis 
and would like to guide you to comment 10 for further clarification. The survival 
data, originally displayed, are related to the PDAC cohort within the TCGA, not 
IPMN.  

Our intention with this figure was to highlight how the identified markers were 
also negative prognostic factors in PDAC patients. Unfortunately, we do not 
have a biological explanation for this phenomenon, and we have chosen to 
remove these data from the manuscript. Our best hypothesis is that gene 
expression and programs may be activated differently at varying disease 
stages. 

 
10. HGD Gastric IPMN markers PSCA, SDC4, and VISIG1 showed 
significant variation across the histology subtypes and had the highest 
expression levels in gastric IPMN. Will this limit their prognostic 
significance? I suggest stratifying the survival analysis in Fig. 3C by 
histological features. Will these genes still be significant for survival 
after adjusting for histology? 

R. This is a great suggestion but unfortunately the data showed here are from 
pancreatic cancer patients included in TCGA and no information about the 
early lesions are included in the database. We apologize for the 
misunderstanding and removed it from the revised manuscript.  

11. How were these signatures in Fig. 3B built, and how do they differ 
from those in Fig. 2C? 

R. In Figure 2C, we detailed the PDAC molecular signatures previously 
mentioned in points 6 to 8. The signatures presented in Figure 3B were 
constructed using the same marker genes of Figure 3A.  



In Figure 3B, we utilized this illustration to portray these markers as a signature 
within a spatial context. To assess gene set activity for these selected markers 
within each IPMN cluster, we employed the "Addmodulescore()" function from 
Seurat and visualized the results using a spatial feature plot function. 

12. In Fig. 4-5 pathway analysis, can any of these pathways be validated? 

R. As recommended by the other reviewers, we corroborated the spatial 
transcriptomics (ST) data by conducting Opal Multiplex Immunofluorescence 
on tissue sections of IPMN. This validation process has revealed, for the first 
time, that HOXB3 indeed serves as a marker for LGD IPMN, while the 
expression of NKX6-2 appears to be associated with epitheliad dysplasia 
grade, particularly in gastric-type IPMNs. (Please refer to reviewer 2, comment 
4, for additional information.) 

 
13. The analysis of Visium data lacks depth. The immune and stromal cell 
compartments of IPMN are largely overlooked. I would suggest running 
inferCNV and mapping KRAS mutations using Visium data and, if 
possible, profiling the immune infiltrates and stromal cell activities. 
 

R. The Visium technology for FFPE samples works on a one-probe-per-gene 
basis, making it impractical for inferring copy number variations (CNVs) or 
mutations. However, as also suggested by reviewer 1, we conducted CNV and 
hotspot mutation analysis of cancer-associated genes using targeted Exome 
sequencing (TSO500, Trusight Oncology) on our IPMN samples.  

Regarding the analysis of immune infiltration, our study was specifically 
designed to focus solely on the gene expression landscape of IPMN cells. This 
approach was influenced by the limitations of the Visium technology (10x 
Genomics), which can only provide gene expression information within a 
50-micron square area of a tissue section. This area typically encompasses 
around 2-6 cells, assuming an average cell diameter of 20 micrometers. 
Additionally, we used GeoMX technology (Nanostring) for validation, which 
operates on selected areas of interest (ROIs). For our analysis, we utilized 
CD45 as a marker to exclude immune cells, allowing us to concentrate on the 
gene expression profiles of the tumor cells themselves. This approach 
minimizes the influence of immune cell gene expression on our findings. 

 
14. Why were 23 out of 57 ROIs excluded from subsequent analysis? 
Even if they aren't covering IPMN, they could be close to IPMN and those 
ROIs. Could they still be used to study the immune and stromal cells of 
IPMN? 

R. The ROIs were excluded because they did not pass the GeoMx QC 
post-sequencing, not because they were not covering IPMN. It's worth noting 
that all ROIs were intentionally created to encompass IPMN tissue. As detailed 
in our methods section, we did not capture CD45+ areas; instead, we focused 
solely on PanCK+ cells. 



 
15. Regarding the statement: “HOXB3 and ZNF117 were associated with 
LGD”. In Fig. 6B, HOXB3 was not included. ZNF117 was included but was 
also highly expressed in HGD. I would suggest adding normal tissue as a 
control, validating HOXB3, and conducting further experiments to 
support the “association”. 

R. We appreciate your suggestion. We have revised the manuscript and have 
adjusted the overstatement regarding ZNF117. 

Unfortunately, we couldn't include HOXB3 as a probe for GeoMx analysis. 
Therefore, as recommended previously, we included normal ductal tissues in 
Multiplex Immunofluorescence on IPMN tissue sections. This validation 
confirms that HOXB3 indeed serves as a marker for LGD IPMN, while the 
expression of NKX6-2 appears to be associated with the increase of dysplasia, 
particularly in gastric-type IPMNs. 

 
16. Functional validation is needed to support statements such as, “This 
infers that ZNF117 may be a key transcription factor in the early stages of 
IPMN,” and, “suggesting that NKX6-2 may be a major trigger of 
gastric-type differentiation in IPMN.” The same goes for the statements 
about the pathway analysis. There are many overstatements in the 
manuscript. 
 

R. We have revised the manuscript to ensure that there are no overstatements 
regarding ZNF117 and NKX6-2. We appreciate your valuable suggestion. 

 

17. In Fig. 7A, how do these 12 clusters correlate with the clusters in Fig. 
2? Why were these stromal cell-enriched clusters distinctly clustered? 
Could this be biologically relevant or influenced by batch effects? Can 
the authors interpret the results?" 

R. We conducted spatial trajectory analysis using only the two TMA samples 
that included Borderline IPMNs. This analysis relies on spatial information, not 
solely on the transcriptome. In reanalyzing these two TMAs with stLearn, we 
took great care to follow steps similar to Seurat (please refer to our response 
to comment 6 from reviewer 2). Consequently, the clusters obtained using 
stLearn may differ from those obtained with Seurat due to the exclusion of the 
other two TMAs (TMA3 and 4). However, it's worth noting that stLearn 
confirmed the same IPMN clusters identified with Seurat. The minor 
distinctions observed in the stroma clusters can be attributed, in our humble 
opinion, to the absence of the other two TMAs. In the image below, you can 
observe that the four stroma clusters are characterized by sets of cell-type 
markers that are also found in normal pancreas by single-cell RNA-seq, 
thereby excluding the possibility of batch effect influence. As illustrated, the 
stroma clusters consist of a combination of exocrine, endocrine, and stromal 
cells (Gene Markers A-C). It's not surprising to find exocrine markers 



expressed in all four clusters (Stroma1-4), as exocrine cells are the most 
prevalent cell type in the pancreas. 

 

 

When we compare the markers identified in the stroma clusters with the 
markers of normal pancreas (unaffected by IPMN) from the Protein Atlas 
SCRNAseq dataset, we can observe some similarities. As demonstrated 
below, CELA3A is primarily expressed by exocrine cells in the normal 
pancreas (as indicated by the Protein Atlas scRNAseq dataset for normal 
pancreas).  

[Redacted Original image from: taken 
https://www.proteinatlas.org/ENSG00000142789-CELA3A/single+cell+type/pancreas ] 

However, it's worth noting that exocrine cells in the Protein Atlas dataset are 
split into different clusters. Interestingly, in our identified Stroma 4, AMY2B 
appears to be expressed only in a subset of exocrine cells (as seen in cluster 9 
of the Protein Atlas Dataset). This observation suggests that the varying 
expression of exocrine markers found in our dataset may be partially attributed 
to the inherent transcriptomic diversity already present in pancreatic normal 
tissue. 

[Redacted Original taken from: image 
https://www.proteinatlas.org/ENSG00000240038-AMY2B/single+cell+type/pancreas ] 

Furthermore, the other stroma clusters (1, 2, 3) express markers that align with 
specific cellular components. For instance, PGC marks stroma cluster 1. 
According to the Protein Atlas database, PGC is expressed by an undefined 
cellular population that is nonetheless present in normal pancreatic stroma. 

[Redacted Original taken from: image 
https://www.proteinatlas.org/ENSG00000096088-PGC/single+cell+type/pancreas ] 
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Stroma cluster 2 exhibited the highest levels of fibroblast markers in 
comparison to the other clusters, while conversely displaying the lowest 
expression of exocrine markers. This observation reflects the presence of a 
fibrotic stroma reaction of our IPMN samples (please see Figure 1, H&E 
staining) . 

[Redacted Original taken from: image 
https://www.proteinatlas.org/ENSG00000139329-LUM/single+cell+type/pancreas ] 

Indeed, Stroma 4 displayed high expression of endocrine cell markers that 
were enriched in that area.  

[Redacted Original image from: taken 
https://www.proteinatlas.org/ENSG00000254647-INS/single+cell+type/pancreas ] 

ease, take in consideration that this study aimed to identify the intrinsic cell 
pathways characterizing IPMN progression. Consequently, the selected IPMN 
samples exhibit a heterogeneous tissue environment, with some containing 
proper stroma, others consisting mostly of exocrine tissue, and the majority 
featuring adipose or dense low-cellularity extracellular matrix (ECM), as 
depicted in Figure 1. In this context, resolving the stroma population may be 
difficult without scRNA-seq deconvolution, even using frozen tissues; let alone 
in FFPE samples. Due to these factors, we exercised caution in naming the 
different stromal clusters and simply numbered them, as there was no clear 
histological annotation available. 

We sincerely hope that we have effectively addressed all of your major 
concerns and would like to express our gratitude for your insightful and 
constructive critiques. 

Minor comments 

1. What was the median number of genes per spot? This information isn't 
provided in the manuscript or Methods. Also, what percentage of spots 
passed QC per core? 

R . We provided all the missing info also in the methods section.  

 
2. For GeoMx, in addition to panCK and CD45, any additional (the 3rd) 
morphology marker was used? 
 

R . We used Syto 13 for nuclei staining. We added the missing information in 
the methods section.  

 
3. "Five of these clusters precisely defined the different grades of IPMN: 
the low-grade IPMNN (LGD and Borderline), and the high-grade IPMNS 
(HGD Gastric, HGD Intestinal, and HGD Pancreatobiliary) (Fig. 2B)." 
Which five clusters were these? 



R . The five IPMN clusters are: LGD IPMN, Borderline IPMN, HGD Gastric 
IPMN, HGD Intestinal, and HGD Pancreatobiliary.  
 
4. Is panCK able to label all IPMN cells? How sensitive and specific is it 
for GeoMx analysis? 

R. We used the Nanostring proprietary markers (Nanostring GeoMx 
Morphology Kit) so the PanCK antibody was tested and approved by 
Nanostring for GeoMx. PanCk label IPMN cells of all stages please see the 
added multiplex immunofluorescence analysis. 

  
5. In Fig. 6A, please add a color key. In Fig. 6B, please add p-values. 

R . We added the missing information. 
 
6. The authors said, “Moreover, we again observed the association 
between SPDEF and NR4A1 expression with Borderline IPMN.” I didn't 
find the gene “NR4A1” in Fig. 6B. 
R . We apologize for the mistake.  

 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors adequately addressed previous concerns. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript was significantly improved. But there are still a few concerns regarding the data analysis 

and figure presentation, which should be further addressed. 

 

1. In Figure 3A and 6B, the authors present differential expression analysis of marker genes. However, it 

is important to consider the potential impact of batch effects on marker gene selection and the 

comparison of differential expression. While Harmony can eliminate batch effects, it does not address 

the issue of comparability of gene expression across samples. 

 

2. Despite the effort for addressing the issue of batch removal in the discussion (e.g., Figure XX in the 

rebuttal), the presentation of relevant diagrams is unprofessional, limiting the information that can be 

obtained from them. For instance, there is a lack of UMAP display before batch removal and insufficient 

annotation of cluster results in the situ coloring map. 

 

3. The discussion of batch removal focuses on single-cell transcriptomics methods (e.g., Harmony). 

However, there are specific batch removal methods available for spatial omics, such as GraphST and 

PRECAST. The authors are suggested to also include discussion of these methods. 

 

4. While the data provided by the authors has the potential to expand the field of research, the manual 

labeling should also be considered, and the authors are suggested to provide this information as a key 

aspect. 

 

5. The authors should carefully review the figures in the main text, ensuring that they are both visually 

appealing and informative, e.g. ensuring that all necessary components, including corresponding bar 

diagrams, are included (e.g., Figure 7H). 

 

Addressing these concerns will enhance the clarity, accuracy, and professional presentation of the 

manuscript. 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 



The authors have done an excellent job addressing most of my major comments, and I have observed 

improvements in this manuscript. However, some comments have not been fully addressed: 

 

1. Harmony is a method that normalizes the embedding but not the data matrix. Were the expression 

values adjusted? If not, how will the batch effect influence the downstream analyses, such as the gene 

signature score calculation and comparisons? 

 

2A. It is difficult to visually interpret the correlation with pathological annotation based on the data 

presented in the new supplementary figure 5. 

 

2B. Thanks for the clarification. Among the processed samples, how many experienced this issue? I 

would suggest excluding those samples with detached IPMN, as for those cases, the pathological 

annotation may not provide meaningful guidance for downstream analysis. 

 

3. I recommend that the authors include these clustering results obtained using various resolution 

parameters and their correlations with the histological features. This would help readers better 

understand the optimal number of clusters chosen. 

 

4. No clustering results were found in the new supplementary figure 5. Was it mistakenly switched with 

supplementary figure 4? 

 

5. Marker gene expression was not found in the new supplementary figure 4. 

 

6. Thanks for providing the list of genes. A related question is: how many of these genes are consistently 

detected in the spatial data? Also, did any of the markers used show consistent drop-out across 

samples? 

 

7. The new supplementary figure 4 seems to be mislabeled, as I couldn’t find any expression data. 

 

8. It is unclear if the p-values were adjusted for multiple testing. The authors used p-values instead of 

adjusted p-values to select significant genes. How many of those genes remain significant after adjusting 

their p-values? How would such a change influence downstream analysis and their conclusions? 

 

 

Lastly, the authors should clearly label each figure and suppl figure. The merged PDF file and 

downloaded reviewer zip file do not contain labels for the figures, which is inconvenient for reviewing. 



Point-By-Point Rebuttal 

 

We are submitting the revised version of our manuscript entitled “Identification of novel 
spatially resolved markers of malignant transformation in Intraductal Papillary 
Mucinous Neoplams” for potential publication in Nature Communication.  
 
We express our sincere appreciation for your contributions in enhancing the quality of our 
work. We have addressed all raised concerns and are confident that these endeavors have 
elevated the manuscript's overall quality. 
 
Our thanks to reviewers for their invaluable feedback. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The manuscript was significantly improved. But there are still a few concerns regarding the data 
analysis and figure presentation, which should be further addressed. 
 
1. In Figure 3A and 6B, the authors present differential expression analysis of marker genes. However, 
it is important to consider the potential impact of batch effects on marker gene selection and the 
comparison of differential expression. While Harmony can eliminate batch effects, it does not address 
the issue of comparability of gene expression across samples. 
 
R: We regret any lack of clarity in our earlier response. In this revised version, we aim to be clear. 
We’ve included a figure illustrating the batch effect correction within Seurat, along with details on 
the data assays employed by the various Seurat functions. 
 

 
 
 
Of course batch effect correction is crucial for this type of analyses. At present, numerous 
algorithms have been developed for spatial data integration, analysis, and clustering. However, for 
this particular study, we chose to adhere to the primary recommendations outlined by 10X 



Genomics, utilizing Seurat for primary analyses and Harmony for data integration. Our decision 
stemmed from guidance provided in the tutorial 
(https://www.10xgenomics.com/resources/analysis-guides/correcting- 
batch-effects-in-visium-data). During a discussion with bioinformaticians from 10X Genomics, 
whom we had the privilege to engage with, they assessed various algorithms and determined 
Harmony to be the most effective method for Visium data integration.  
 
Indeed, prior to batch effect correction, identifying clusters shared by all Tissue Microarrays (TMAs) 
was exceedingly challenging, highlighting the necessity of Harmony for dataset integration.  
Below, you can observe the complexity of identifying shared clusters between TMAs before 
implementing Harmony. 

 
 

https://www.10xgenomics.com/resources/analysis-guides/correcting-batch-effects-in-visium-data).
https://www.10xgenomics.com/resources/analysis-guides/correcting-batch-effects-in-visium-data).


 
You can see (in figures below) how Harmony effectively merged the datasets while still maintaining 
the distinct biological clusters we identified using cell-type scoring functions to represent diverse 
cellular populations. In conducting this analysis, we initially executed normalization and variance 
stabilization by regressing out the varied library sizes (nCountRNA) from each dataset, following 
the guidelines outlined in this resource (https://hbctraining.github.io/scRNA-
seq_online/lessons/06a_integration_harmony.html).Subsequently, we proceeded with Harmony 
integration, specifically considering the diverse Tissue Microarrays (TMAs) as batches in the 
process. 
 

 
 

 
 
 
 

 
 



As you highlighted, Harmony integrates the embeddings and not the counts, which, as you astutely 
mentioned, can impact the outcomes. However, within the Seurat ecosystem, the developers 
discourage the utilization of integrated counts for analyses not directly associated with clustering.  
In a discussion highlighted here (https://github.com/satijalab/seurat/ discussions/4000),  they express 
reservations about comparing integrated counts due to inherent dependencies introduced between 
data points, which contravene the assumptions of statistical tests used for differential expression.  
 
The decision to use or abstain from a corrected count matrix may hinge more on the algorithms and 
analyses employed rather than a universally prescribed procedure. For our differential expression 
analysis, we leaned on a function employing a linear model capable of accommodating differences in 
library size, rather than relying solely on a simple Wilcoxon test (Seurat's default test). This approach 
aligns with the strong suggestion presented by Harmony developers in their paper [link], advocating 
for the robustness of the DESeq2 method over others like MAST, LR, and similar functions, as 
demonstrated in this study (https://doi.org/10.1038/s41592-019-0619-0)  
 
For this reason we used the robust DESeq2 method that was shown to be less prone to false 
discovery than other functions such as MAST, LR, and other  
(https://www.nature.com/articles/s41467-021-25960-2).  
 
DESeq2 method normalizes the raw count matrix by estimating batch-specific size factors and 
fitting the normalized counts into a negative-binomial model. To enhance precision of the 
algorithm we took in consideration only the genes that were expressed in at least the 35% ( min.pct 
parameter= 0.3; 3 fold higher than default parameter) to rule out genes that maybe aberrantly 
overexpressed due to the batch-effect as recommended by Seurat developers 
(https://satijalab.org/seurat/reference/findmarkers).  
 
To sum up, we adhered to common workflows and standard procedures within Seurat analyses to 
address batch-effect bias. To further validate the reliability of Seurat results, we not only confirmed 
consistent markers but also corroborated identical pathways and cell-type-specific signatures using 
GeoMx, a distinct technology employing different analysis methods. Furthermore, in response to 
your prior request, we successfully validated the expression of HOXB3, SPDEF, and NKX6-2 at the 
protein level (Figure 8). 
 
We hope this demonstrates the trustworthiness of our data, showcasing that in Seurat, integrated 
counts are not required, and alternative methods were employed to account for batch effects. 

 
 
2. Despite the effort for addressing the issue of batch removal in the discussion (e.g., Figure XX in the 
rebuttal), the presentation of relevant diagrams is unprofessional, limiting the information that can be 
obtained from them. For instance, there is a lack of UMAP display before batch removal and 
insufficient annotation of cluster results in the situ coloring map. 
 
 
R: We regret the previous lack of clarity and the discrepancy in UMAP labels provided in our earlier 
rebuttal. Enclosed is an updated version detailing the batch effect correction carried out using 
stLearn. 
 
To validate the clusters identified through Seurat and conduct spatial trajectory analysis, we 
utilized the Python packages stLearn, primarily drawing upon core functions from the well-



established Scanpy module. For these analyses, batch effect correction was performed using 
Scanpy's regress_out function (refer to the accompanying figure), akin to scTransform, aiming to 
run two parallel yet comparable analyses. This correction adjusted the data matrix used for all 
subsequent analyses. Following this, we conducted integration using Harmony. 
 
The forthcoming visuals will showcase the distinct clusters identified before and after data 
integration, each depicting clusters identified using the Leiden algorithm at a resolution of 0.85. 
 
The initial UMAP plot highlights the presence of batch effects influencing clustering before data 
correction. 
 

 
 

 



 
 
 
 
 
 
 

 
 
 
The clustering was suboptimal and the majority of IPMN clusters were not identified, and 
intertwined with the stroma (See cluster 1,5, and 6) 
 
The regress_out function alone could not remove all bath-effects from the embeddings. 
 

 
 



 
 

 
 
 
Here you can see that the regress_out algorithm was not able to significantly improve the quality of 
the clustering. However we ultimately resolved the problem with Harmony. 
 
 

 



 
 
 
Harmony corrected the embeddings and identified clusters that were comparable with the one 
obtained with Seurat (included in the manuscript). 
 

 
 
We share the concern that batch effects might significantly impact this analysis. To explore this 
further, we tested additional batch effect correction methods in Python to verify the reproducibility 
of the IPMN clusters. Our findings yielded comparable results, enhancing our confidence in the data 
quality. Below is the data obtained using ComBat, which employs an integrated empirical Bayes 
(EB) framework for batch effect correction (source: 10.1186/s13619-020-00041-9). 
 
  
 

 
 
 
Here you can see Combat alone wasn't able to completely eliminate all batch effects from the 
embeddings, leading to suboptimal clustering. 



 
 
 
 

 
 
 
 
 
 
Here you can see that only the LGD IPMN (cluster 7) stands out distinctly, while the other IPMN 
clusters are indistinguishable from the stroma. 
 
The impact of Harmony on our data is clearly evident and remarkable. 
 
 
 



 
 
 
 
 

 
 
 
 



 
 
Here, you can observe how even after count correction using the Combat algorithm, the same 
IPMN clusters were identified. These findings serve as additional confirmation of the quality and 
reliability of our clustering. 
 
3. The discussion of batch removal focuses on single-cell transcriptomics methods (e.g., Harmony). 
However, there are specific batch removal methods available for spatial omics, such as GraphST and 
PRECAST. The authors are suggested to also include discussion of these methods. 
 
R: Thank you also for this suggestion. We added in the discussion section the GraphST and 
PRECAST as methods for batch effect removal and relative references. 
 
 
4. While the data provided by the authors has the potential to expand the field of research, the manual 
labeling should also be considered, and the authors are suggested to provide this information as a key 
aspect. 
 
R: To confirm the results that we obtained using an unbiased approach, we performed 
manual annotation of the IPMN clusters discarding the spots that were shared between 
IPMN and stromal cells and occurred in the IPMN subjected to partial detachment (As 
suggested also by reviewer 3, comment 2B). The figure below shows the clusters that 
were manually annotated with an inset depicting the spot positions on the tissue. 
 



 
 
 
 
 
Following manual annotation, the spots underwent normalization and scaling using SCT transform. 
Differential expression analysis (DEA) was executed using the Findmarkers() function, configuring 
the DESeq2 method with a min.pct=0.3 (threefold higher than the default parameter). This 
adjustment aimed to filter out outlier genes that might be influenced by batch effects and 
consequently expressed aberrantly in only a few spots within the clusters, aligning with 
recommendations from Seurat developers (https://satijalab.org/seurat/reference/findmarkers). 
 
DEA between LGD IPMN and Borderline IPMN, as well as between HGD Gastric and Intestinal 
IPMN, yielded results consistent with the unbiased DEA analysis. This alignment is illustrated 

clusters that were manually annotated (inlay shows the positing of the spots on the tissue). 
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through Volcano plots and Cneplots, showcasing the expression of the primary signatures 
previously identified (please see Supplementary Information 2, Figure 2-4). 
 
 
 
5. The authors should carefully review the figures in the main text, ensuring that they are both visually 
appealing and informative, e.g. ensuring that all necessary components, including corresponding bar 
diagrams, are included (e.g., Figure 7H). 
 
R: Thank you, we have revised the images throughout the manuscript by adding the figure names 
to make the review process smoother. We apologize for the error in Figure 7H; we have included 
the missing information. 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have done an excellent job addressing most of my major comments,    .  
However, some comments have not been fully addressed: 

 
R: Thank you for your valuable comment.  
 
 
1. Harmony is a method that normalizes the embedding but not the data matrix. Were the 
expression values adjusted? If not, how will the batch effect influence the downstream analyses, 
such as the gene signature score calculation and comparisons? 
 
R:  We regret any lack of clarity in our previous response. Please refer to our detailed elaboration in 
response to major comment 1 from reviewer 2, specifically focusing on batch-effect correction. As 
detailed in that section, Seurat developers designed their algorithms to function with non-
integrated counts. This principle also applies to the functions we utilized for the signature scores. 
For further clarification on the data types employed by Seurat functions, kindly refer to the figure 
below. 
 



 
 
 
As you can see the function AddModuleScoreUCell() and SCENIC, inspired by the AUCell algorithm 
(https://doi.org/10.1016/j.csbj.2021.06.043), use a gene signature scoring method based on the 
Mann-Whitney U statistic. These scores were create to depend only on the relative gene 
expression in individual spots/cells and are therefore not affected by dataset composition and 
batch-effect. We used AddModuleScoreUCell() function for gene set activity scoring of pancreatic 
molecular classification (Moffitt, Collison) and IPMN signatures, while SCENIC was used for 
Transcription Factor Activity.  
 
Additionally, the runAzimuth() function for cell-type scoring utilized the SCT assay, which 
represents a normalized and scaled assay corrected for library size using the SCTransform() 
function. Similar to our approach in Differential Expression Analysis, we diligently followed 
standard workflows and implemented measures to minimize batch effect influence on our 
signatures. 
 
 
2A. It is difficult to visually interpret the correlation with pathological annotation based on the data 
presented in the new supplementary figure 5. 
 
R: Unfortunately, due to the type of acquisition planned for these analyses, the resolution of the 
images is not excellent. Nevertheless, we have improved the visualization of the annotations by 
including Hematoxylin and Eosin staining corresponding to the tissue without spot, in the new 
Figure 5. We believe that this image is now much clearer, and the correspondences are well-visible. 
Thank you for the suggestion. 

 
 
2B. Thanks for the clarification. Among the processed samples, how many experienced this issue? I 
would suggest excluding those samples with detached IPMN, as for those cases, the pathological 
annotation may not provide meaningful guidance for downstream analysis. 
 



R: Thank you also for this suggestion. The Reviewer 2 (comment 4) recommended a manual 
labeling and analysis of the IPMNs to confirm (and improve) the identification of differentially 
expressed factors among the various annotated IPMN. For this purpose, and in agreement with 
your suggestion, we manually assigned the spots only covering IPMN tissues (excluding partially 
detached IPMN tissue). These results, reported in Supplementary Information 2, confirm the 
unbiased analyses presented in the main figures of the manuscript. 
 
3. I recommend that the authors include these clustering results obtained using various resolution 
parameters and their correlations with the histological features. This would help readers better 
understand the optimal number of clusters chosen. 
 
R: Please here you can find the clustering outcome using various resolution parameters of the 
Findclusters() function and Leiden algorithm. 
 
In our study we opted for a resolution of 0.85. This is the best parameter to prevent the occurrence 
of sub- or over-clustering, particularly in IPMN clusters (Supplementary information figure 1). 
 

 
 

However, comparable outcomes were achieved even when configuring parameters within a range 
with a ± 0.15 difference in resolution from 0.85.  
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Supplementary	information	figure	1	



To emphasize the analysis, we also employed broader values (0.65 and 1.05) and extreme 
parameters (0.5 and 1.2). 
 
For instance, the clustering at extreme broader resolution value (0.65), displayed a discrepancy of 
only two stromal clusters, while all IPMN clusters remained consistent (see Supplementary 
information figure 2). 
 

 
 

 

Similarly, setting the resolution parameter to 1.05, leads to the identification of two additional 
stromal clusters, while the clusters for the IPMN were confirmed (see Supplementary information 
figure 3). 
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Discrepancies between IPMN clusters and histological features were observed exclusively with 
extreme parameters (0.5 and 1.2) (see Supplementary information figure 4). 
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The use of extreme parameter (0.5) leads to the clustering of gastric and intestinal IPMNs. While 
the other IPMNs (LGD, Borderline, and Pancreatobiliary) continue to fall into separate clusters, 
confirming the different histological features of these IPMN (see Supplementary information figure 
5).  
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A clear sub-clustering becomes apparent only in gastric HGD IPMNs when using extreme 
parameters (1.2). At this resolution value, several subclusters are observed within the epithelium of 
gastric HGD IPMN, while all the others IPMN fall into separate distinct cluster further confirming 
their histological features. However, the observed sub-clustering was likely due to the extreme 
parameter, and no statistically significant differentially expressed genes were found between the 
two groups using the Findmarkers function (DESeq2 method). 
 
We understand however your concern that we hope now have addressed in full.Thank you again for 
you carefull review.  
 
 

 
4. No clustering results were found in the new supplementary figure 5. Was it mistakenly switched with 
supplementary figure 4? 
 
And 
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5. Marker gene expression was not found in the new supplementary figure 4. 
 
R: We regret the errors in our previousresponse. We revised the figures. 
 
6. Thanks for providing the list of genes. A related question is: how many of these genes are 
consistently detected in the spatial data? Also, did any of the markers used show consistent drop-out 
across samples? 
 
R: These signatures are specific markers for pancreatic cancer subtypes. Therefore the expression is 
related to precise cancer subtype or cell population. However, as specified in comment 1, we used 
AUCell algorithm to imput the signatures in each spot independently (bypassing batch effect 
alteration). 

 
 

7. The new supplementary figure 4 seems to be mislabeled, as I couldn’t find any expression data. 
 
R: We apologize. We revised all the figures. 
 
 
8. It is unclear if the p-values were adjusted for multiple testing. The authors used p-values instead of 
adjusted p-values to select significant genes. How many of those genes remain significant after 
adjusting their p-values? How would such a change influence downstream analysis and their 
conclusions? 
 
R: We apologize for this rough error. Only adjusted p-values were used to select significant genes. 
 
Lastly, the authors should clearly label each figure and suppl figure. The merged PDF file and 
downloaded reviewer zip file do not contain labels for the figures, which is inconvenient for reviewing. 
 
R: We labeled each individual figure. I hope they are clearer now. Thank you. 

 



REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

EDITORIAL NOTE: The reviewer only submitted confidential comments to the editor. The reviewer has no 

further comments or requests. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have addressed my remaining comments and the manuscript is further improved. 
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