Optimizing malaria vector control in the Greater Mekong Subregion: A systematic review and mathematical modelling study to identify desirable intervention characteristics

Yuqian Wang^{1,2}, Nakul Chitnis^{1,2}, and Emma L Fairbanks^{1,2}

¹Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwill, Basel, Switzerland ²University of Basel, Petersplatz 1, 4001, Basel, Switzerland *Corresponding author: emma.fairbanks@unibas.ch

1 Equations in the intervention model

We use an *Anopheles* feeding cycle model first described in Chitnis et al. [1] and Briët et al. [2]. The framework for intervention effects has previously been utilized and described in Denz et al. [3] and Fairbanks et al. [4]. Here we provide an overview of these frameworks. A detailed description of parameters are listed in Table S1.

Vectorial capacity are calculated as

$$\Psi_{ij} = \underbrace{\frac{\Psi_{ij}^{(A)}}{1 - P_A - P_{df}}}_{l=1} \times \underbrace{\frac{\Psi_{ij}^{(B)}}{P_{Aj}P_{B_j}P_{C_j}P_{D_j}P_{E_j}}}_{...\Psi_{ij}^{(C)}} \times \underbrace{\left[\left(\sum_{h=0}^{k_+} \binom{\theta_s - (h+1)\tau + h}{h}\right)P_A^{\theta_s - (h+1)\tau}P_{df}^h\right)}_{...\Psi_{ij}^{(C)}} \times \underbrace{\left[\left(\sum_{h=0}^{k_+} \binom{\theta_s - (h+1)\tau + h}{h}\right)P_A^{\theta_s - (h+1)\tau}P_{df}^h\right)}_{...\Psi_{ij}^{(D)}} \times \underbrace{\frac{P_{Ai}P_{B_i}}{1 - P_A - P_{df}}}_{...\Psi_{ij}^{(D)}}.$$
(1)

In the vectorial capacity equation, $\Psi_{ij}^{(A)}$ represents the number of mosquitoes seeking for a host in a single day, $\Psi_{ij}^{(B)}$ indicates the probability of mosquitoes bite a type j host during that day and live through a feeding cycle, $\Psi_{ij}^{(C)}$ is the probability of mosquitoes survive enough time to become infective, and the total number of potential bite on type i host is calculated as $\Psi_{ij}^{(D)}$ [1].

The host availability rates are calculated as

$$\alpha_i = \frac{1}{N_i} \left(\frac{P_{A^i}}{1 - P_A} \right) \left(\frac{-\ln P_A}{\theta_d} \right).$$
(2)

Derivation of host availability rate can be found in Additional file 2 in Briët et al. [2].

Then we can consider the intervention effects as

Host availability rate of protected hosts:

$$(1 - min(\beta_r + \beta_m + \beta_d, 1)) \times \alpha_{Hb},$$

where α_{Hb} is the availability rate of a human host not protected by the intervention, β_r is the repelling effect, β_m preprandial killing effect, and β_d is the disarming effect. The reduction in biting is set to a maximum of 1, since the host availability rate is larger than or equal to 0.

Probability of surviving to lay eggs after biting a protected human host:

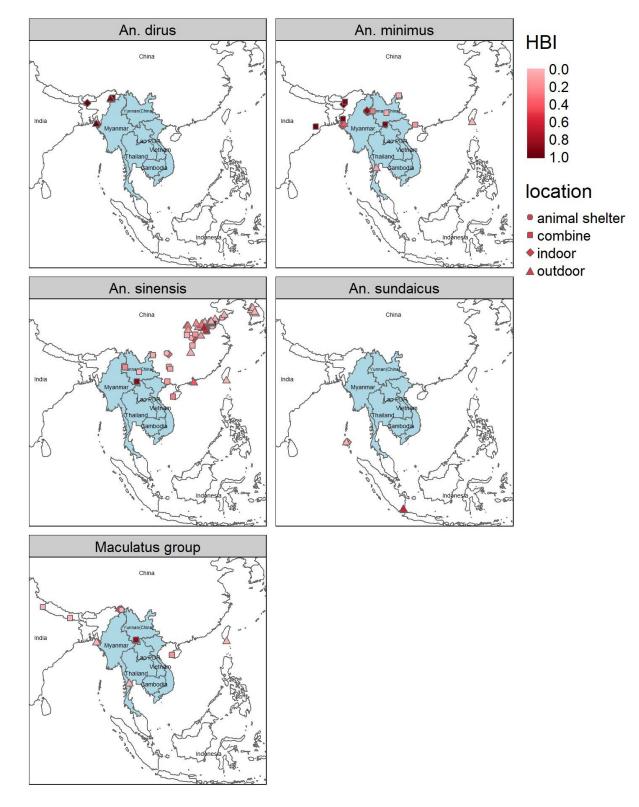
$$(1-\xi) \times P_c,$$

where P_c is the probability for a mosquito that finds a resting place after biting a unprotected human host and ξ is the probability a mosquitoes, which would have survived biting a human host without the intervention, dies postprandially if they bite a protected host.

Rate of disarming or preprandial killing: This is modelled as a dummy host, which does not contribute to malaria transmission, with an availability rate of

$$(\beta_m + \beta_d) \times \alpha_{Hb}.$$
 (3)

Probability of surviving to lay eggs, given the mosquito is preprandially killed or disarmed:


$$\left(\frac{\beta_d}{\beta_d + \beta_m}\right)$$

References

- N Chitnis, T Smith, and R Steketee. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. *Journal of Biological Dynamics*, 2(3):259–285, 2008. doi: 10.1080/17513750701769857.
- [2] OJT Briët, DE Impoinvil, N Chitnis, E Pothin, JF Lemoine, J Frederic, and TA Smith. Models of effectiveness of interventions against malaria transmitted by *Anopheles albi*manus. Malaria journal, 18(1):263, 2019. doi: 10.1186/s12936-019-2899-3.
- [3] A Denz, MM Njoroge, MM Tambwe, C Champagne, F Okumu, JJA van Loon, A Hiscox, A Saddler, U Fillinger, SJ Moore, and N Chitnis. Predicting the impact of outdoor vector control interventions on malaria transmission intensity from semi-field studies. *Parasites* & Vectors, 14(1):64, 2021. doi: 10.1186/s13071-020-04560-x.
- [4] EL Fairbanks, M Saeung, A Pongsiri, E Vajda, Y Wang, DJ McIver, JH Richardson, A Tatarsky, NF Lobo, SJ Moore, A Ponlawat, T Chareonviriyaphap, A Ross, and N Chitnis. Inference for entomological semi-field experiments: Fitting a mathematical model assessing personal and community protection of vector-control interventions. *Comput Biol Med*, 168:107716, 2024. doi: 10.1016/j.compbiomed.2023.107716.

Symbol	Parameter definition	Default value	Range	Ref.			
Bionomic parameters							
χ	Human blood index	0.5	(0.01, 1)				
M	Parity proportion	0.5	(0.39, 0.78)				
A_0	Sac proportion	0.5	(0.16, 0.88)				
au	Resting period duration	3 days	(2, 6)				
	Standard parameters						
$ heta_d$	Maximum time a mosquito unsuccessfully searches for a blood meal per day	$0.33 \mathrm{~days}$		[2]			
θ_s	Duration of the extrinsic incubation period	10 days		[2]			
P_B	Probability that a mosquito bites after encountering a host	0.95		[2]			
P_C	Probability that a mosquito finds a resting place after biting	0.95		[2]			
P_D	Probability that a mosquito survives the resting phase	0.99		[2]			
P_E	Probability that a mosquito lays eggs and returns to host-seeking	0.88		[2]			
N	Total number of hosts	1000					
N_{v0}	Total number of emerging mosquitoes that survive to seek for blood meal each day						
Derived parameters							
P_A	Probability of a mosquito that does not find a host or die after searching for blood meal for one night						
P_{A^i}	Probability of a mosquito finds a type i host during one night blood meal search						
P_{df}	Probability of a mosquito encounters a host and live through the whole feeding cycle						
P_f	Probability of a mosquito lives through a feeding cycle						
Intervention parameters							
β_r	Repelling effect		(0, 0.6)	[4]			
β_d	Disarming effect		(0, 0.6)	[4]			
β_m	Preprandal killing effect		(0, 0.6)	[4]			
ξ	Postprandal killing effect		(0, 0.4)	[4]			

Table S1: Detailed parameter definition, default value and range of vectorial capacity model and intervention model.

2 Geographical distribution figures

Figure S1: Geographic distribution of HBI data points for different species complexes

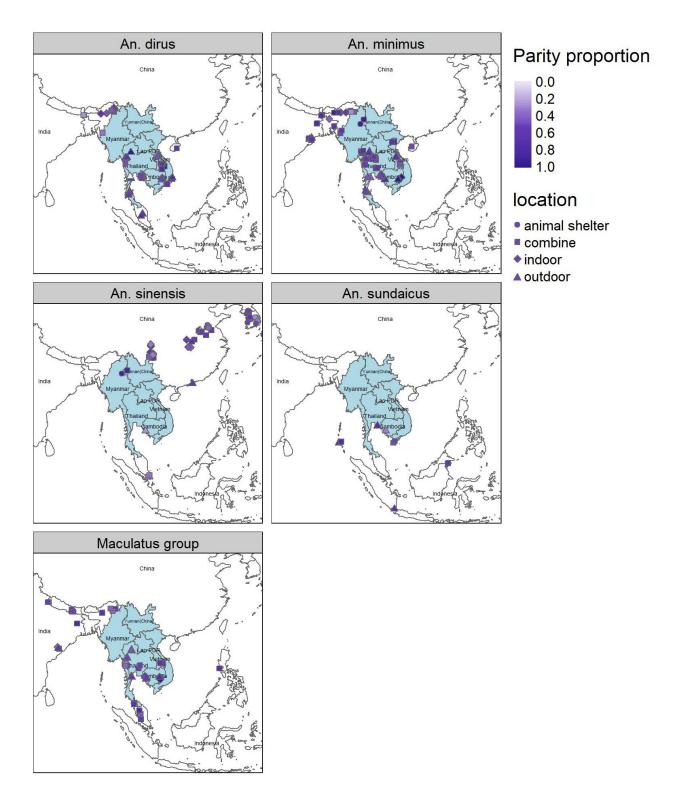


Figure S2: Geographic distribution of parity proportion data points for different species complexes

3 Parity rate logistic regression results

Variable		OR (univariate)	OR (multivariate)
Species complex	Maculatus group	-	-
	An. dirus	$1.72~(1.651.79,~p{<}0.001)$	$1.18~(1.061.30,~p{=}0.002)$
	An. minimus	1.40 (1.36–1.45, p<0.001)	1.91 (1.70–2.15, p<0.001)
	An. sinensis	$1.28~(1.241.32,~p{<}0.001)$	$1.10~(1.021.19,~p{=}0.017)$
	An. sundaicus	1.37 (1.30–1.45, p<0.001)	1.21 (1.12–1.32, p<0.001)
Insecticide	No	-	-
	Yes	$0.87~(0.850.89,~p{<}0.001)$	$0.82~(0.79 – 0.85,~p{<}0.001)$
Season	Dry	-	-
	Rainy	$0.86~(0.830.89,~p{<}0.001)$	$0.99~(0.941.03,~p{=}0.509)$
	Both	$0.80~(0.770.83,~\text{p}{<}0.001)$	$0.92~(0.870.96,~\mathrm{p}{<}0.001)$
Location	Indoor	-	-
	Animal shelter	1.48 (1.39–1.58, p<0.001)	1.33 (1.20–1.46, p<0.001)
	Combined	$1.09~(1.051.14,~p{<}0.001)$	$1.10~(1.041.17,~p{<}0.001)$
	Outdoor	1.48 (1.42–1.55, p<0.001)	$1.24~(1.151.32,~p{<}0.001)$
Method	Biting (whole night)	-	-
	Biting (half night)	1.13 (1.07–1.19, p<0.001)	$0.82 (0.77 – 0.88, \mathrm{p}{<}0.001)$
	Combined	0.98~(0.951.00,~p=0.079)	1.20 (1.13–1.26, p<0.001)
	Light trap	$1.30~(1.241.37,~\mathrm{p}{<}0.001)$	1.18 (1.08–1.28, p<0.001)
	Odour trap	$1.03~(0.941.13,~\mathrm{p}{=}0.552)$	0.48~(0.171.33,~p=0.158)
	Resting	$0.92~(0.880.96,~\text{p}{<}0.001)$	$1.00~(0.941.07,~\mathrm{p}{=}0.958)$
Land use	Herb	-	-
	Cropland	$0.82~(0.790.85,~\text{p}{<}0.001)$	1.18 (1.09–1.27, p<0.001)
	Forest	$0.81~(0.790.84,~\mathrm{p}{<}0.001)$	$1.22~(1.141.31,~\mathrm{p}{<}0.001)$
	Forest/cropland	$0.85~(0.810.89,~\mathrm{p}{<}0.001)$	$1.17~(1.081.26,~p{<}0.001)$
	Urban	$0.71~(0.630.80,~p{<}0.001)$	$1.16~(0.901.49,~\mathrm{p}{=}0.258)$
Climate	Temperate	-	-
	Cold	1.33 (1.28–1.37, p<0.001)	$1.09~(1.031.16,~p{=}0.005)$
	Tropical	1.21 (1.18–1.25, p<0.001)	$1.17~(1.081.27,~\text{p}{<}0.001)$
	An. dirus:tropical		$1.57~(1.401.77,~\mathrm{p}{<}0.001)$
	An. minimus:tropical		$0.72~(0.640.81,~\text{p}{<}0.001)$
	An. sinensis:tropical		$0.36~(0.250.51,~\mathrm{p}{<}0.001)$

Table S2: Univariate and multivariate regression results for parity proportion.

4 Sensitivity analysis results

Parameters	Index $(95\%$ confidence interval)		
HBI . parity	0.14 (0.10-0.18)		
HBI . sac	$0.00 \ (-0.01 - 0.01)$		
HBI . resting duration	$0.06 \ (0.04 - 0.09)$		
Parity . sac	0.05 (-0.02 - 0.14)		
Parity . resting duration	$0.09 \ (0.05 - 0.13)$		
Sac . resting duration	$0.05 \ (0.02 - 0.07)$		

Table S3: Sobol's second order index