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A Marginalization Procedures
A.1 Continuous Outcome: Difference in Means
Let Y be a Normally distributed outcome with the target of inference being the marginal difference in means:

�(✓) := µ(✓;A = 1)� µ(✓;A = 0)

where µ(✓;A = a) = E[Y | A = a;✓]. Under the assumption of at least one treatment-covariate interaction (i.e.,
Z 6= ;; treatment effect heterogeneity), the difference in means is non-collapsible. Estimation proceeds assuming
independent outcomes and the following model:

p(Yi | Ai,Xi,✓) = Normal(µ(✓;Ai,Xi),�
2)

µ(✓;Ai,Xi) = �0 + �Ai +Xi� + (Ai · Zi)!

✓ = {�0,�,�,!,�
2}

L =
ntY

i=1

p(Yi | Ai,Xi,✓)

⇡(✓ | Dnt) /
ntY

i=1

p(Yi | Ai,Xi,✓)p(✓).

Samples from the posterior distribution of �(✓) are obtained from adjusted analyses by marginalizing s = 1, ..., S
samples of the conditional µ(✓;A,X) before forming the contrast:

�(✓s) = µ(✓s;A = 1)� µ(✓s;A = 0)

=

Z

X
µ(✓s;A = 1,X)p(X)dX�

Z

X
µ(✓s;A = 0,X)p(X)dX

=

Z

X
(�0,s + �s +X�s + Z!s)p(X)dX�

Z

X
(�0,s +X�s)p(X)dX.

The integrals are approximated using the Bayesian bootstrap procedure described in Section 3 of the manuscript. After
fitting the linear model, s = 1, ..., S samples are obtained from the joint posterior distribution of the model parameters,
⇡(✓ | Dnt). Let ✓s represent the s

th draw from this joint posterior distribution. For every row i = 1, ..., nt in the
sample data, a value of Ai = 1 is assigned. Then for each ✓s the following procedure is performed. The nt values of the
linear predictor µ(✓s;Ai = 1,Xi = xi) are calculated. A vector ws = (w1,s, ..., wnt,s) is drawn from a Dirichlet(1nt )
distribution. Using ws, the nt values are then averaged,

Pnt

i=1 wi,sµ(✓s;Ai = 1,Xi = xi), which marginalizes them
with respect to the observed X = x, yielding a single sample µ(✓s;A = 1). This occurs for all ✓s to yield S samples
from the posterior distribution of µ(✓;A = 1). This entire process is then repeated for Ai = 0, to yield S samples
from the posterior distribution of µ(✓;A = 0). These posterior samples are then subtracted to yield samples from the
posterior distribution of �(✓). A brief summary outline is included below.

1. Fit the linear regression model with identity link.
2. Obtain s = 1, ..., S samples from the joint posterior distribution of the model parameters, ⇡(✓ | Dnt).
3. Create one copy of the sample data where Ai = 1 for all i = 1, ..., nt.
4. For each ✓s, perform the following:

(a) For each i = 1, ..., nt, calculate µ(✓s;Ai = 1,Xi = xi).
(b) Sample ws = (w1,s, ..., wnt,s) from a Dirichlet(1nt ) distribution.
(c) Average these nt values to marginalize with respect to the observed X = x:

µ(✓s;Ai = 1) =
Pnt

i=1 wi,sµ(✓s;Ai = 1,Xi = Xi).
5. The s = 1, ..., S values of µ(✓s;A = 1) are samples from the posterior of µ(✓;A = 1).
6. Repeat steps 3-4 for Ai = 0 to yield S samples from the posterior of µ(✓;A = 0).
7. Subtract to obtain S samples from the posterior of �(✓).
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A.2 Binary Outcome: Relative Risk
Letting Y be distributed as a Bernoulli random variable, where Y = 1 indicates an event occurs and Y = 0 indicates no
event occurs, a marginal estimand of interest is the relative risk:

�(✓) := µ(✓;A = 1)/µ(✓;A = 0)

where µ(✓;A = a) = E[Y | A = a;✓]. Estimation proceeds assuming independent outcomes and the following
model:

p(Yi | Ai,Xi,✓) = Bernoulli(µ(✓;Ai,Xi))

µ(✓;Ai,Xi) = logit�1(�0 + �Ai +Xi� + (Ai · Zi)!)

✓ = {�0,�,�,!}

L =
ntY

i=1

p(Yi | Ai,Xi,✓)

⇡(✓ | Dnt) /
ntY

i=1

p(Yi | Ai,Xi,✓)p(✓).

To obtain posterior samples of the marginal estimand from adjusted analyses, s = 1, ..., S posterior samples from the
inverse logit link function applied to the linear predictors under treatment and no treatment are marginalized and then
divided:

�(✓s) =
µ(✓s;A = 1)

µ(✓s;A = 0)

=

R
X µ(✓s;A = 1,X)p(X)d(X)R
X µ(✓s;A = 0,X)p(X)d(X)

=

R
X logit�1{�0,s + �s +X�s + Z!s}p(X)d(X)

R
X logit�1{�0,s +X�s}p(X)d(X)

The integrals are approximated using the Bayesian bootstrap procedure described in Section 3 of the manuscript. After
fitting the generalized linear model with logit link function corresponding to ⌘, s = 1, ..., S samples are obtained from
the joint posterior distribution of the model parameters, ⇡(✓ | Dnt). Let ✓s represent the s

th draw from this joint
posterior distribution. For every row i = 1, ..., nt in the sample data, a value of Ai = 1 is assigned. Then for each ✓s
the following procedure is performed. The nt values of the indexed linear predictors are calculated and transformed by
the inverse logit to yield samples from µ(✓s;Ai = 1,Xi = xi) = logit�1(�0,s + �sAi +Xi�s + (Ai · Zi)!s). A
vector ws = (w1,s, ..., wnt,s) is drawn from a Dirichlet(1nt) distribution. Using ws, the nt values are then averaged,Pnt

i=1 wi,sµ(✓s;Ai = 1,Xi = xi), which marginalizes them with respect to the observed X = x, yielding a single
sample µ(✓s;A = 1) from the posterior distribution of µ(✓;A = 1). This occurs for all ✓s to yield S samples from
the posterior distribution of µ(✓;A = 1). This entire process is then repeated for Ai = 0, to yield S samples from the
posterior distribution of µ(✓;A = 0). These are then divided to yield S samples from the posterior distribution of �(✓).
A brief summary outline is included below.

1. Fit the logistic regression model.
2. Obtain s = 1, ..., S samples from the joint posterior distribution of the model parameters, ⇡(✓ | Dnt).
3. Create one copy of the sample data where Ai = 1 for all i = 1, ..., nt.
4. For each ✓s, perform the following:

(a) For each i = 1, ..., nt, calculate µ(✓s;Ai = 1,Xi = xi) = logit�1(�0,s+�sAi+Xi�s+(Ai ·Zi)!s).
(b) Sample ws = (w1,s, ..., wnt,s) from a Dirichlet(1nt ) distribution.
(c) Average these nt values to marginalize with respect to the observed X = x:

µ(✓s;A = 1) =
Pnt

i=1 wi,sµ(✓s;Ai = 1,Xi = xi).
5. The s = 1, ..., S values of µ(✓s;A = 1) are samples from the posterior distribution of µ(✓;A = 1).
6. Repeat steps 3-4 for Ai = 0 to yield S samples from the posterior distribution of µ(✓;A = 0).
7. Divide µ(✓s;A = 1)/µ(✓s;A = 0) for each s to obtain S samples from the posterior distribution of �(✓).

A.3 Time-to-event Outcome: Marginalization of Conditional Hazard Ratio Estimates
Let Y = {T, �} be defined as in the section for hazard ratios in the manuscript, where the target of inference is the
marginal hazard ratio:

�(✓) = h(t | A = 1)/h(t | A = 0)

= log{µ(✓;A = 1)}/ log{µ(✓;A = 0)}
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where µ(✓;A = a) = S(t | A = a;✓). Estimation proceeds assuming independent outcomes, no competing risks, and
the following model:

hi(t | Ai,Xi) = h0(t) exp(⌘i)

⌘i = �Ai +Xi� + (Ai · Zi)!

Si(t | Ai,Xi) = exp (�I(t; ,k, �) exp(⌘i))

✓ = { ,�,�,!}

p(Yi | Ai,Xi,✓) = Si(Ti | Ai,Xi)
1��ihi(Ti | Ai,Xi)

�i

L =
ntY

i=1

p(Yi | Ai,Xi,✓)

⇡(✓ | Dnt) /
ntY

i=1

p(Yi | Ai,Xi,✓)p(✓).

As the hazard ratio is non-collapsible, s = 1, ..., S marginal posterior samples from adjusted analyses are obtained
through marginalization of the log transformed survival probabilities:

�(✓s) =
hs(t | A = 1)

hs(t | A = 0)

=
log{µ(✓s;A = 1)}
log{µ(✓s;A = 0)}

=
log{

R
X µ(✓s;A = 1,X)p(X)dX}

log{
R
X µ(✓s;A = 0,X)p(X)dX}

=
log{

R
X exp [�I(t; s,k, �) exp(�s +X�s + Z!s)] p(X)dX}
log{

R
X exp [�I(t; s,k, �) exp(X�s)] p(X)dX}

.

Dividing log-transformed survival probabilities can be numerically unstable and is undefined for all t such that S(t|A =
a) 2 {0, 1}. Thus we use a more numerically stable identity [Stitelman et al., 2011, Remiro-Azócar et al., 2020]:

log(�(✓s)) = log

✓
hs(t|A = 1)

hs(t|A = 0)

◆
= log

✓
� log[µ(✓s;A = 1)]

� log[µ(✓s;A = 0)]

◆

= log{� log[µ(✓s;A = 1)]}� log{� log[µ(✓s;A = 0)]}.

The integrals are approximated using the Bayesian bootstrap procedure described in Section 3 of the manuscript.
After fitting the flexible, semi-parametric proportional hazards model, s = 1, ..., S samples are obtained from the
joint posterior distribution of the model parameters, ⇡(✓ | Dnt). Let ✓s represent the s

th draw from this joint
posterior distribution. For every row i = 1, ..., nt in the sample data, a value of Ai = 1 is assigned. Then for
each ✓s the following procedure is performed. For the t corresponding to the time from the start of the trial to
the current analysis, the nt values of the indexed conditional survival probabilities, µ(✓s;Ai = 1,Xi = xi) are
calculated. A vector ws = (w1,s, ..., wnt,s) is drawn from a Dirichlet(1nt) distribution. Using ws, the nt values are
then averaged,

Pnt

i=1 wi,sµ(✓s;Ai = 1,Xi = xi), which marginalizes them with respect to the observed X = x,
yielding a single sample µ(✓s;A = 1) from the posterior distribution of µ(✓;A = 1). For numerical stability, a
log{� log[·]} transformation is applied to yield a single sample from the posterior distribution of log{h(t | A = 1)}.
This occurs for all ✓s to yield S draws from the posterior distribution of log{h(t | A = 1)}. This entire process is then
repeated for Ai = 0, to yield S draws from the posterior distribution of log{h(t | A = 0)}. These posterior draws are
subtracted and then exponentiated to yield samples from the posterior distribution of the marginal hazard ratio �(✓). A
brief summary is below.

1. Fit a flexible semi-parametric proportional hazards model.
2. Obtain s = 1, ..., S samples from the joint posterior distribution of the model parameters, ⇡(✓ | Dnt).
3. Create one copy of the sample data where Ai = 1 for all i = 1, ..., nt.
4. For each ✓s, perform the following:

(a) For each i = 1, ..., nt, calculate the conditional survival probabilities at time t corresponding to the time
from the start of the trial to the current analysis, µ(✓s;Ai = 1,Xi = xi).

(b) Sample ws = (w1,s, ..., wnt,s) from a Dirichlet(1nt ) distribution.
(c) Average these nt values to marginalize with respect to the observed X = x:

µ(✓s;A = 1) =
Pnt

i=1 wiµ(✓s;Ai = 1,Xi = xi).
(d) Apply a log{� log[·]} transformation to yield a single sample from the posterior distribution of

log{h(t | A = 1)}.
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5. This yields S samples from the posterior distribution of log{h(t | A = 1)}.
6. Repeat steps 3-4 for Ai = 0 to yield S samples from the posterior distribution of log{h(t | A = 0)}.
7. Subtract and then exponentiate to obtain S samples from the posterior distribution of the marginal hazard ratio,

�(✓).
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B Ascertainment of Marginal Estimand Values
B.1 Ascertainment of Marginal Relative Risk (Binary Outcome)
We first select a value of �0 on the log-odds scale in the adjusted data generating models, such that the simulated
datasets have a specific marginal control event risk (pctr). We then use �0 and the obtained values of � (i.e., those
where the unadjusted model achieves 50% and 80% power, also on the log-odds scale) to select the reported value of
the marginal relative risk.

To find �0, let Y be a binary outcome. As a reminder, we define A as the treatment assignment indicator, where A = 1
means being assigned to the treatment group and A = 0 means being assigned to the control group. Let l be the number
of participants assigned to control, k be the number of participants assigned to treatment, and l + k = n be the total
number of participants potentially enrolled in the trial. Let Xn⇥p be the set of covariates used in the adjusted data
generating model, and Xi be the row vector corresponding to the values of the covariates for the i

th participant. Recall
the marginal control event risk, pctr, is the risk of having an event in those assigned to control. Then pctr can be defined
with respect to an adjusted data generating model as follows:

pctr = E[Y |A = 0]

⇡ 1

l

lX

i=1

Ê[Yi|Ai = 0,Xi]

=
1

l

lX

i=1

logit�1{�0 + �(Ai = 0) +Xi�}

=
1

l

lX

i=1

logit�1{�0 +Xi�}

0 =

"
lX

i=1

logit�1{�0 +Xi�}
#
� l ⇥ pctr

Given a fixed value of pctr, conditional covariate effects � on the log-odds scale, and initial simulation of the treatment
assignment and covariate distributions, {A,X}, �0 can be optimized using the last line above (i.e., using uniroot() in
R).

In the simulations for each relative risk value within each maximum sample size, 5,000 datasets (each with 5,000
participants) were generated using {�, A,X} as described under the binary outcome data generating mechanism. From
these, 5,000 values for �0 were found and the mean of this distribution was selected as the value of �0. Using this and
the value of �, 5,000 values for the marginal relative risk were obtained by dividing the proportion of events in those
assigned to treatment (Ê[Y |A = 1]) by the proportion of events in those assigned to control (Ê[Y |A = 0]). The mean
of this distribution was then reported as the value of the marginal relative risk corresponding to �0 and �.

B.2 Ascertainment of Marginal Hazard Ratio (Time-to-event Outcome)
Our goal is specify a value of the reported marginal hazard ratio which corresponds to the value of � (on the log-
hazard scale) used in the adjusted data generating models. Recall our assumption of proportional hazards, where the
marginal hazard ratio is not time-dependent. Let Y = {T, �} be defined as in the section for hazard ratios in the
manuscript. Define A as the treatment assignment indicator, where A = 1 means being assigned to the treatment
group and A = 0 means being assigned to the control group. Let t be the maximum duration of the trial and
P (T > t|A = 1) = S(t|A = 1) and P (T > t|A = 0) = S(t|A = 0) be the survival probabilities at time t for those
assigned to treatment and control, respectively. In the simulations for each hazard ratio value within each maximum
sample size, 5,000 datasets (each with 5,000 participants) were generated using {�, A,X, t = 50} as described under
the time-to-event outcome data generating mechanism. For each dataset, the value of the marginal hazard ratio was
calculated as:

� = exp{log(� log[P̂ (T > 50|A = 1)])� log(� log[P̂ (T > 50|A = 0)])}

The mean of this distribution was then reported as the value of the marginal hazard ratio corresponding to �.
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C CCEDRN COVID-19 RCT Truncated Covariate Distributions
The following algorithm yields datasets from truncated Normal distribution F with correct post-truncation minimum ^,
maximum _, q1, and q3 values and approximately correct post-truncation µ and � values.

1. Determine maximum sample size of trial, max_ss.
2. Obtain reported summary statistics {q1, q3, µ,�} and range [^,_].
3. Set plausible value of median q2 if not reported.
4. Set n = 250⇥max_ss.
5. Select starting values for {⇠, ⌧2}.
6. Until µ⇤ ⇡ µ and �

⇤ ⇡ �:
(a) Generate i = 1, ..., n values of Xi from N(⇠, ⌧2).
(b) Discard Xi 62 [min,max].
(c) Sample n

4 values of Xi 2 [^, q1].
(d) Sample n

4 values of Xi 2 [q1, q2].
(e) Sample n

4 values of Xi 2 [q2, q3].
(f) Sample n

4 values of Xi 2 [q3,_].
(g) Collect all and set µ⇤ and �

⇤ as the mean and standard deviation of the sampled values.
(h) Update {⇠, ⌧2} or break if µ⇤ ⇡ µ and �

⇤ ⇡ �.
7. To generate one dataset from F , use final values of {⇠, ⌧2} to repeat process above, but sample max_ss values

from the n collected values.

For age, the following summary statistics and simulation parameter values were used:

{^ = 18, q1 = 39, q2 = 55, q3 = 70,_ = 90, µ = 54.7,� = 19.8, ⇠ = 62, ⌧ = 40}.

For respiratory rate, the following summary statistics and simulation parameter values were used:

{^ = 12, q1 = 18, q2 = 20, q3 = 22,_ = 40, µ = 21.0,� = 6.2, ⇠ = 30, ⌧ = 6}.
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D Summary graphics for bias and RMSE
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Figure D.1: Continuous outcome. A) Posterior median bias and B) root mean squared error. Panels correspond to
various maximum sample sizes (max ss). Points are jittered horizontally.
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Figure D.2: Binary outcome. A) Posterior median bias and B) root mean squared error. Panels correspond to various
maximum sample sizes (max ss). Points are jittered horizontally.
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Figure D.3: Time-to-event outcome. A) Posterior median bias and B) root mean squared error. Panels correspond to
various maximum sample sizes (max ss). Points are jittered horizontally.
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Figure D.4: CCEDRN-ADAPT COVID-19 trial with binary outcome. A) Posterior median bias and B) root mean
squared error. Panels correspond to a maximum sample size (max ss) of 3,000. Points are jittered horizontally.
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E Simulation for Informative Prior on Treatment Effect
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Figure E.1: Binary outcome. A) Power and B) probability of stopping early. Panels correspond to various maximum
sample sizes (max ss). Points are jittered horizontally.

In this section, we consider the impact of incorporating informative prior information on the treatment effect for trials
with binary endpoints. Six adjustment models are considered:

1. correct: �0 + �A+ �1X1 + �2X2 + �3X3 + �4X
2
3 + �5X5

2. correct prior: �0 + �A+ �
†
1X1 + �

†
2X2 + �

†
3X3 + �

†
4X

2
3 + �

†
5X5

3. correct strong prior: �0 + �A+ �
††
1 X1 + �

††
2 X2 + �

††
3 X3 + �

††
4 X

2
3 + �

††
5 X5

4. unadjusted: �0 + �A

5. unadjusted prior: �0 + �
†
A

6. unadjusted strong prior: �0 + �
††
A

The regression coefficients {�,�,�†
,�††} and the functional forms of the correct, correct prior, correct strong prior,

and unadjusted models are defined as previously described for the binary trials in the simulation study section of the
manuscript. The unadjusted prior model includes a prior on the treatment indicator coefficient centered at the value
used in the data generating mechanism where the unadjusted model achieves approximately 80% power (50% power
for max ss = 100). The unadjusted strong prior model both centers and re-scales this prior to be more informative. The
following priors are then used for the treatment indicator coefficients in the unadjusted prior and unadjusted strong
prior models:

�
† ⇠ Normal(c, 2.5/sa)

�
†† ⇠ Normal(c, 1/sa)

where c = {�1.21,�1.36,�0.82,�0.54} for max ss = {100, 200, 500, 1000}. All other components for the binary
trials remain as described in the simulation study section of the manuscript.

Results for power and the probability of stopping early are displayed in Figure E.1. Including stronger priors on the
treatment effect may increase the power and probability of stopping early as compared to weakly informative priors.
This hold for both the correct and unadjusted model variants and is most beneficial for smaller sample sizes. However,
this comes at the cost of inflated type 1 error (T1E), with the greatest inflation occurring for the smaller maximum
sample sizes (Table E.6). Both the type 1 error inflation and increase in power become less pronounced in the trials
with larger maximum sample sizes where the priors are dominated by the data.
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Table E.6: Binary outcome. Type 1 error rate (T1E), bias under the null (Bias⇤), and expected sample size at three
different values of the marginal relative risk (�).

Maximum sample size = 100 Maximum sample size = 200

Expected sample size Expected sample size

Adjustment model T1E Bias⇤ � = 1 � = 0.53 � = 0.46 T1E Bias⇤ � = 1 � = 0.59 � = 0.41

correct 0.063 0.031 97.0 86.3 83.6 0.036 0.021 196.8 162.5 138.3
correct prior 0.071 0.021 96.5 85.7 82.2 0.038 0.017 196.5 161.9 136.5
correct strong prior 0.063 -0.014 97.3 86.6 83.8 0.046 -0.006 195.7 159.2 134.9
unadjusted 0.034 0.058 98.6 90.7 88.3 0.031 0.025 198.0 171.4 147.2
unadjusted prior 0.034 0.051 98.6 90.0 87.4 0.032 0.021 197.9 170.8 146.2
unadjusted strong prior 0.041 0.009 98.4 89.6 86.8 0.034 0.001 197.6 167.6 142.8

Maximum sample size = 500 Maximum sample size = 1000

Expected sample size Expected sample size

Adjustment model T1E Bias⇤ � = 1 � = 0.72 � = 0.60 T1E Bias⇤ � = 1 � = 0.80 � = 0.72

correct 0.028 0.010 493.7 404.9 334.9 0.022 0.008 992.0 823.2 681.5
correct prior 0.028 0.009 494.1 402.9 334.9 0.021 0.007 991.7 818.9 680.3
correct strong prior 0.028 0.004 493.7 401.2 329.9 0.023 0.005 990.5 813.9 675.7
unadjusted 0.026 0.016 494.6 426.0 367.0 0.024 0.010 990.2 859.6 734.2
unadjusted prior 0.029 0.015 493.4 426.7 364.9 0.024 0.009 989.5 858.6 733.7
unadjusted strong prior 0.031 0.009 492.6 423.0 362.7 0.023 0.007 989.5 858.1 733.9
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F Bias From Overestimation in Trials which Stop Early for Superiority
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Figure F.1: 100 posterior distributions of the relative risk (top) and log-relative risk (bottom) for a trial with a binary
endpoint and maximum sample size of 100. Vertical line represents the null treatment effect.

[Walter et al., 2019] shows that overestimation is to be expected when trials permit early stopping for superiority. They
consider the case of frequentist group-sequential designs and compare three different stopping rules which differ in how
the overall ↵ is divided among the interim and final analyses. The Pocock, O’Brien, and Fleming (PCK) stopping rule
evenly divides ↵ across all analyses (interim and final) keeping the stringency of the stopping criteria constant. This is
the frequentist group sequential stopping rule most like the Bayesian stopping rule employed in the current manuscript,
where a single value for the upper probability threshold u is used (u=0.99), thereby also keeping the stringency of
the stopping rule constant across all interim and final analyses. It is shown that overestimation is expected for the
PCK stopping rule, and so we conclude it should also be expected for the Bayesian stopping rule employed here, thus
inducing the observed bias in the treatment effect under the simulation scenarios. In Section 3.1 of [Walter et al., 2019],
the authors discuss observing greater over-estimation for the Haybittle and Peto (HP) stopping rule as compared to the
PCK stopping rule. They state “rules (such as HP) that have a more stringent threshold for stopping involve a greater
risk of over-estimation if the rule is actually invoked." This suggests that Bayesian stopping rules which have more
stringent initial stopping criteria may lead to increased bias as compared to the stopping rules employed in the current
manuscript, though we do not explore this further here.

Considering bias under the null, the difference in signs between the continuous endpoint versus the binary and time-to-
event endpoints reflects the lower bounds of the estimands. The difference in means under the continuous endpoint is
unbounded below, whereas the relative risk and hazard ratios are bounded below by zero. When bias is calculated on
the log-relative risk and log-hazard ratio scales, most values for bias under the null for both the binary and time-to-event
endpoints become negative as well, with greater bias for smaller sample sizes as in the continuous endpoint. This is
explained visually in Figure F.1 and F.2, where 100 posterior distributions (Figure F.1) and posterior medians (Figure
F.2) have been plotted for the null treatment effect for a trial with a binary endpoint under a maximum sample size of
100. The vertical lines represent the null values used for calculation of bias.

In the top panel of Figure F.1 on the relative risk scale, we see many right-skewed posteriors which lead to some
posterior median estimates which are much greater than the null (Figure F.2, top panel). This induces positive bias
under the null. When we move to the log scale, the right-skewed distributions become more normal in shape and are
more centered around the null, but some of the posteriors which were closer to the lower boundary of 0 on the relative
risk scale become left-skewed (Figure F.1, bottom panel). This results in some posterior medians becoming much
less than the null (Figure F.2, bottom panel) which leads to negative bias under the null as in the continuous endpoint
case. When calculating bias for non-null treatment effects on the relative risk and hazard ratio scales, the posteriors are
pushed further toward 0 than in the figures included in this section which is why they can still attain negative values and
clearly exhibit overestimation in these cases.
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Figure F.2: 100 posterior medians of the relative risk (top) and log-relative risk (bottom) for a trial with a binary
endpoint and maximum sample size of 100. Vertical line represents the null treatment effect.
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G Example of the Non-Collapsibility of the Odds Ratio
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Figure G.1: Example of non-collapsibility of the odds ratio. Colored circles and triangles correspond to values of risk
under treatment or control for different values of X .

We consider a slightly modified version of the example provided in [Daniel et al., 2021]. Consider a RCT with a binary
endpoint following the logistic regression model below which contains a binary covariate X and binary treatment
indicator A, and where P (X = 1) = P (A = 1) = 0.5. Define � = log(5), � = log(10), and ✓ = {�,�}. We assume
the following model:

logit(P (Y = 1 | A,X)) = �A+ �X.

In this example, the conditional odds ratio for those who are treated versus untreated is 5, regardless of the value
of X . To see this, define µ(✓;A,X) = P (Y = 1 | A,X) = logit�1(�A + �X). For X = 0, we have µ(✓;A =
1, X = 0) = 0.833 and that 1 � µ(✓;A = 1, X = 0) = 0.167 yielding the odds for the event in those who are
treated to be µ(✓;A = 1, X = 0)/1 � µ(✓;A = 1, X = 0) = 0.833/0.167 = 5. For those who are untreated,
we have µ(✓;A = 0, X = 0) = 0.5 and that 1 � µ(✓;A = 0, X = 0) = 0.5 yielding odds of µ(✓;A = 0, X =
0)/1� µ(✓;A = 0, X = 0) = 0.5/0.5 = 1. Dividing these yields a conditional odds ratio for those who are treated
versus untreated under X = 0 to be 5/1 = 5. Similar calculations for X = 1 yield µ(✓;A = 1, X = 1) = 0.9804,
1� µ(✓;A = 1, X = 1) = 0.0196 yielding the odds for the event in those who are treated to be 0.9804/0.0196 = 50.
For those who are untreated, we have µ(✓;A = 0, X = 1) = 0.9091 and that 1 � µ(✓;A = 0, X = 1) = 0.0909
yielding odds of 0.9091/0.0909 = 10. Dividing these yields a conditional odds ratio for those who are treated
versus untreated under X = 1 to be 50/10 = 5. In Figure G.1, we that these conditional odds ratios correspond
to a vertical comparison of the risks under the treatment assignments A for either value of X (dotted vertical lines).
To obtain the marginal odds ratio, we must average these risks with respect to the distribution of X . This yields
the horizontal dashed lines (colored by value of A) where µ(✓;A = 1) = 0.5(0.833) + 0.5(0.980) = 0.907 and
µ(✓;A = 0) = 0.5(0.5) + 0.5(0.909) = 0.705. The marginal odds ratio then corresponds to a vertical comparison of
these horizontal lines. Doing so yields a marginal odds ratio of �(✓) = (0.907/0.093)/(0.705/0.295) = 4.1. We see
that the marginal odds ratio is not equal to the conditional odds ratio, and thus the odds ratio is non-collapsible.

This same example can be viewed using two-by-two tables, where the cells contain the proportions expected under each
combination of treatment assignment and covariate value.

X = 0
A = 1 A = 0 P (Y = y)

Y = 1 0.8333333 0.5 0.667
Y = 0 0.16666667 0.5 0.333

P (A = a) 0.5 0.5 1

X = 1
A = 1 A = 0 P (Y = y)

Y = 1 0.9803922 0.9090909 0.945
Y = 0 0.01960784 0.09090909 0.055

P (A = a) 0.5 0.5 1

The conditional odds ratio from each table is 5. Below, we consider the marginal table with proportions expected
under each combination of treatment assignment and covariate value. This is found by averaging the risk values in the
conditional tables with respect to the distribution of X , where we recall that P (X = 1) = 0.5.
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A = 1 A = 0 P (Y = y)
Y = 1 0.90686275 0.70454545 0.806
Y = 0 0.09313725 0.29545455 0.194

P (A = a) 0.5 0.5 1

The marginal odds ratio from the table above is 4.1. We observe that the true conditional and marginal odds ratios are
not equal, thus showing the odds ratio is non-collapsible.

14


	Introduction
	Bayesian Adaptive Designs with Early Stopping
	Estimands and Bayesian Estimation
	Collapsible Treatment Effects
	Difference in Means: No Treatment-Covariate Interactions

	Non-collapsible Treatment Effects
	Difference in Means: Treatment-Covariate Interactions
	Relative Risk and Odds Ratio
	Hazard Ratio


	Simulation Study
	Data Generating Mechanisms
	Adjustment Models
	Simulation Study Results

	Application: CCEDRRN-ADAPT
	Discussion
	Marginalization Procedures
	Continuous Outcome: Difference in Means
	Binary Outcome: Relative Risk
	Time-to-event Outcome: Marginalization of Conditional Hazard Ratio Estimates

	Ascertainment of Marginal Estimand Values
	Ascertainment of Marginal Relative Risk (Binary Outcome)
	Ascertainment of Marginal Hazard Ratio (Time-to-event Outcome)

	CCEDRN COVID-19 RCT Truncated Covariate Distributions
	Summary graphics for bias and RMSE
	Simulation for Informative Prior on Treatment Effect
	Bias From Overestimation in Trials which Stop Early for Superiority
	Example of the Non-Collapsibility of the Odds Ratio

