1 Supplementary Information

2	Deuteration-enhanced neutron contrasts to probe amorphous domain
3	sizes in organic photovoltaic bulk heterojunction films
4	Guilong Cai ^{1,2,} †, Yuhao Li ^{1,3,4,} †*, Yuang Fu ^{1,} †, Hua Yang ^{3,4} , Le Mei ⁵ , Zhaoyang Nie ⁶ ,
5	Tengfei Li ⁷ , Heng Liu ¹ , Yubin Ke ^{3,4} , Xun-Li Wang ^{8,9} , Jean-Luc Brédas ¹⁰ , Man-Chung
6	Tang ⁶ , Xiankai Chen ⁵ , Xiaowei Zhan ^{7,*} and Xinhui Lu ^{1,*}
7	
8	¹ Department of Physics, The Chinese University of Hong Kong, Hong Kong, China.
9	E-mail: <u>xinhui.lu@cuhk.edu.hk</u>
10	
11	² Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process
12	Engineering, Chinese Academy of Sciences, Beijing, China.
13	
14	³ Spallation Neutron Source Science Center, Dongguan 523803, China. E-mail:
15	liyuhao@ihep.ac.cn
16	
17	⁴ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049, China.
18	
19	⁵ Department of Materials Science and Engineering, City University of Hong Kong,
20	Hong Kong, China.
21	

22	⁶ Institute of Materials Research, Tsinghua Shenzhen International Graduate School,
23	Tsinghua University, Shenzhen 518055, China.
24	
25	⁷ School of Materials Science and Engineering, Peking University, Beijing, China. E-
26	mail: <u>xwzhan@pku.edu.cn</u>
27	
28	⁸ Department of Physics and Center for Neutron Scattering, City University of Hong
29	Kong, Hong Kong, China.
30	
31	⁹ Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong,
32	China.
33	
34	¹⁰ Department of Chemistry and Biochemistry, The University of Arizona, Tucson,
35	Arizona 85721-0041, USA.
36	
37	† These authors contributed equally: Guilong Cai, Yuhao Li, Yuang Fu
38	
39	* Corresponding authors

41 Supplementary Notes

43 **Supplementary Note 1.** Synthesis and characterizations of *d*-Y6 and *d*-Y7. 44 Compound S2. To the round bottom flask (25 mL) charged with dodecanoic-D23 acid 45 (2.0 g, 9.0 mmol) under nitrogen atmosphere, thionyl chloride (SOCl₂) (1.3 mL, 18.0 46 mmol) was added. The reaction mixture was placed into preheated oil bath at 60 °C. 47 After 5 minutes the nitrogen balloon was changed, due to hydrogen chloride gas 48 released in the reaction, this process was continued until there is no more hydrogen 49 chloride gas evolved from the reaction. Excess thionyl chloride was removed under 50 reduced pressure and dried over high vacuum for overnight. The residue Compound S1 51 is used in next step without further purification. To a stirring mixture solution of 3-52 bromothiophene (1.3 g, 8.0 mmol) and Compound 1 (2.0 g, 8.0 mmol) in CH₂Cl₂ (30 53 mL), AlCl₃ (1.0 g, 8.0 mmol) was added in portions over 15 min. The resulting solution 54 was stirred for 3 h at room temperature. Cold water (20 mL) was then slowly added to 55 quench the reaction. The crude product was extracted from the mixture solution with 56 CH_2Cl_2 (3 × 20 mL). The combined organic layers were washed with brine and dried 57 over anhydrous MgSO₄. Removal of the organic solvent gives the colorless liquid product of Compound S2 (3.8g, 84%). ¹H NMR (400 MHz, Chloroform-d) δ 7.5 (d, J 58 59 = 5.2 Hz, 1H), 7.1 (d, J = 5.2 Hz, 1H).

60 Compound S4. To a stirring mixture solution of Compound S2 (2.0 g, 5.0 mmol) and
61 K₂CO₃ (1.6 g, 11.0 mmol) in DMF (30 mL), ethyl thioglycolate (0.58 mL, 5.3 mmol)

62	was added. The resulting mixture solution was stirred for 24 h at ambient temperature.
63	A solution of NaOH (0.05 g, 1.3 mmol) in ethanol (3 mL) was added, and the reaction
64	was continued for another 24 h. The reaction mixture was poured into water (50 mL)
65	and extracted with ethyl acetate (3 \times 20 mL). The organic layer was washed with water
66	$(3 \times 20 \text{ mL})$ and dried over anhydrous MgSO ₄ . The crude product of Compound S3
67	was obtained by removing organic solvents and used directly for the next step without
68	further purification. To a mixture solution of Compound S3 (1.5 g, 1.5 mmol) in ethanol
69	(30 mL), NaOH (0.16 g, 4.0 mmol) was added. The resulting solution was heated to
70	reflux for ca. 3 h. After starting materials was completely consumed by TLC indication,
71	the solvent was removed in vacuo. 30 mL of water was added to the residue. The pH
72	was adjusted to 1 with 10 M HCl to precipitate the titled product. Recrystallization from
73	hexane gave the product Compound S4 (1.1g, 80%). ¹ H NMR (400 MHz, Chloroform-
74	d) δ 7.5 (d, $J = 5.2$ Hz, 1H), 7.1 (d, $J = 5.2$ Hz, 1H), 2.8 (s, 2H).
75	Compound S5. A mixture of Compound S4 (1.0 g, 2.8 mmol), copper (0.09 g, 1.46
76	mmol), and quinoline (5 mL) was heated to reflux for 3 h. The resultant solution was
77	concentrated by vacuum distillation. Ethyl acetate (20 mL) was added, and the collected
78	organic layer was washed with 1 M HCl (3 \times 15 mL) and dried over anhydrous MgSO ₄ .
79	The solvent was removed in vacuo, and the residue was passed through a silica gel
80	column eluting with hexane to yield Compound S5 (550 mg, 63%). 1 H NMR (400 MHz,
81	Chloroform- <i>d</i>) δ 7.4 (dd, $J = 5.2$, 1.6 Hz, 1H), 7.2 (d, $J = 5.2$ Hz, 1H), 7.0 (d, $J = 1.3$
82	Hz, 1H), 2.7 (s, 2H).

83	Compound 1. Compound S5 (500 mg, 1.6 mmol) was dissolved in anhydrous
84	tetrahydrofuran (THF, 20 mL) in an argon atmosphere, and stirred at -78 °C for 30 min.
85	<i>n</i> -butyllithium (1.6 mmol, 2.5 mol/L, 0.64 mL) was added into the solution by dropwise
86	at -78 °C and continued to stir for 2 h. Tributyltin chloride (220 mg, 0.67 mmol) was
87	dripped in the mixture. After stirring for 30 min, the mixture was moved to room
88	temperature and reacted overnight. Then, the mixture was extracted with
89	dichloromethane, concentrated in vacuo, and dried to produce crude product. Then,
90	redissolve the crude product in hexanes and filter, and condense the filtrate to obtain
91	the Compound 1 (820 mg, 85%). ¹ H NMR (400 MHz, Chloroform- <i>d</i>) δ 7.2 (s, 1H), 6.9
92	(s, 1H), 2.7 (s, 2H), 1.7 – 1.5 (m, 6H), 1.4 – 1.3 (m, 6H), 1.2 – 1.0 (m, 6H), 0.9 (t, <i>J</i> =
93	7.3 Hz, 9H).
94	Compound S7. To a solution of Compound S6 (1.5 g, 10 mmol) in acetic anhydride
95	(10 mL) and triethylamine (5.0 mL) was added ethyl acetoacetate (1.4 mL, 11.0 mmol)
96	under argon. The mixture was stirred at room temperature for 12 h, and then the mixture
97	was poured into the mixture of concentrated HCl (10 g) and ice-water (10 g). After that,
98	the mixture was stirred for half an hour at room temperature, additional HCl (18.0 mL,
99	5M) was added into the mixture, and then the mixture was refluxed for 2 h. After the

100 crude product was cooled to room temperature, add water (100 mL) and then the 101 mixture was extracted with CHCl₃ (3×50 mL). The organic phase was dried over 102 anhydrous MgSO₄. After removing the solvent, the residue was purified using column 103 chromatography on silica gel employing CHCl₃ as an eluent, yielding a pale yellow 104 solid (755 mg, 51%). ¹H NMR (400 MHz, Chloroform-*d*) δ 3.25 (s, 2H).

d-IC. To a solution of Compound 6 (150 mg, 1.0 mmol) and malononitrile (130 mg, 105 106 2.0 mmol) in ethanol (20 mL) was added sodium acetate (107 mg, 1.3 mmol). The 107 mixture was stirred for 2 h at room temperature. A volume of 30 mL of H₂O was added, 108 and the mixture was stirred at room temperature for half an hour, and then a drop of concentrated HCl was added to acidify the mixture with PH = 2. After that, the brown 109 110 solid was filtered off and washed with water (4×100 mL). The residue was purified 111 using column chromatography on silica gel employing $CH_3OH/CHCl_3$ (1:1, v/v) as an 112 eluent, yielding a brown solid (118 mg, 46.6%). ¹H NMR (400 MHz, Acetone-d6) δ 113 3.31 (s, 2H). 114 Compound S9. Synthesis of Compound S9 was carried out in a similar manner to that 115 of Compound S7. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.26 (s, 2H). 116 d-2FIC. Synthesis of Compound d-2FIC was carried out in a similar manner to that of

117 *d*-IC. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.75 (s, 2H).

118 **Compound 3.** Compound 1 (2.7 g, 4.4 mmol), compound 2 (0.8 g, 2.0 mmol) and 119 $Pd(PPh_3)_2Cl_2$ (62 mg,0.09 mmol) were dissolved in 30 mL of dry toluene and stirred at 120 80 °C overnight. The reaction mixture was allowed to cool to room temperature. 100 121 mL of water was added, and the mixture was extracted with dichloromethane (2 × 100 122 mL). The precipitate was filtered and washed with methanol and *n*-hexane. The product 123 of Compound 3 was obtained as a red solid.

124 **Compound 4.** Compound 3 (850 mg, 1.0 mmol) and triphenylphosphine (3.2 g, 10.0

125	mmol) were dissolved in the o-dichlorobenzene (15 mL) under nitrogen. After being
126	heated at 180 °C overnight, the aqueous phase was extracted with dichloromethane and
127	the organic layer was dried over Na ₂ SO ₄ and filtered. After removing the solvent, the
128	red residue was added into a three-necked round bottom flask. 1-Bromo-2-ethylhexane-
129	D17 (3.0 g, 1.5 mmol), KI (1.3 g, 7.8 mmol), K ₂ CO ₃ (3.2 g, 23.2 mmol) and DMF (30
130	mL) were added and the mixture was deoxygenated with argon for 15 min. The mixture
131	was refluxed at 80 °C for overnight. After removing the solvent from the filtrate, the
132	residue was extracted with ethyl acetate and H ₂ O. The organic layers were combined
133	and dried over MgSO ₄ , filtered and purified with column chromatography on silica gel
134	using <i>n</i> -hexane/dichloromethane (10/1, v/v) as the eluent to give a red solid (532 mg,
135	51%). ¹ H NMR (400 MHz, Chloroform- <i>d</i>) δ 7.0 (s, 2H), 2.8 (s, 4H). MS (MALDI-TOF)
136	calcd for C ₅₆ H ₆ D ₇₆ N ₄ S ₅ : 1046.9913; found: 1046.5179 (M ⁺).
137	Compound 5. A Vilsmeier reagent was prepared firstly. 8 mL anhydrous DMF was
138	added to a dry 100 mL two-necked round bottom flask, and the solution was cooled to
139	0 °C and stirred when 0.8 mL phosphorous oxychloride (POCl ₃) was added by syringe
140	under argon protection. The mixture kept at 0 °C for 2 h, and then Compound 4 (420
141	mg, 0.4 mmol) in dry 1,2-dichloroethane (25 mL) was added. Then, the mixture
142	solution was allowed to reflux overnight. After cooling to room temperature, 100 mL
143	water was added to quench the reaction. The mixture was extracted with
144	dichloromethane, and the organic layer was collected, washed with water and dried with
145	anhydrous MgSO ₄ . After removal of the solvent under reduced pressure, the residue

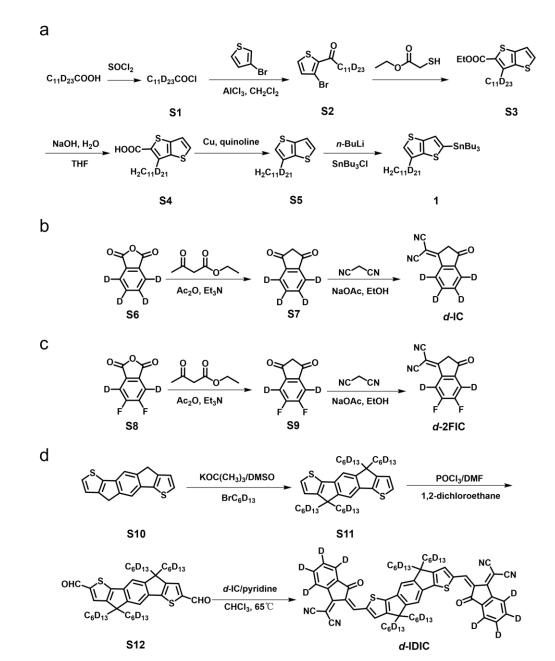
146 was purified by column chromatography on silica gel using a mixture solvent as eluent (petroleum ether/dichloromethane, v/v = 1/1) to give a vellow solid (389 mg, 88%). ¹H 147 NMR (400 MHz, Chloroform-d) δ 10.1 (s, 2H), 3.2 (s, 4H). MS (MALDI-TOF) calcd 148 149 for C₅₈H₆D₇₆N₄O₂S₅: 1102.9811; found: 1102.3838 (M⁺). 150 d-Y6. To a three-necked round bottom flask were added Compound 5 (220 mg, 0.2 151 mmol), d-2FIC (140 mg, 0.6 mmol), pyridine (0.15 mL) and chloroform (25 mL). The 152 mixture was deoxygenated with nitrogen for 20 min and then stirred at reflux for 12 h. 153 After cooling to room temperature, the mixture was poured into methanol (200 mL) 154 and filtered. The residue was purified by column chromatography on silica gel using a 155 mixture solvent as eluent (petroleum ether/dichloromethane, v/v = 1/1) to give a blue solid (255 mg, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.2 (s, 2H), 3.2 (s, 4H). ¹³C 156 157 NMR (100 MHz, Chloroform-d) δ 186.3, 159.0, 154.1, 147.7, 145.3, 137.9, 136.1, 158 135.4, 134.6, 134.0, 133.3, 130.7, 120.1, 115.1, 114.7, 113.7, 68.9, 29.8. The presence 159 of C-F coupling is evidenced by the doublet at δ 155.64 (d, J=16.2 Hz), 153 (dd, J=14.8, 160 7.3 Hz). HRMS (MALDI) calculated for C₈₂H₆D₈₀F₄N₈O₂S₅: 1531.0429; found: 161 1531.0424 (M^+). Elemental analysis calculated for C₈₂H₇D₈₀F₄N₈O₂S₅: C, 64.23; N, 7.31. Found: C, 64.12; N, 7.13. 162 d-Y7 The material was synthesized following the same route as d-Y6. ¹H NMR (400 163

164 MHz, Chloroform-*d*) δ 9.17 (s, 1H), 8.79 (s, 1H), 7.97 (s, 1H), 3.21 (s, 2H) ppm; {}^{13}C

165 NMR (151 MHz, Chloroform-*d*) δ 186.42, 158.89, 154.37, 147.68, 145.46, 139.71,

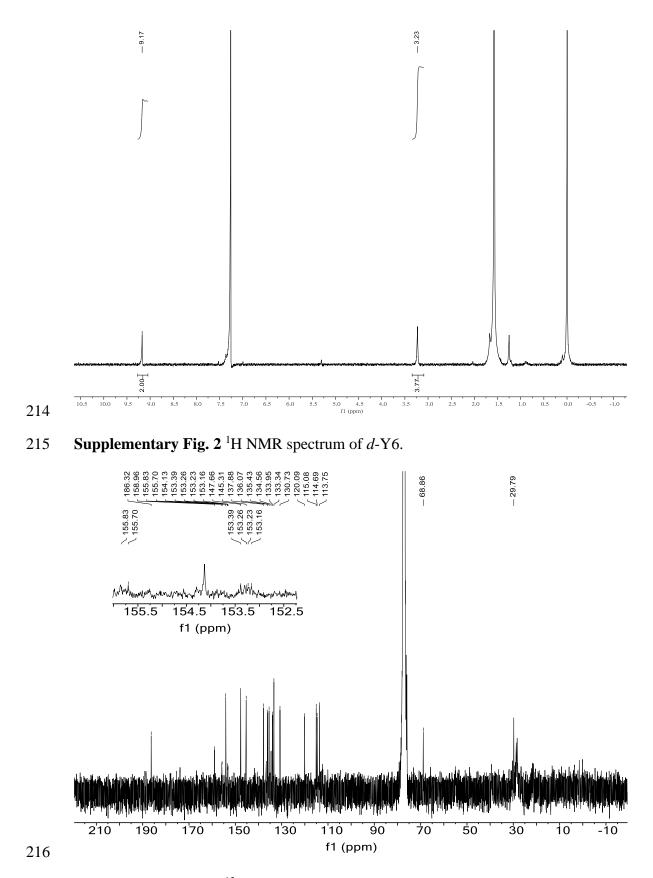
166 139.31, 138.90, 137.93, 136.38, 136.21, 135.97, 134.04, 133.70, 131.01, 127.06,

167 125.16, 120.08, 115.19, 114.71, 113.81, 68.90, 29.80, 29.47 ppm.

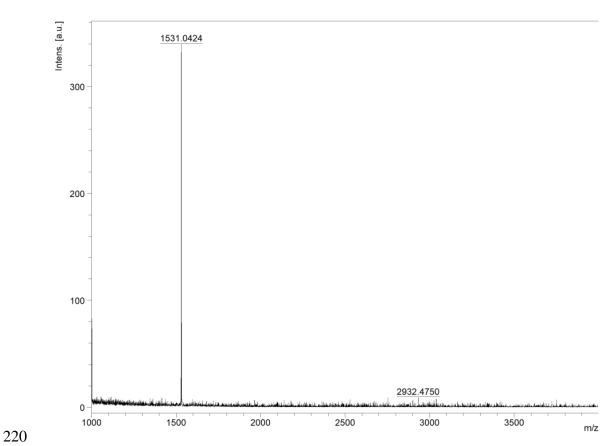

168

169	Supplementary Note 2. Synthesis and characterizations of <i>d</i> -IDIC.
170	Compound S11. To a suspension of Compound S10 (500 mg, 1.9 mmol) in anhydrous
171	DMSO (15 ml) was added potassium tert-butoxide (1.2 g, 11.3 mmol) in portion. The
172	reaction mixture was heated at 80 °C for 1 h, followed by the addition of 1-
173	Bromohexane-D13 (2.0 g, 11.3 mmol) dropwise. After complete addition, the resultant
174	mixture was heated at 90 °C for 5 h, then poured into ice-water. The resulting mixture
175	was extracted with chloroform (3 \times 50 mL) and the combined organic extracts were
176	washed with brine. The organic mixture was dried over anhydrous magnesium sulfate.
177	After filtration, the solvent was removed by rotary evaporation to give a brown liquid.
178	The crude product was purified by column chromatography using
179	hexane/dichloromethane (v/v = 4:1) as the eluent to afford pale yellow solid (1.1 g,
180	87%). ¹ H NMR (500 MHz, Chloroform- <i>d</i>) δ 7.20 (s, 2H), 7.18 (d, <i>J</i> = 4.6 Hz, 2H), 6.89
181	(d, $J = 4.8$ Hz, 2H). MS (MALDI-TOF) calcd for C ₄₀ H ₆ D ₅₂ S ₂ : 654.7244; found:
182	654.7194 (M ⁺).
183	Compound S12. A Vilsmeier reagent was prepared firstly. 8 mL anhydrous DMF was

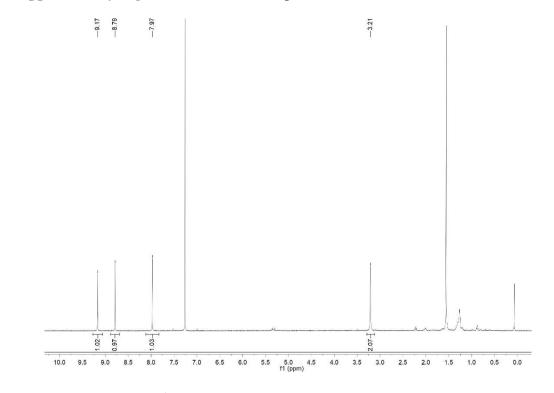
added to a dry 100 mL two-necked round bottom flask, and the solution was cooled to 0 °C and stirred when 0.8 mL phosphorous oxychloride (POCl₃) was added by syringe under argon protection. The mixture kept at 0 °C for 2 h, and then Compound S11 (280 mg, 0.4 mmol) in dry 1,2-dichloroethane (25 mL) was added. Then, the mixture


188	solution was allowed to reflux overnight. After cooling to room temperature, 100 mL
189	water was added to quench the reaction. The mixture was extracted with
190	dichloromethane, and the organic layer was collected, washed with water and dried with
191	anhydrous MgSO ₄ . After removal of the solvent under reduced pressure, the residue
192	was purified by column chromatography on silica gel using a mixture solvent as eluent
193	(petroleum ether/dichloromethane, $v/v = 1/1$) to give a yellow solid (270 mg, 89%). ¹ H
194	NMR (500 MHz, Chloroform- <i>d</i>) δ 9.9 (s, 2H), 7.6 (d, J = 1.4 Hz, 2H), 7.5 (s, 2H). MS
195	(MALDI-TOF) calcd for $C_{42}H_6D_{52}O_2S_2$: 710.7142; found: 710.6473 (M ⁺).
196	d-IDIC. To a three-necked round bottom flask were added Compound S12 (142 mg,
197	0.2 mmol), <i>d</i> -IC (120 mg, 0.6 mmol), pyridine (0.15 mL) and chloroform (25 mL). The
198	mixture was deoxygenated with nitrogen for 20 min and then stirred at reflux for 12 h.
199	After cooling to room temperature, the mixture was poured into methanol (200 mL)
200	and filtered. The residue was purified by column chromatography on silica gel using a
201	mixture solvent as eluent (petroleum ether/dichloromethane, $v/v = 1/1$) to give a blue
202	solid (173 mg, 81%). ¹ H NMR (400 MHz, Chloroform- <i>d</i>) δ 9.0 (s, 2H), 7.7 (s, 2H), 7.6
203	(s, 2H). ¹³ C NMR (100 MHz, Chloroform- <i>d</i>) δ 188.5, 160.9, 160.4, 157.7, 156.8, 141.3,
204	140.1, 138.7, 138.1, 137.9, 137.1, 122.2, 116.2, 115.0, 114.9, 69.1, 54.2. HRMS
205	(MALDI) calculated for $C_{66}H_6D_{60}N_4O_2S_2$: 1070.8388; found: 1070.8384 (M ⁺).
206	Elemental analysis calculated for C ₆₆ H ₆ D ₆₀ N ₄ O ₂ S ₂ : C, 73.96; N, 5.23. Found: C, 73.56;
207	N, 5.07.
• • • •	

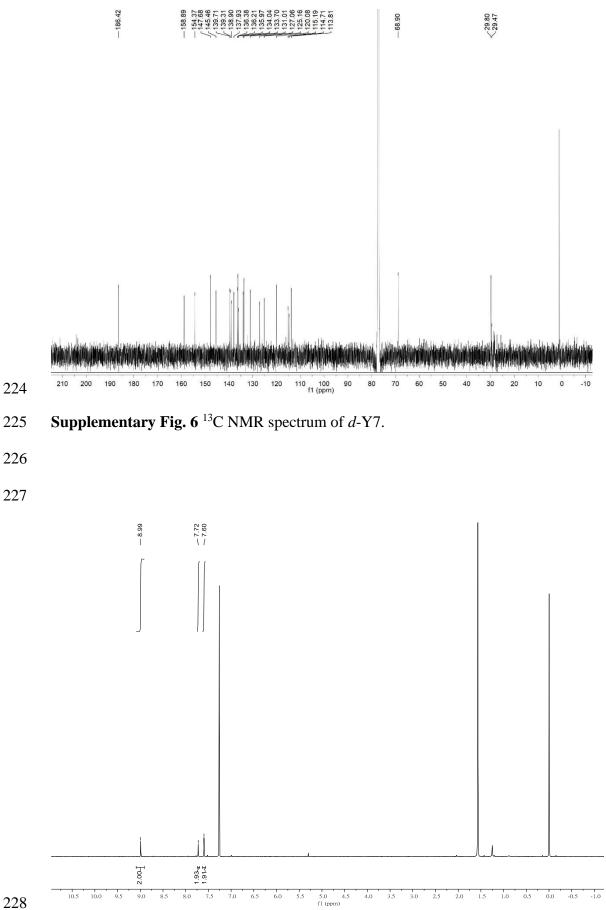
209 Supplementary Figures

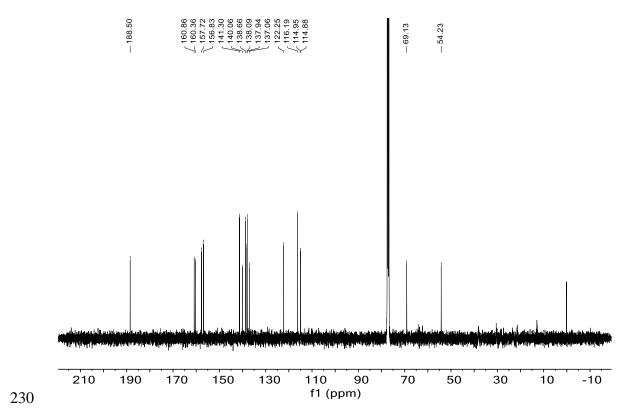


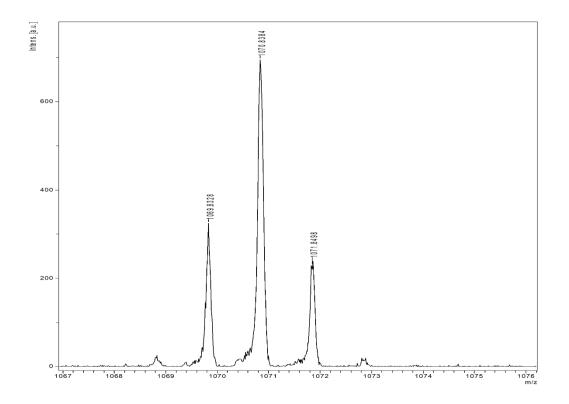
d-2FIC, and **d** *d*-IDIC.

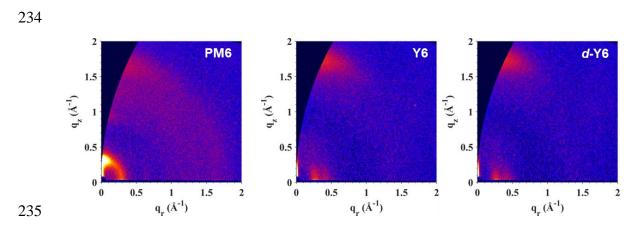


Supplementary Fig. 3 ¹³C NMR spectrum of *d*-Y6. The inset is the enlarged spectrum

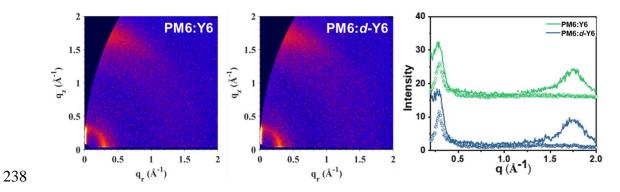

between 152 and 156 ppm to highlight the presence of C-F coupling.


Supplementary Fig. 4 HRMS (MALDI) spectrum of *d*-Y6.


Supplementary Fig. 5 1 H NMR spectrum of *d*-Y7.

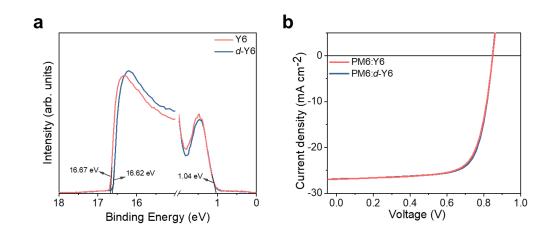

Supplementary Fig. 7 ¹H NMR spectrum of *d*-IDIC.

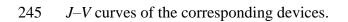
231 Supplementary Fig. 8 ¹³C NMR spectrum of *d*-IDIC.



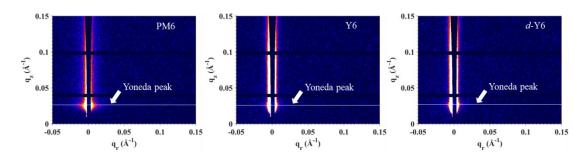
233 Supplementary Fig. 9 HRMS (MALDI) spectrum of *d*-IDIC.

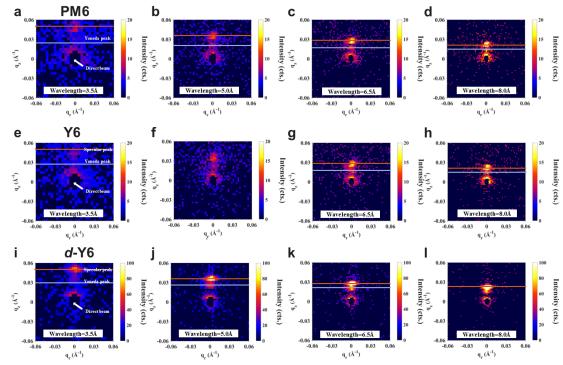
236 **Supplementary Fig. 10** 2D GIWAXS patterns of pure PM6, Y6, and *d*-Y6 films.

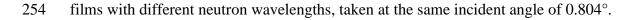


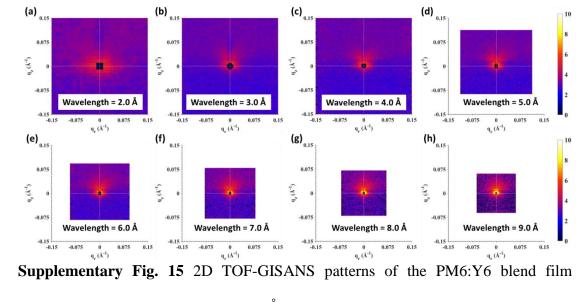

239 Supplementary Fig. 11 2D GIWAXS patterns and intensity profiles along the in-plane

240 (dashed line) and out-of-plane (solid line) directions of PM6:Y6 and PM6:d-Y6.

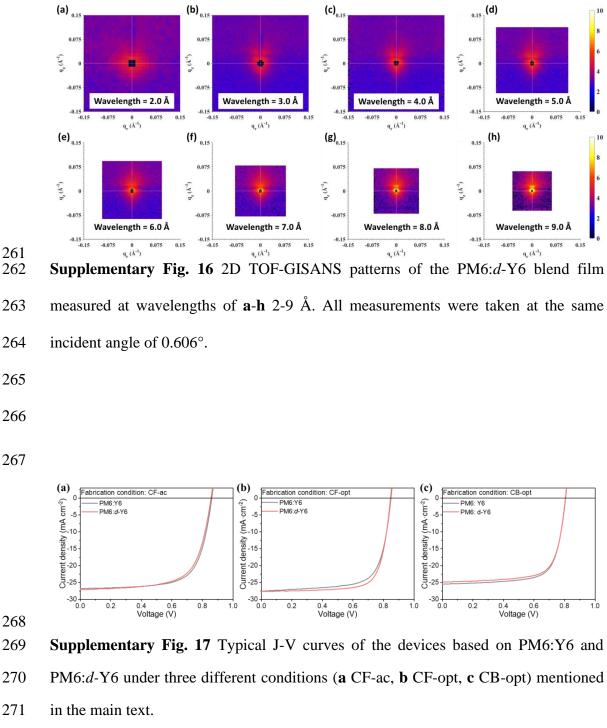

241

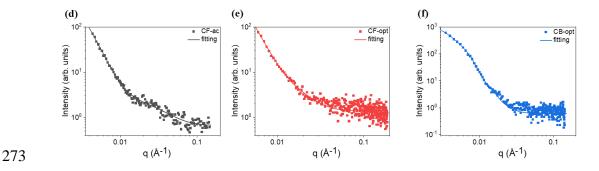

Supplementary Fig. 12 a UPS spectra of PM6:Y6 and PM6:*d*-Y6 blend films and **b**

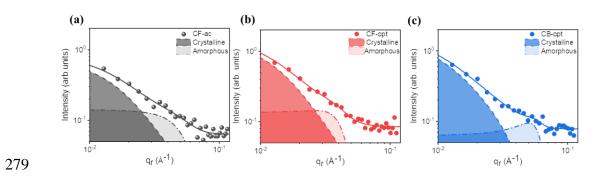




Supplementary Fig. 13 2D GISAXS patterns of pure PM6, Y6, and d-Y6 films
measured with the vertical beam stop. The Yoneda peak was marked by the white line
for each film.

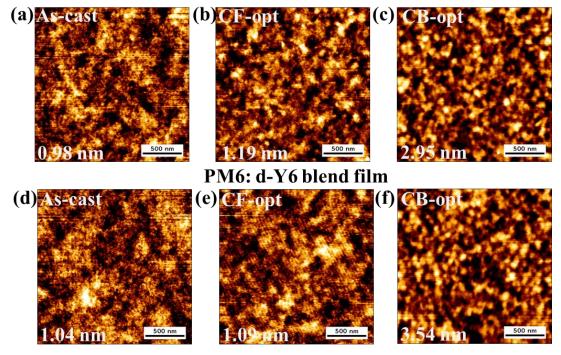



253 Supplementary Fig. 14 2D TOF-GISANS data of a-d pure PM6, e-h Y6 and i-l d-Y6



258 measured at wavelengths of a-h 2-9 Å. All measurements were taken at the same
259 incident angle of 0.606°.

Supplementary Fig. 18 Horizontal linecuts along the in-plane direction (dotted lines)
extracted from the 2D GISAXS patterns of a PM6: *d*-Y6 as cast, b CF-optimized, and
c CB-optimized blend films with their best fittings (solid lines).

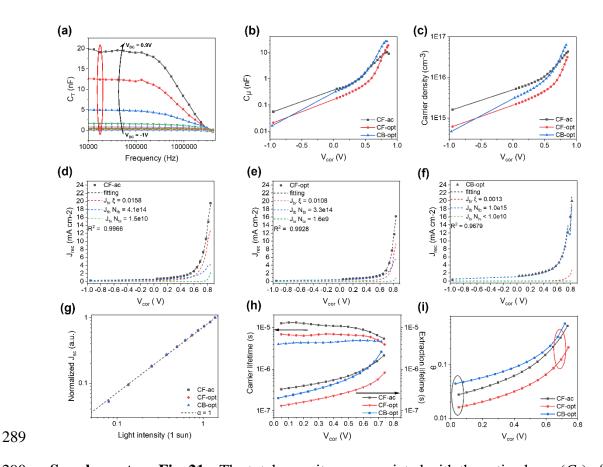


Supplementary Fig. 19 Horizontal linecuts along the in-plane direction (dotted lines)

281 extracted from the 2D GISANS patterns of **a** PM6: *d*-Y6 as cast, **b** CF-optimized, and

- 282 c CB-optimized blend films with their best fittings (solid lines).

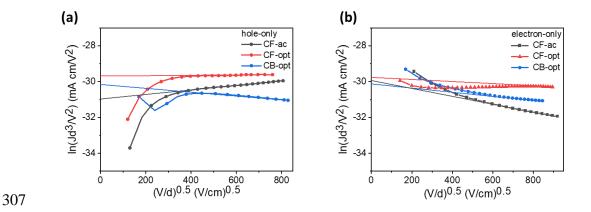
PM6: Y6 blend film



284

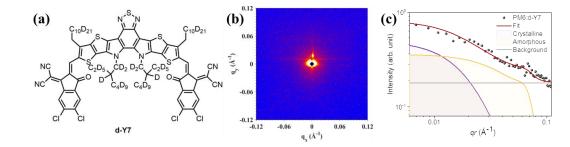
285 Supplementary Fig. 20 AFM topography images of PM6:Y6 (a-c) and PM6: d-Y6 (d-

286 **f**) blend films processed under different conditions mentioned in the main text. The

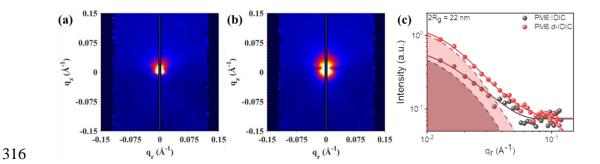

287 root-mean-square (RMS) roughness of heights is labelled at the inset for each image.

290 Supplementary Fig. 21 a The total capacitance associated with the active layer (C_T) of 291 the CF-optimized device as a function of the A.C. frequency applied, corrected for 292 geometric capacitance. V_{DC} is the background bias applied to the device under 1 sun 293 illumination, which increases from -1 V to 0.9 V. Chemical capacitance (C_{μ}) is taken at a low frequency of 17 kHz where the C_T saturates, as highlighted in red. **b** C_{μ} , **c** 294 295 charge carrier density stored within the active layer as a function of applied bias after 296 correcting for series resistance (V_{cor}) . The fits of the recombination current of **d** as-cast, 297 e CF-optimized, and f CB-optimized PM6:Y6 device via superposition of bimolecular, 298 bulk, and surface-trap assisted recombination as discussed in the main text. g the 299 intensity-dependent J_{sc} measurements for the three devices. **h** the charge carrier lifetime $\tau = \frac{qnL}{J_{rec}}$ and charge extraction time $\tau_{ext} = \frac{qnL}{J}$ as a function of V_{cor}, where q is the 300 301 elementary charge, n is the charge carrier density, L is the active layer thickness and J_{rec} and J are recombination current density and current density under light, 302

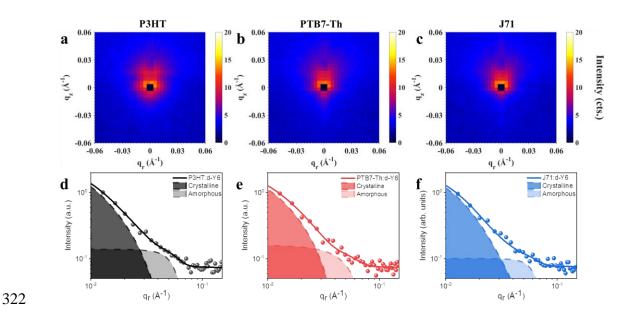
303 respectively. **i** the competition factor $\theta = \frac{\tau_{ext}}{\tau}$ derived as a function of V_{cor} with the 304 short-circuit condition and maximum power output point highlighted in black and red, 305 respectively.


306

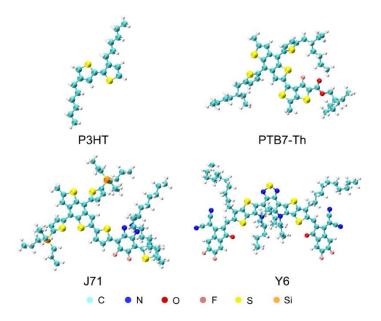
308 Supplementary Fig. 22 J-V characteristics in the dark for a hole-only and b electron-


309 only devices based on PM6:Y6 with different processing conditions.

310


311

Supplementary Fig. 23 a Molecular structure of *d*-Y7. b the 2D GISANS pattern of
PM6:*d*-Y7 blend films and c the corresponding horizontal linecut along the in-plane
direction (dots) with its best fit (solid line).


Supplementary Fig. 24 2D GISANS patterns of a PM6:IDIC, b PM6:*d*-IDIC blend
films and c corresponding horizontal linecuts along the in-plane direction (dots) with
their best fittings (solid line).

321

323 Supplementary Fig. 25 2D GISANS patterns of a P3HT: *d*-Y6, b PTB7-Th: *d*-Y6,

and c J71: *d*-Y6, with their corresponding horizontal linecuts (dots) and best fittings
(solid line) shown in d-f.

328 Supplementary Fig. 26 Molecular structures of the P3HT, PTB7-Th, J71 monomers

- 329 and Y6 molecule.
- 330

331 Supplementary Tables

332 **Supplementary Table 1** SLD values of pure and blend films under the X-ray.

Sample	Critical angle (°)	SLD (Å ⁻²)
PM6	0.211	1.76×10 ⁻⁵
Y6	0.207	1.74×10 ⁻⁵
<i>d</i> -Y6	0.207	1.69×10 ⁻⁵
PM6:Y6	0.204	1.72×10 ⁻⁵
PM6: <i>d</i> -Y6	0.205	1.75×10 ⁻⁵

333

334 **Supplementary Table 2** SLD values of pure and blend films under the neutron beam.

Sample SLD (Å⁻²)

PM6	(1.2±0.1)×10 ⁻⁶
Y6	(2.3±0.1)×10 ⁻⁶
<i>d</i> -Y6	(6.4±0.4)×10 ⁻⁶
PM6:Y6	(1.7±0.1)×10 ⁻⁶
PM6:d-Y6	(3.0±0.2)×10 ⁻⁶

336 **Supplementary Table 3** A summary of device characteristics of PM6:Y6 and PM6:*d*-

337	Y6 systems u	under three	different	processing	conditions	mentioned	in the main text.
	•			· ·			

Blends	<i>Voc (V)</i> ^{<i>d</i>}	$Jsc (mA \cdot cm^{-2})^d$	FF (%) ^d	PCE (%) ^d
PM6: Y6 ^a	0.865	26.9	69.7	16.3
PIMO: YO "	(0.861 ± 0.003)	(26.7 ± 0.2)	(69.0 ± 0.5)	(15.9 ± 0.3)
DMG. AVG a	0.856	27.1	67.2	15.6
PM6: d-Y6 ^a	(0.855 ± 0.003)	(26.7 ± 0.3)	(66.8 ± 0.5)	(15.2 ± 0.2)
PM6: Y6 ^b	0.853	28.0	74.4	17.8
PIMO: YO	(0.850 ± 0.002)	(27.7 ± 0.5)	(74.1 ± 0.4)	(17.4 ± 0.3)
PM6: d-Y6 ^b	0.846	27.7	75.1	17.6
	(0.843 ± 0.002)	(27.7 ± 0.2)	(74.7 ± 0.3)	(17.4 ± 0.2)
	0.806	25.5	72.2	14.8
PM6: Y6 ^c	(0.798 ± 0.006)	(24.7 ± 0.6)	(71.5 ± 0.5)	(14.1 ± 0.5)
DMC. 4 VC C	0.807	24.9	72.1	14.5
PM6: d-Y6 ^c	(0.807 ± 0.003)	(24.6 ± 0.5)	(72.0 ± 0.4)	(14.3 ± 0.2)

338

^a As-cast w/o CN & TA. ^b CF-opt (w/ 0.5% CN & TA 90°C 5min). ^c CB-opt (w/
0.5% CN & TA 90°C 5min).^d Average values with their standard deviations (in

340 0.5% CN & TA 90 $^{\circ}$ C 5min).^{*d*} Average values with their standard deviations (341 parentheses) are obtained from 5 independent devices.

342 **Supplementary Table 4** Charge carrier mobilities of PM6:Y6 blend films processed

343 under different conditions measured by the SCLC Method.

Active layer	$\mu_{\rm h} (imes 10^{-4} {\rm cm}^2 { m V}^{-1} { m s}^{-1})^{a}$	$\mu_{\rm e} \ (\times \ 10^{-4} \ {\rm cm}^2 \ { m V}^{-1} \ { m s}^{-1})^{a}$
CF-ac	2.1±0.3	5.9±0.4
CF-opt	4.7 ± 0.2	4.8±0.3

^{*a*} Average values are obtained from 5 independent devices.

- 345
- 346 Supplementary Table 5 Morphology parameters fitted from the GISANS intensity

347 profiles ($2R_{gc}$ is the crystallized acceptor domain size, $2R_{ga}$ is the amorphous acceptor

348 domain size in the intermixing phase.)

Active layer	$2R_{gc}(nm)$	2R _{ga} (nm)
PM6: <i>d</i> -Y7	13.8	5.4
PM6:d-IDIC	22	N/A
P3HT: <i>d</i> -Y6	33.7	7.5
PTB7-Th:d-Y6	31.7	6.7
J71:d-Y6	28.7	6.7