Luciferase on HEK293T cells - statistical analysis in R
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(scales) # scientific format
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
library(ggpubr)
library(broom)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
##
## The following object is masked from 'package:dplyr':
##
## recode
##
## The following object is masked from 'package:purrr':
##
## some
library(gtsummary)
library(gt)
data from Luciferase32a
200307-32a_Dual-Glo_3-7-2020_11-45-17 AM.xml
200307-32a_Dual-Glo_3-7-2020_11-45-17 AM.csv
Input = (
"
932165 280694 291766 7579 326610 294131 213808 287660 274511 285368 295928 284701
248281 343599 342646 308856 313576 301555 339357 286528 298245 296319 308823 298451
279594 286938 313191 270324 299091 294240 290934 262438 281495 278678 262717 275721
217401 237318 287149 273201 35584.4 266744 252756 266391 260908 265575 264828 258921
1973580 914549 1056410 1019270 992366 972704 952885 946102 974248 1038220 973668 4800
540331 527855 541003 512053 34843 485106 501617 496061 515398 483273 514919 536478
395287 394912 425305 408337 427163 435909 412991 406536 412621 399348 395261 445417
461254 448295 517611 505456 497184 477564 483230 496222 501602 490351 461691 502010
"
)
luciferase = read.delim(textConnection(Input), header = FALSE)
# Stack
luciferase <-
luciferase |>
stack() |>
pull(values)
Input = (
"
2109200 3280310 3035520 3152070 3485520 3257440 1280750 3172730 3042680 3127310 3817540 3271880
2255220 3213440 3273870 2915530 2771810 2660370 2951870 2622030 2822620 2794690 2891570 2877910
2585680 2896890 3005140 2696110 3080790 2648400 2777170 2600100 2891280 2886650 2577850 2774690
2610100 2913220 3095140 2828140 627127 2820150 2482040 2807710 2674760 2666920 2753210 2618330
2086170 2117440 2206910 2129310 2146500 2172140 2102720 1995050 2079730 2082990 2107500 2122020
1823620 1745900 1897230 1692220 142261 1735220 1734090 1791410 1821090 1671730 1722000 1827930
1612790 1737550 1814510 1658700 1903090 1851850 1831140 1741370 1625390 1768190 1760830 1900310
1873670 1795110 2021290 2060980 2087650 1850110 1858120 2057470 2077500 2018600 1999450 2129300
"
)
renilla = read.delim(textConnection(Input), header = FALSE)
# Stack
renilla <-
renilla |>
stack() |>
pull(values)
Input = (
"
Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference
Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1
Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2
delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1
Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1
Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1
Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1
delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1"
)
names = read.delim(textConnection(Input), header = FALSE)
# Stack
names <-
names |>
stack() |>
pull(values)
Input = (
"
Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference
Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1
Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2
delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1
Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference
Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1
Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2
delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1"
)
reporter = read.delim(textConnection(Input), header = FALSE)
# Stack
reporter <-
reporter |>
stack() |>
pull(values)
Input = (
"
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
"
)
factor1 = read.delim(textConnection(Input), header = FALSE)
# Stack
factor1 <-
factor1 |>
stack() |>
pull(values)
level_order<-c("Reference",
"Variant_1",
"Variant_2",
"delNR5A1",
"Reference+NR5A1",
"Variant_1+NR5A1",
"Variant_2+NR5A1",
"delNR5A1+NR5A1")
dataframe0 <-
tibble(names,
reporter,
factor1,
renilla,
luciferase) |>
mutate_if(is.character, as.factor) |>
arrange(factor(names, levels = level_order))
boxplot(renilla ~ names, dataframe0)
dataframe1 <- dataframe0 |>
group_by(names) |>
mutate(
IQR = IQR(renilla, na.rm = TRUE),
Outlier_upper = quantile(renilla, probs = c(.75), na.rm = TRUE) + 1.5 * IQR,
Outlier_lower = quantile(renilla, probs = c(.25), na.rm = TRUE) - 1.5 * IQR,
renilla_wo_extremes = if_else(renilla <= Outlier_lower | renilla >= Outlier_upper, NA, renilla))
boxplot(renilla_wo_extremes ~ names, dataframe1)
dataframe2 <-
dataframe1 |> mutate(Luc_Ren = luciferase / renilla_wo_extremes)
ggplot(dataframe2,
aes(
x = factor(names, level = level_order),
y = renilla_wo_extremes,
colour = reporter,
group = names,
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30,
family = "helvetica"
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific)
## Warning: Removed 10 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 10 rows containing missing values (`geom_point()`).
ggplot(dataframe2,
aes(
x = factor(names, level = level_order),
y = luciferase,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30,
family = "helvetica"
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific)
ggplot(dataframe2,
aes(
x = factor(names, level = level_order),
y = Luc_Ren,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30,
family = "helvetica"
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific)
## Warning: Removed 10 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 10 rows containing missing values (`geom_point()`).
boxplot(Luc_Ren ~ names, dataframe2)
dataframe3 <- dataframe2 |>
group_by(names) |>
mutate(
IQR = IQR(Luc_Ren, na.rm = TRUE),
Outlier_upper = quantile(Luc_Ren, probs = c(.75), na.rm = TRUE) + 1.5 * IQR,
Outlier_lower = quantile(Luc_Ren, probs = c(.25), na.rm = TRUE) - 1.5 * IQR,
Luc_Ren_wo_outliers = if_else(Luc_Ren <= Outlier_lower | Luc_Ren >= Outlier_upper, NA, Luc_Ren),
)
boxplot(Luc_Ren_wo_outliers ~ names, dataframe3)
see:
RRR = (well_value - mean_neg))/(mean_pos-mean_neg)
Relative Response ratio (Promega - Dual-Glo® Luciferase Assay System, Instructions for use of Products E2920, E2940 and E2980)
dataframe4 <- dataframe3 |>
group_by(names) |>
mutate(mean = mean(Luc_Ren_wo_outliers, na.rm = TRUE)) |>
ungroup() |>
mutate(
mean_neg = min(mean),
mean_pos = max(mean),
RRR = (Luc_Ren_wo_outliers - mean_neg) / (mean_pos - mean_neg),
RRRp = RRR * 100,
block = "a") |>
mutate_if(is.character, as.factor)
mean_pos = mean of the positive reference
mean_neg = mean of the negative reference
RRR = Relative Response Ratio
RRRp = Relative Response Ratio in percent
block = necessary for the Approximative Two-Sample Fisher-Pitman Permutation Test, it allows the stratification (it has to be a factor)
ggplot(dataframe4,
aes(
x = factor(names, level = level_order),
y = RRRp,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30,
family = "helvetica"
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
ylim(-10,110)
## Warning: Removed 15 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).
shapiro_test_result <- dataframe4 |>
group_by(names) |>
do(tidy(shapiro.test(.$RRRp)))
print(shapiro_test_result)
## # A tibble: 8 × 4
## # Groups: names [8]
## names statistic p.value method
## <fct> <dbl> <dbl> <chr>
## 1 delNR5A1 0.986 0.989 Shapiro-Wilk normality test
## 2 delNR5A1+NR5A1 0.959 0.773 Shapiro-Wilk normality test
## 3 Reference 0.959 0.802 Shapiro-Wilk normality test
## 4 Reference+NR5A1 0.983 0.976 Shapiro-Wilk normality test
## 5 Variant_1 0.884 0.172 Shapiro-Wilk normality test
## 6 Variant_1+NR5A1 0.950 0.638 Shapiro-Wilk normality test
## 7 Variant_2 0.919 0.280 Shapiro-Wilk normality test
## 8 Variant_2+NR5A1 0.877 0.0810 Shapiro-Wilk normality test
p_value <- min(shapiro_test_result$p.value)
p_value
## [1] 0.08097895
if (p_value < 0.05) {
cat("The overall p-value obtained from the Bartlett test is less than 0.05, suggesting evidence supporting the rejection of the null hypothesis of homogeneity of variances.\n")
} else {
cat("The overall p-value obtained from the Bartlett test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.\n")
}
## The overall p-value obtained from the Bartlett test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.
The conditions with or without the addition of the transcription
factor NR5A1 exhibited clearly distinct variances. As a result, a direct
comparison between these conditions is not informative.
To assess the comparability of only conditions with NR5A1 added, both
Bartlett and Levene tests were conducted.
dataframe4b <- dataframe4 |>
filter(factor1 == "NR5A1")
bartlett_test_result <- bartlett.test(RRRp ~ names, data = dataframe4b)
print(bartlett_test_result)
##
## Bartlett test of homogeneity of variances
##
## data: RRRp by names
## Bartlett's K-squared = 8.8015, df = 3, p-value = 0.03205
p_value <- bartlett_test_result$p.value
if (p_value < 0.05) {
cat("The overall p-value obtained from the Bartlett test is less than 0.05, suggesting evidence supporting the rejection of the null hypothesis of homogeneity of variances.\n")
} else {
cat("The overall p-value obtained from the Bartlett test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.\n")
}
## The overall p-value obtained from the Bartlett test is less than 0.05, suggesting evidence supporting the rejection of the null hypothesis of homogeneity of variances.
levene_test_result <- leveneTest(RRRp ~ names, data = dataframe4b)
print(levene_test_result)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 1.847 0.1546
## 39
p_value <- levene_test_result$`Pr(>F)`[1]
if (p_value < 0.05) {
cat("The overall p-value obtained from the Levene test is less than 0.05, suggesting evidence supporting the rejection of the null hypothesis of homogeneity of variances.\n")
} else {
cat("The overall p-value obtained from the Levene test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.\n")
}
## The overall p-value obtained from the Levene test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.
dataframe5 <- dataframe4[dataframe4$factor1 == "NR5A1", ]
dataframe5$Other <- unname(vapply(as.character(dataframe5$names), FUN = function(x) if(x == "Reference+NR5A1") x else "Other", FUN.VALUE = ""))
ggplot(dataframe5,
aes(
x = factor(names, level = level_order),
y = RRRp,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific) +
xlab(NULL)
## Warning: Removed 5 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 5 rows containing missing values (`geom_point()`).
wilcox.test(RRRp~Other, data = dataframe5)
##
## Wilcoxon rank sum exact test
##
## data: RRRp by Other
## W = 0, p-value = 1.379e-08
## alternative hypothesis: true location shift is not equal to 0
library(dunn.test)
bb <- dunn.test(dataframe5$RRRp, g = dataframe5$names, kw = T, list = T, method = "bh")
## Kruskal-Wallis rank sum test
##
## data: x and group
## Kruskal-Wallis chi-squared = 35.8827, df = 3, p-value = 0
##
##
## Comparison of x by group
## (Benjamini-Hochberg)
## Col Mean-|
## Row Mean | delNR5A1 Referenc Variant_
## ---------+---------------------------------
## Referenc | -4.056706
## | 0.0001*
## |
## Variant_ | -2.623347 1.628239
## | 0.0065* 0.0621
## |
## Variant_ | 1.463076 5.365322 4.054264
## | 0.0717 0.0000* 0.0001*
##
##
## List of pairwise comparisons: Z statistic (adjusted p-value)
## -------------------------------------------------------
## delNR5A1+NR5A1 - Reference+NR5A1 : -4.056706 (0.0001)*
## delNR5A1+NR5A1 - Variant_1+NR5A1 : -2.623347 (0.0065)*
## Reference+NR5A1 - Variant_1+NR5A1 : 1.628239 (0.0621)
## delNR5A1+NR5A1 - Variant_2+NR5A1 : 1.463076 (0.0717)
## Reference+NR5A1 - Variant_2+NR5A1 : 5.365322 (0.0000)*
## Variant_1+NR5A1 - Variant_2+NR5A1 : 4.054264 (0.0001)*
##
## alpha = 0.05
## Reject Ho if p <= alpha/2
ggplot(dataframe4,
aes(
x = factor(names, level = level_order),
y = RRRp,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific) +
xlab(NULL)
## Warning: Removed 15 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).
gt(dataframe5)
names | reporter | factor1 | renilla | luciferase | IQR | Outlier_upper | Outlier_lower | renilla_wo_extremes | Luc_Ren | Luc_Ren_wo_outliers | mean | mean_neg | mean_pos | RRR | RRRp | block | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference+NR5A1 | Reference | NR5A1 | 2086170 | 1973580 | 0.02697775 | 0.5165931 | 0.4086821 | 2086170 | 0.946030285 | NA | 0.4628465 | 0.09060474 | 0.4628465 | NA | NA | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2117440 | 914549 | 0.02697775 | 0.5165931 | 0.4086821 | 2117440 | 0.431912593 | 0.4319126 | 0.4628465 | 0.09060474 | 0.4628465 | 0.9168984 | 91.68984 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2206910 | 1056410 | 0.02697775 | 0.5165931 | 0.4086821 | NA | NA | NA | 0.4628465 | 0.09060474 | 0.4628465 | NA | NA | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2129310 | 1019270 | 0.02697775 | 0.5165931 | 0.4086821 | 2129310 | 0.478685584 | 0.4786856 | 0.4628465 | 0.09060474 | 0.4628465 | 1.0425506 | 104.25506 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2146500 | 992366 | 0.02697775 | 0.5165931 | 0.4086821 | 2146500 | 0.462318192 | 0.4623182 | 0.4628465 | 0.09060474 | 0.4628465 | 0.9985808 | 99.85808 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2172140 | 972704 | 0.02697775 | 0.5165931 | 0.4086821 | 2172140 | 0.447809073 | 0.4478091 | 0.4628465 | 0.09060474 | 0.4628465 | 0.9596032 | 95.96032 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2102720 | 952885 | 0.02697775 | 0.5165931 | 0.4086821 | 2102720 | 0.453167802 | 0.4531678 | 0.4628465 | 0.09060474 | 0.4628465 | 0.9739990 | 97.39990 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 1995050 | 946102 | 0.02697775 | 0.5165931 | 0.4086821 | NA | NA | NA | 0.4628465 | 0.09060474 | 0.4628465 | NA | NA | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2079730 | 974248 | 0.02697775 | 0.5165931 | 0.4086821 | 2079730 | 0.468449270 | 0.4684493 | 0.4628465 | 0.09060474 | 0.4628465 | 1.0150515 | 101.50515 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2082990 | 1038220 | 0.02697775 | 0.5165931 | 0.4086821 | 2082990 | 0.498427741 | 0.4984277 | 0.4628465 | 0.09060474 | 0.4628465 | 1.0955865 | 109.55865 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2107500 | 973668 | 0.02697775 | 0.5165931 | 0.4086821 | 2107500 | 0.462001423 | 0.4620014 | 0.4628465 | 0.09060474 | 0.4628465 | 0.9977299 | 99.77299 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 2122020 | 4800 | 0.02697775 | 0.5165931 | 0.4086821 | 2122020 | 0.002261996 | NA | 0.4628465 | 0.09060474 | 0.4628465 | NA | NA | a | Reference+NR5A1 |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1823620 | 540331 | 0.01357464 | 0.3180218 | 0.2637232 | 1823620 | 0.296295829 | 0.2962958 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5525740 | 55.25740 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1745900 | 527855 | 0.01357464 | 0.3180218 | 0.2637232 | 1745900 | 0.302339767 | 0.3023398 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5688106 | 56.88106 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1897230 | 541003 | 0.01357464 | 0.3180218 | 0.2637232 | 1897230 | 0.285154146 | 0.2851541 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5226427 | 52.26427 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1692220 | 512053 | 0.01357464 | 0.3180218 | 0.2637232 | 1692220 | 0.302592453 | 0.3025925 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5694894 | 56.94894 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 142261 | 34843 | 0.01357464 | 0.3180218 | 0.2637232 | NA | NA | NA | 0.2906128 | 0.09060474 | 0.4628465 | NA | NA | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1735220 | 485106 | 0.01357464 | 0.3180218 | 0.2637232 | 1735220 | 0.279564551 | 0.2795646 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5076266 | 50.76266 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1734090 | 501617 | 0.01357464 | 0.3180218 | 0.2637232 | 1734090 | 0.289268146 | 0.2892681 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5336946 | 53.36946 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1791410 | 496061 | 0.01357464 | 0.3180218 | 0.2637232 | 1791410 | 0.276910925 | 0.2769109 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5004979 | 50.04979 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1821090 | 515398 | 0.01357464 | 0.3180218 | 0.2637232 | 1821090 | 0.283016216 | 0.2830162 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5168993 | 51.68993 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1671730 | 483273 | 0.01357464 | 0.3180218 | 0.2637232 | 1671730 | 0.289085558 | 0.2890856 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5332041 | 53.32041 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1722000 | 514919 | 0.01357464 | 0.3180218 | 0.2637232 | 1722000 | 0.299023810 | 0.2990238 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5599025 | 55.99025 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 1827930 | 536478 | 0.01357464 | 0.3180218 | 0.2637232 | 1827930 | 0.293489357 | 0.2934894 | 0.2906128 | 0.09060474 | 0.4628465 | 0.5450346 | 54.50346 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1612790 | 395287 | 0.01204423 | 0.2558834 | 0.2077065 | 1612790 | 0.245095146 | 0.2450951 | 0.2341973 | 0.09060474 | 0.4628465 | 0.4150271 | 41.50271 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1737550 | 394912 | 0.01204423 | 0.2558834 | 0.2077065 | 1737550 | 0.227280942 | 0.2272809 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3671706 | 36.71706 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1814510 | 425305 | 0.01204423 | 0.2558834 | 0.2077065 | 1814510 | 0.234391103 | 0.2343911 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3862715 | 38.62715 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1658700 | 408337 | 0.01204423 | 0.2558834 | 0.2077065 | 1658700 | 0.246178935 | 0.2461789 | 0.2341973 | 0.09060474 | 0.4628465 | 0.4179386 | 41.79386 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1903090 | 427163 | 0.01204423 | 0.2558834 | 0.2077065 | 1903090 | 0.224457593 | 0.2244576 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3595858 | 35.95858 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1851850 | 435909 | 0.01204423 | 0.2558834 | 0.2077065 | 1851850 | 0.235391095 | 0.2353911 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3889579 | 38.89579 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1831140 | 412991 | 0.01204423 | 0.2558834 | 0.2077065 | 1831140 | 0.225537643 | 0.2255376 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3624873 | 36.24873 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1741370 | 406536 | 0.01204423 | 0.2558834 | 0.2077065 | 1741370 | 0.233457565 | 0.2334576 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3837636 | 38.37636 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1625390 | 412621 | 0.01204423 | 0.2558834 | 0.2077065 | 1625390 | 0.253859689 | 0.2538597 | 0.2341973 | 0.09060474 | 0.4628465 | 0.4385724 | 43.85724 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1768190 | 399348 | 0.01204423 | 0.2558834 | 0.2077065 | 1768190 | 0.225851294 | 0.2258513 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3633299 | 36.33299 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1760830 | 395261 | 0.01204423 | 0.2558834 | 0.2077065 | 1760830 | 0.224474254 | 0.2244743 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3596306 | 35.96306 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 1900310 | 445417 | 0.01204423 | 0.2558834 | 0.2077065 | 1900310 | 0.234391757 | 0.2343918 | 0.2341973 | 0.09060474 | 0.4628465 | 0.3862732 | 38.62732 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 1873670 | 461254 | 0.01089407 | 0.2676594 | 0.2240831 | 1873670 | 0.246176755 | 0.2461768 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4179328 | 41.79328 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 1795110 | 448295 | 0.01089407 | 0.2676594 | 0.2240831 | 1795110 | 0.249731214 | 0.2497312 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4274816 | 42.74816 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 2021290 | 517611 | 0.01089407 | 0.2676594 | 0.2240831 | 2021290 | 0.256079533 | 0.2560795 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4445359 | 44.45359 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 2060980 | 505456 | 0.01089407 | 0.2676594 | 0.2240831 | 2060980 | 0.245250318 | 0.2452503 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4154440 | 41.54440 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 2087650 | 497184 | 0.01089407 | 0.2676594 | 0.2240831 | 2087650 | 0.238154863 | 0.2381549 | 0.2454832 | 0.09060474 | 0.4628465 | 0.3963825 | 39.63825 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 1850110 | 477564 | 0.01089407 | 0.2676594 | 0.2240831 | 1850110 | 0.258127355 | 0.2581274 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4500372 | 45.00372 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 1858120 | 483230 | 0.01089407 | 0.2676594 | 0.2240831 | 1858120 | 0.260063936 | 0.2600639 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4552397 | 45.52397 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 2057470 | 496222 | 0.01089407 | 0.2676594 | 0.2240831 | 2057470 | 0.241180673 | 0.2411807 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4045112 | 40.45112 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 2077500 | 501602 | 0.01089407 | 0.2676594 | 0.2240831 | 2077500 | 0.241445006 | 0.2414450 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4052213 | 40.52213 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 2018600 | 490351 | 0.01089407 | 0.2676594 | 0.2240831 | 2018600 | 0.242916378 | 0.2429164 | 0.2454832 | 0.09060474 | 0.4628465 | 0.4091740 | 40.91740 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 1999450 | 461691 | 0.01089407 | 0.2676594 | 0.2240831 | 1999450 | 0.230909000 | 0.2309090 | 0.2454832 | 0.09060474 | 0.4628465 | 0.3769171 | 37.69171 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 2129300 | 502010 | 0.01089407 | 0.2676594 | 0.2240831 | 2129300 | 0.235762927 | 0.2357629 | 0.2454832 | 0.09060474 | 0.4628465 | 0.3899568 | 38.99568 | a | Other |
library(gtsummary)
dataframe4 |> tbl_summary(
type = all_continuous() ~ "continuous2",
include = c(names, RRRp),
by = names,
statistic = all_continuous() ~ c("{median}","{mean}", "{sd}", "{min}", "{max}"),
digits = list(
all_categorical() ~c(0,1),
all_continuous() ~ c(1,1)),
missing_text = "NA"
)|>
bold_labels() |>
italicize_levels()
Characteristic | delNR5A1, N = 12 | delNR5A1+NR5A1, N = 12 | Reference, N = 12 | Reference+NR5A1, N = 12 | Variant_1, N = 12 | Variant_1+NR5A1, N = 12 | Variant_2, N = 12 | Variant_2+NR5A1, N = 12 |
---|---|---|---|---|---|---|---|---|
RRRp | ||||||||
Median | 1.6 | 41.2 | 0.0 | 99.8 | 4.4 | 53.4 | 2.7 | 38.5 |
Mean | 1.7 | 41.6 | 0.0 | 100.0 | 4.9 | 53.7 | 3.0 | 38.6 |
SD | 0.8 | 2.4 | 0.9 | 5.4 | 1.1 | 2.4 | 1.2 | 2.6 |
Minimum | 0.6 | 37.7 | -1.4 | 91.7 | 3.5 | 50.0 | 1.6 | 36.0 |
Maximum | 3.0 | 45.5 | 1.5 | 109.6 | 6.5 | 56.9 | 5.5 | 43.9 |
NA | 3 | 0 | 4 | 4 | 3 | 1 | 0 | 0 |
sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Sonoma 14.3.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Europe/Paris
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] dunn.test_1.3.5 gt_0.10.1 gtsummary_1.7.2 car_3.1-2
## [5] carData_3.0-5 broom_1.0.5 ggpubr_0.6.0 scales_1.3.0
## [9] lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
## [13] purrr_1.0.2 readr_2.1.5 tidyr_1.3.0 tibble_3.2.1
## [17] ggplot2_3.4.4 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] sass_0.4.8 utf8_1.2.4 generics_0.1.3
## [4] xml2_1.3.6 rstatix_0.7.2 stringi_1.8.3
## [7] hms_1.1.3 digest_0.6.34 magrittr_2.0.3
## [10] evaluate_0.23 grid_4.3.2 timechange_0.3.0
## [13] fastmap_1.1.1 broom.helpers_1.14.0 jsonlite_1.8.8
## [16] backports_1.4.1 fansi_1.0.6 jquerylib_0.1.4
## [19] abind_1.4-5 cli_3.6.2 rlang_1.1.3
## [22] commonmark_1.9.0 munsell_0.5.0 withr_3.0.0
## [25] cachem_1.0.8 yaml_2.3.8 tools_4.3.2
## [28] tzdb_0.4.0 ggsignif_0.6.4 colorspace_2.1-0
## [31] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4
## [34] pkgconfig_2.0.3 pillar_1.9.0 bslib_0.6.1
## [37] gtable_0.3.4 glue_1.7.0 highr_0.10
## [40] xfun_0.41 tidyselect_1.2.0 rstudioapi_0.15.0
## [43] knitr_1.45 farver_2.1.1 htmltools_0.5.7
## [46] labeling_0.4.3 rmarkdown_2.25 compiler_4.3.2
## [49] markdown_1.12