Luciferase on HeLa cells - statistical analysis in R
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(scales) # scientific format
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
library(coin) # Approximative Two-Sample Fisher-Pitman Permutation Test
## Loading required package: survival
##
## Attaching package: 'coin'
##
## The following object is masked from 'package:scales':
##
## pvalue
library(ggpubr)
library(broom)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
##
## The following object is masked from 'package:dplyr':
##
## recode
##
## The following object is masked from 'package:purrr':
##
## some
library(gtsummary)
library(gt)
data from Luciferase42
42-HeLa_Dual-Glo_1-26-2023_10-34-21 AM.xml
42-HeLa_Dual-Glo_1-26-2023_10-34-21 AM.csv
Input = (
"
60226 61051.7 66876.5 63589.5 63154.9 50962.8 55427 75472.8 71021.3 4249.85 70619.6 2421.28
48795.7 55075.2 53277.1 50819.1 53345.4 56443.3 65771.7 66978.2 69013.1 3680.64 1566.12 2107.21
60512.6 71297.1 77161.8 79652.1 70548.1 83508.5 97500.8 80641.5 84564.8 4618 2496.29 64830.9
44968.9 37731.8 43665.4 39291.4 3004.42 46096.6 49983.1 47138.2 62740.5 3152.47 56180 2672.34
56730.9 55696.4 59950.5 57197.4 88169.9 70541.1 89618.9 73322.8 82763.7 4710.04 1931.18 59933.4
45198.8 38547.7 41822.1 42741.7 50140.9 44617.4 62920.5 64911.4 61763.8 3294.51 1393.09 64251.4
53246.9 51343.6 45468 45739.1 2986.42 62682.1 72998.6 70233.1 72270.7 4382.9 1706.14 70032.8
35852.3 35955.7 38397.2 34042.4 4469.94 42973.6 47442.6 51043.2 50613.1 3449.56 1075.05 49453.7
"
)
luciferase = read.delim(textConnection(Input), header = FALSE)
# Stack
luciferase <-
luciferase |>
stack() |>
pull(values)
Input = (
"
1472410 1562440 1687790 1524190 1610360 2012250 1473980 1911120 1770930 119287 1859870 81448.6
1544910 1802320 1714390 1557590 1711720 1718070 2002650 1886280 2109530 130234 51273.3 78355.5
1219240 1549310 1746110 1621560 1472070 1588340 1862590 1715340 1824380 100317 53486.1 1456070
1488500 1151550 1555550 1256780 71388.7 1531720 1810250 1703350 2166170 104416 2244400 97044.6
473446 495631 484832 494818 593864 555759 646673 536634 592993 36610.9 13402.4 529804
563558 490290 523060 587296 683813 584700 657799 714926 692377 35828.2 15697.6 659306
519301 529884 525803 498938 31775.4 586286 671262 634343 679095 40432.7 15395.1 618741
492362 589801 583858 631868 72923.1 571305 735373 649126 672333 46740.5 14423.8 633089
"
)
renilla = read.delim(textConnection(Input), header = FALSE)
# Stack
renilla <-
renilla |>
stack() |>
pull(values)
Input = (
"
Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference
Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1
Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2
delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1
Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1 Reference+NR5A1
Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1 Variant_1+NR5A1
Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1 Variant_2+NR5A1
delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1 delNR5A1+NR5A1"
)
names = read.delim(textConnection(Input), header = FALSE)
# Stack
names <-
names |>
stack() |>
pull(values)
Input = (
"
Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference
Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1
Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2
delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1
Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference
Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1 Variant_1
Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2 Variant_2
delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1 delNR5A1"
)
reporter = read.delim(textConnection(Input), header = FALSE)
# Stack
reporter <-
reporter |>
stack() |>
pull(values)
Input = (
"
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1 NR5A1
"
)
factor1 = read.delim(textConnection(Input), header = FALSE)
# Stack
factor1 <-
factor1 |>
stack() |>
pull(values)
level_order<-c("Reference",
"Variant_1",
"Variant_2",
"delNR5A1",
"Reference+NR5A1",
"Variant_1+NR5A1",
"Variant_2+NR5A1",
"delNR5A1+NR5A1")
dataframe0 <-
tibble(names,
reporter,
factor1,
renilla,
luciferase) |>
mutate_if(is.character, as.factor) |>
arrange(factor(names, levels = level_order))
boxplot(renilla ~ names, dataframe0)
dataframe1 <- dataframe0 |>
group_by(names) |>
mutate(
IQR = IQR(renilla, na.rm = TRUE),
Outlier_upper = quantile(renilla, probs = c(.75), na.rm = TRUE) + 1.5 * IQR,
Outlier_lower = quantile(renilla, probs = c(.25), na.rm = TRUE) - 1.5 * IQR,
renilla_wo_extremes = if_else(renilla <= Outlier_lower | renilla >= Outlier_upper, NA, renilla))
boxplot(renilla_wo_extremes ~ names, dataframe1)
dataframe2 <-
dataframe1 |> mutate(Luc_Ren = luciferase / renilla_wo_extremes)
ggplot(dataframe2,
aes(
x = factor(names, level = level_order),
y = renilla_wo_extremes,
colour = reporter,
group = names,
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific)
## Warning: Removed 12 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 12 rows containing missing values (`geom_point()`).
ggplot(dataframe2,
aes(
x = factor(names, level = level_order),
y = luciferase,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific)
ggplot(dataframe2,
aes(
x = factor(names, level = level_order),
y = Luc_Ren,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific)
## Warning: Removed 12 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 12 rows containing missing values (`geom_point()`).
boxplot(Luc_Ren ~ names, dataframe2)
dataframe3 <- dataframe2 |>
group_by(names) |>
mutate(
IQR = IQR(Luc_Ren, na.rm = TRUE),
Outlier_upper = quantile(Luc_Ren, probs = c(.75), na.rm = TRUE) + 1.5 * IQR,
Outlier_lower = quantile(Luc_Ren, probs = c(.25), na.rm = TRUE) - 1.5 * IQR,
Luc_Ren_wo_outliers = if_else(Luc_Ren <= Outlier_lower | Luc_Ren >= Outlier_upper, NA, Luc_Ren),
)
boxplot(Luc_Ren_wo_outliers ~ names, dataframe3)
see:
RRR = (well_value - mean_neg))/(mean_pos-mean_neg)
Relative Response ratio (Promega - Dual-Glo® Luciferase Assay System, Instructions for use of Products E2920, E2940 and E2980)
dataframe4 <- dataframe3 |>
group_by(names) |>
mutate(mean = mean(Luc_Ren_wo_outliers, na.rm = TRUE)) |>
ungroup() |>
mutate(
mean_neg = min(mean),
mean_pos = max(mean),
RRR = (Luc_Ren_wo_outliers - mean_neg) / (mean_pos - mean_neg),
RRRp = RRR * 100,
block = "a") |>
mutate_if(is.character, as.factor)
mean_pos = mean of the positive reference
mean_neg = mean of the negative reference
RRR = Relative Response Ratio
RRRp = Relative Response Ratio in percent
block = necessary for the Approximative Two-Sample Fisher-Pitman Permutation Test, it allows the stratification (it has to be a factor)
ggplot(dataframe4,
aes(
x = factor(names, level = level_order),
y = RRRp,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
ylim(-10,110)
## Warning: Removed 18 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 18 rows containing missing values (`geom_point()`).
shapiro_test_result <- dataframe4 |>
group_by(names) |>
do(tidy(shapiro.test(.$RRRp)))
print(shapiro_test_result)
## # A tibble: 8 × 4
## # Groups: names [8]
## names statistic p.value method
## <fct> <dbl> <dbl> <chr>
## 1 delNR5A1 0.967 0.855 Shapiro-Wilk normality test
## 2 delNR5A1+NR5A1 0.896 0.142 Shapiro-Wilk normality test
## 3 Reference 0.971 0.905 Shapiro-Wilk normality test
## 4 Reference+NR5A1 0.925 0.399 Shapiro-Wilk normality test
## 5 Variant_1 0.850 0.0954 Shapiro-Wilk normality test
## 6 Variant_1+NR5A1 0.901 0.224 Shapiro-Wilk normality test
## 7 Variant_2 0.934 0.493 Shapiro-Wilk normality test
## 8 Variant_2+NR5A1 0.919 0.307 Shapiro-Wilk normality test
p_value <- min(shapiro_test_result$p.value)
p_value
## [1] 0.09539483
if (p_value < 0.05) {
cat("The overall p-value obtained from the Bartlett test is less than 0.05, suggesting evidence supporting the rejection of the null hypothesis of homogeneity of variances.\n")
} else {
cat("The overall p-value obtained from the Bartlett test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.\n")
}
## The overall p-value obtained from the Bartlett test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.
The conditions with or without the addition of the transcription
factor NR5A1 exhibited clearly distinct variances. As a result, a direct
comparison between these conditions is not informative.
To assess the comparability of only conditions with NR5A1 added, both
Bartlett and Levene tests were conducted.
dataframe4b <- dataframe4 |>
filter(factor1 == "NR5A1")
bartlett_test_result <- bartlett.test(RRRp ~ names, data = dataframe4b)
print(bartlett_test_result)
##
## Bartlett test of homogeneity of variances
##
## data: RRRp by names
## Bartlett's K-squared = 2.4295, df = 3, p-value = 0.4882
p_value <- bartlett_test_result$p.value
if (p_value < 0.05) {
cat("The overall p-value obtained from the Bartlett test is less than 0.05, suggesting evidence supporting the rejection of the null hypothesis of homogeneity of variances.\n")
} else {
cat("The overall p-value obtained from the Bartlett test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.\n")
}
## The overall p-value obtained from the Bartlett test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.
levene_test_result <- leveneTest(RRRp ~ names, data = dataframe4b)
print(levene_test_result)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 0.9606 0.421
## 39
p_value <- levene_test_result$`Pr(>F)`[1]
if (p_value < 0.05) {
cat("The overall p-value obtained from the Levene test is less than 0.05, suggesting evidence supporting the rejection of the null hypothesis of homogeneity of variances.\n")
} else {
cat("The overall p-value obtained from the Levene test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.\n")
}
## The overall p-value obtained from the Levene test is greater than or equal to 0.05, indicating insufficient evidence to reject the null hypothesis of homogeneity of variances.
dataframe5 <- dataframe4[dataframe4$factor1 == "NR5A1", ]
dataframe5$Other <- unname(vapply(as.character(dataframe5$names), FUN = function(x) if(x == "Reference+NR5A1") x else "Other", FUN.VALUE = ""))
ggplot(dataframe5,
aes(
x = factor(names, level = level_order),
y = RRRp,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific) +
xlab(NULL)
## Warning: Removed 5 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 5 rows containing missing values (`geom_point()`).
library(dunn.test)
bb <- dunn.test(dataframe4$RRRp, g = dataframe4$names, kw = T, list = T, method = "bh")
## Kruskal-Wallis rank sum test
##
## data: x and group
## Kruskal-Wallis chi-squared = 77.4383, df = 7, p-value = 0
##
##
## Comparison of x by group
## (Benjamini-Hochberg)
## Col Mean-|
## Row Mean | delNR5A1 delNR5A1 Referenc Referenc Variant_ Variant_
## ---------+------------------------------------------------------------------
## delNR5A1 | -3.972807
## | 0.0001*
## |
## Referenc | -1.624848 2.104570
## | 0.0695 0.0309
## |
## Referenc | -6.759258 -3.024443 -4.838239
## | 0.0000* 0.0029* 0.0000*
## |
## Variant_ | -0.691265 2.929527 0.841944 5.549015
## | 0.2447 0.0037* 0.2073 0.0000*
## |
## Variant_ | -4.667717 -0.890126 -2.849288 2.043452 -3.622429
## | 0.0000* 0.2091 0.0044* 0.0338 0.0004*
## |
## Variant_ | -2.595633 1.224336 -0.878838 4.067897 -1.713765 2.024444
## | 0.0088* 0.1405 0.2043 0.0001* 0.0606 0.0334
## |
## Variant_ | -5.836005 -1.988718 -3.911672 1.063900 -4.664221 -1.027640
## | 0.0000* 0.0344 0.0001* 0.1749 0.0000* 0.1774
## Col Mean-|
## Row Mean | Variant_
## ---------+-----------
## Variant_ | -3.099725
## | 0.0025*
##
##
## List of pairwise comparisons: Z statistic (adjusted p-value)
## -------------------------------------------------------
## delNR5A1 - delNR5A1+NR5A1 : -3.972807 (0.0001)*
## delNR5A1 - Reference : -1.624848 (0.0695)
## delNR5A1+NR5A1 - Reference : 2.104570 (0.0309)
## delNR5A1 - Reference+NR5A1 : -6.759258 (0.0000)*
## delNR5A1+NR5A1 - Reference+NR5A1 : -3.024443 (0.0029)*
## Reference - Reference+NR5A1 : -4.838239 (0.0000)*
## delNR5A1 - Variant_1 : -0.691265 (0.2447)
## delNR5A1+NR5A1 - Variant_1 : 2.929527 (0.0037)*
## Reference - Variant_1 : 0.841944 (0.2073)
## Reference+NR5A1 - Variant_1 : 5.549015 (0.0000)*
## delNR5A1 - Variant_1+NR5A1 : -4.667717 (0.0000)*
## delNR5A1+NR5A1 - Variant_1+NR5A1 : -0.890126 (0.2091)
## Reference - Variant_1+NR5A1 : -2.849288 (0.0044)*
## Reference+NR5A1 - Variant_1+NR5A1 : 2.043452 (0.0338)
## Variant_1 - Variant_1+NR5A1 : -3.622429 (0.0004)*
## delNR5A1 - Variant_2 : -2.595633 (0.0088)*
## delNR5A1+NR5A1 - Variant_2 : 1.224336 (0.1405)
## Reference - Variant_2 : -0.878838 (0.2043)
## Reference+NR5A1 - Variant_2 : 4.067897 (0.0001)*
## Variant_1 - Variant_2 : -1.713765 (0.0606)
## Variant_1+NR5A1 - Variant_2 : 2.024444 (0.0334)
## delNR5A1 - Variant_2+NR5A1 : -5.836005 (0.0000)*
## delNR5A1+NR5A1 - Variant_2+NR5A1 : -1.988718 (0.0344)
## Reference - Variant_2+NR5A1 : -3.911672 (0.0001)*
## Reference+NR5A1 - Variant_2+NR5A1 : 1.063900 (0.1749)
## Variant_1 - Variant_2+NR5A1 : -4.664221 (0.0000)*
## Variant_1+NR5A1 - Variant_2+NR5A1 : -1.027640 (0.1774)
## Variant_2 - Variant_2+NR5A1 : -3.099725 (0.0025)*
##
## alpha = 0.05
## Reject Ho if p <= alpha/2
wilcox.test(RRRp~Other, data = dataframe5)
##
## Wilcoxon rank sum exact test
##
## data: RRRp by Other
## W = 2, p-value = 4.172e-09
## alternative hypothesis: true location shift is not equal to 0
ggplot(dataframe4,
aes(
x = factor(names, level = level_order),
y = RRRp,
colour = reporter,
group = names
)) +
geom_boxplot() +
geom_jitter(width = 0.2) +
theme(axis.text.x = element_text(
vjust = 1,
hjust = 1,
size = 10,
angle = 30
)) + theme(
panel.grid.major = element_line(colour = "gray85"),
panel.grid.minor = element_line(colour = "gray90"),
panel.background = element_rect(fill = NA)
) +
scale_y_continuous(labels = scientific) +
xlab(NULL)
## Warning: Removed 15 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 15 rows containing missing values (`geom_point()`).
gt(dataframe5)
names | reporter | factor1 | renilla | luciferase | IQR | Outlier_upper | Outlier_lower | renilla_wo_extremes | Luc_Ren | Luc_Ren_wo_outliers | mean | mean_neg | mean_pos | RRR | RRRp | block | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference+NR5A1 | Reference | NR5A1 | 473446.0 | 56730.90 | 0.02144612 | 0.17026626 | 0.08448180 | 473446.0 | 0.11982549 | 0.11982549 | 0.12747532 | 0.02903769 | 0.1274753 | 0.9222876 | 92.22876 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 495631.0 | 55696.40 | 0.02144612 | 0.17026626 | 0.08448180 | 495631.0 | 0.11237473 | 0.11237473 | 0.12747532 | 0.02903769 | 0.1274753 | 0.8465974 | 84.65974 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 484832.0 | 59950.50 | 0.02144612 | 0.17026626 | 0.08448180 | 484832.0 | 0.12365211 | 0.12365211 | 0.12747532 | 0.02903769 | 0.1274753 | 0.9611611 | 96.11611 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 494818.0 | 57197.40 | 0.02144612 | 0.17026626 | 0.08448180 | 494818.0 | 0.11559280 | 0.11559280 | 0.12747532 | 0.02903769 | 0.1274753 | 0.8792889 | 87.92889 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 593864.0 | 88169.90 | 0.02144612 | 0.17026626 | 0.08448180 | 593864.0 | 0.14846817 | 0.14846817 | 0.12747532 | 0.02903769 | 0.1274753 | 1.2132604 | 121.32604 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 555759.0 | 70541.10 | 0.02144612 | 0.17026626 | 0.08448180 | 555759.0 | 0.12692750 | 0.12692750 | 0.12747532 | 0.02903769 | 0.1274753 | 0.9944349 | 99.44349 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 646673.0 | 89618.90 | 0.02144612 | 0.17026626 | 0.08448180 | 646673.0 | 0.13858457 | 0.13858457 | 0.12747532 | 0.02903769 | 0.1274753 | 1.1128557 | 111.28557 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 536634.0 | 73322.80 | 0.02144612 | 0.17026626 | 0.08448180 | 536634.0 | 0.13663465 | 0.13663465 | 0.12747532 | 0.02903769 | 0.1274753 | 1.0930471 | 109.30471 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 592993.0 | 82763.70 | 0.02144612 | 0.17026626 | 0.08448180 | 592993.0 | 0.13956944 | 0.13956944 | 0.12747532 | 0.02903769 | 0.1274753 | 1.1228607 | 112.28607 | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 36610.9 | 4710.04 | 0.02144612 | 0.17026626 | 0.08448180 | NA | NA | NA | 0.12747532 | 0.02903769 | 0.1274753 | NA | NA | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 13402.4 | 1931.18 | 0.02144612 | 0.17026626 | 0.08448180 | NA | NA | NA | 0.12747532 | 0.02903769 | 0.1274753 | NA | NA | a | Reference+NR5A1 |
Reference+NR5A1 | Reference | NR5A1 | 529804.0 | 59933.40 | 0.02144612 | 0.17026626 | 0.08448180 | 529804.0 | 0.11312372 | 0.11312372 | 0.12747532 | 0.02903769 | 0.1274753 | 0.8542062 | 85.42062 | a | Reference+NR5A1 |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 563558.0 | 45198.80 | 0.01351059 | 0.11066317 | 0.05662083 | 563558.0 | 0.08020257 | 0.08020257 | 0.08342983 | 0.02903769 | 0.1274753 | 0.5197695 | 51.97695 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 490290.0 | 38547.70 | 0.01351059 | 0.11066317 | 0.05662083 | 490290.0 | 0.07862224 | 0.07862224 | 0.08342983 | 0.02903769 | 0.1274753 | 0.5037155 | 50.37155 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 523060.0 | 41822.10 | 0.01351059 | 0.11066317 | 0.05662083 | 523060.0 | 0.07995660 | 0.07995660 | 0.08342983 | 0.02903769 | 0.1274753 | 0.5172708 | 51.72708 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 587296.0 | 42741.70 | 0.01351059 | 0.11066317 | 0.05662083 | 587296.0 | 0.07277710 | 0.07277710 | 0.08342983 | 0.02903769 | 0.1274753 | 0.4443363 | 44.43363 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 683813.0 | 50140.90 | 0.01351059 | 0.11066317 | 0.05662083 | 683813.0 | 0.07332546 | 0.07332546 | 0.08342983 | 0.02903769 | 0.1274753 | 0.4499069 | 44.99069 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 584700.0 | 44617.40 | 0.01351059 | 0.11066317 | 0.05662083 | 584700.0 | 0.07630819 | 0.07630819 | 0.08342983 | 0.02903769 | 0.1274753 | 0.4802077 | 48.02077 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 657799.0 | 62920.50 | 0.01351059 | 0.11066317 | 0.05662083 | 657799.0 | 0.09565308 | 0.09565308 | 0.08342983 | 0.02903769 | 0.1274753 | 0.6767269 | 67.67269 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 714926.0 | 64911.40 | 0.01351059 | 0.11066317 | 0.05662083 | 714926.0 | 0.09079457 | 0.09079457 | 0.08342983 | 0.02903769 | 0.1274753 | 0.6273707 | 62.73707 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 692377.0 | 61763.80 | 0.01351059 | 0.11066317 | 0.05662083 | 692377.0 | 0.08920545 | 0.08920545 | 0.08342983 | 0.02903769 | 0.1274753 | 0.6112272 | 61.12272 | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 35828.2 | 3294.51 | 0.01351059 | 0.11066317 | 0.05662083 | NA | NA | NA | 0.08342983 | 0.02903769 | 0.1274753 | NA | NA | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 15697.6 | 1393.09 | 0.01351059 | 0.11066317 | 0.05662083 | NA | NA | NA | 0.08342983 | 0.02903769 | 0.1274753 | NA | NA | a | Other |
Variant_1+NR5A1 | Variant_1 | NR5A1 | 659306.0 | 64251.40 | 0.01351059 | 0.11066317 | 0.05662083 | 659306.0 | 0.09745308 | 0.09745308 | 0.08342983 | 0.02903769 | 0.1274753 | 0.6950126 | 69.50126 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 519301.0 | 53246.90 | 0.01313349 | 0.12827432 | 0.07574037 | 519301.0 | 0.10253572 | 0.10253572 | 0.10235920 | 0.02903769 | 0.1274753 | 0.7466457 | 74.66457 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 529884.0 | 51343.60 | 0.01313349 | 0.12827432 | 0.07574037 | 529884.0 | 0.09689592 | 0.09689592 | 0.10235920 | 0.02903769 | 0.1274753 | 0.6893526 | 68.93526 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 525803.0 | 45468.00 | 0.01313349 | 0.12827432 | 0.07574037 | 525803.0 | 0.08647345 | 0.08647345 | 0.10235920 | 0.02903769 | 0.1274753 | 0.5834737 | 58.34737 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 498938.0 | 45739.10 | 0.01313349 | 0.12827432 | 0.07574037 | 498938.0 | 0.09167291 | 0.09167291 | 0.10235920 | 0.02903769 | 0.1274753 | 0.6362935 | 63.62935 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 31775.4 | 2986.42 | 0.01313349 | 0.12827432 | 0.07574037 | 31775.4 | 0.09398528 | 0.09398528 | 0.10235920 | 0.02903769 | 0.1274753 | 0.6597842 | 65.97842 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 586286.0 | 62682.10 | 0.01313349 | 0.12827432 | 0.07574037 | 586286.0 | 0.10691386 | 0.10691386 | 0.10235920 | 0.02903769 | 0.1274753 | 0.7911220 | 79.11220 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 671262.0 | 72998.60 | 0.01313349 | 0.12827432 | 0.07574037 | 671262.0 | 0.10874830 | 0.10874830 | 0.10235920 | 0.02903769 | 0.1274753 | 0.8097575 | 80.97575 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 634343.0 | 70233.10 | 0.01313349 | 0.12827432 | 0.07574037 | 634343.0 | 0.11071786 | 0.11071786 | 0.10235920 | 0.02903769 | 0.1274753 | 0.8297657 | 82.97657 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 679095.0 | 72270.70 | 0.01313349 | 0.12827432 | 0.07574037 | 679095.0 | 0.10642208 | 0.10642208 | 0.10235920 | 0.02903769 | 0.1274753 | 0.7861261 | 78.61261 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 40432.7 | 4382.90 | 0.01313349 | 0.12827432 | 0.07574037 | 40432.7 | 0.10839988 | 0.10839988 | 0.10235920 | 0.02903769 | 0.1274753 | 0.8062181 | 80.62181 | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 15395.1 | 1706.14 | 0.01313349 | 0.12827432 | 0.07574037 | NA | NA | NA | 0.10235920 | 0.02903769 | 0.1274753 | NA | NA | a | Other |
Variant_2+NR5A1 | Variant_2 | NR5A1 | 618741.0 | 70032.80 | 0.01313349 | 0.12827432 | 0.07574037 | 618741.0 | 0.11318597 | 0.11318597 | 0.10235920 | 0.02903769 | 0.1274753 | 0.8548386 | 85.48386 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 492362.0 | 35852.30 | 0.01152458 | 0.09252188 | 0.04642354 | 492362.0 | 0.07281695 | 0.07281695 | 0.06956795 | 0.02903769 | 0.1274753 | 0.4447411 | 44.47411 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 589801.0 | 35955.70 | 0.01152458 | 0.09252188 | 0.04642354 | 589801.0 | 0.06096243 | 0.06096243 | 0.06956795 | 0.02903769 | 0.1274753 | 0.3243144 | 32.43144 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 583858.0 | 38397.20 | 0.01152458 | 0.09252188 | 0.04642354 | 583858.0 | 0.06576462 | 0.06576462 | 0.06956795 | 0.02903769 | 0.1274753 | 0.3730985 | 37.30985 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 631868.0 | 34042.40 | 0.01152458 | 0.09252188 | 0.04642354 | 631868.0 | 0.05387581 | 0.05387581 | 0.06956795 | 0.02903769 | 0.1274753 | 0.2523235 | 25.23235 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 72923.1 | 4469.94 | 0.01152458 | 0.09252188 | 0.04642354 | 72923.1 | 0.06129663 | 0.06129663 | 0.06956795 | 0.02903769 | 0.1274753 | 0.3277094 | 32.77094 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 571305.0 | 42973.60 | 0.01152458 | 0.09252188 | 0.04642354 | 571305.0 | 0.07522007 | 0.07522007 | 0.06956795 | 0.02903769 | 0.1274753 | 0.4691537 | 46.91537 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 735373.0 | 47442.60 | 0.01152458 | 0.09252188 | 0.04642354 | 735373.0 | 0.06451501 | 0.06451501 | 0.06956795 | 0.02903769 | 0.1274753 | 0.3604041 | 36.04041 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 649126.0 | 51043.20 | 0.01152458 | 0.09252188 | 0.04642354 | 649126.0 | 0.07863373 | 0.07863373 | 0.06956795 | 0.02903769 | 0.1274753 | 0.5038322 | 50.38322 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 672333.0 | 50613.10 | 0.01152458 | 0.09252188 | 0.04642354 | 672333.0 | 0.07527981 | 0.07527981 | 0.06956795 | 0.02903769 | 0.1274753 | 0.4697606 | 46.97606 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 46740.5 | 3449.56 | 0.01152458 | 0.09252188 | 0.04642354 | 46740.5 | 0.07380238 | 0.07380238 | 0.06956795 | 0.02903769 | 0.1274753 | 0.4547518 | 45.47518 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 14423.8 | 1075.05 | 0.01152458 | 0.09252188 | 0.04642354 | 14423.8 | 0.07453306 | 0.07453306 | 0.06956795 | 0.02903769 | 0.1274753 | 0.4621746 | 46.21746 | a | Other |
delNR5A1+NR5A1 | delNR5A1 | NR5A1 | 633089.0 | 49453.70 | 0.01152458 | 0.09252188 | 0.04642354 | 633089.0 | 0.07811493 | 0.07811493 | 0.06956795 | 0.02903769 | 0.1274753 | 0.4985618 | 49.85618 | a | Other |
library(gtsummary)
dataframe4 |> tbl_summary(
type = all_continuous() ~ "continuous2",
include = c(names, RRRp),
by = names,
statistic = all_continuous() ~ c("{median}","{mean}", "{sd}", "{min}", "{max}"),
digits = list(
all_categorical() ~c(0,1),
all_continuous() ~ c(1,1)),
missing_text = "NA"
)|>
bold_labels() |>
italicize_levels()
Characteristic | delNR5A1, N = 12 | delNR5A1+NR5A1, N = 12 | Reference, N = 12 | Reference+NR5A1, N = 12 | Variant_1, N = 12 | Variant_1+NR5A1, N = 12 | Variant_2, N = 12 | Variant_2+NR5A1, N = 12 |
---|---|---|---|---|---|---|---|---|
RRRp | ||||||||
Median | -0.1 | 45.0 | 10.6 | 97.8 | 3.1 | 51.9 | 18.7 | 78.6 |
Mean | 0.0 | 41.2 | 10.7 | 100.0 | 2.9 | 55.3 | 19.2 | 74.5 |
SD | 2.2 | 8.1 | 1.3 | 12.9 | 0.9 | 9.2 | 3.0 | 8.9 |
Minimum | -4.1 | 25.2 | 8.7 | 84.7 | 1.5 | 44.4 | 15.4 | 58.3 |
Maximum | 3.8 | 50.4 | 12.9 | 121.3 | 3.9 | 69.5 | 23.9 | 85.5 |
NA | 1 | 0 | 3 | 2 | 4 | 2 | 2 | 1 |
sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Sonoma 14.3.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Europe/Paris
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] dunn.test_1.3.5 gt_0.10.1 gtsummary_1.7.2 car_3.1-2
## [5] carData_3.0-5 broom_1.0.5 ggpubr_0.6.0 coin_1.4-3
## [9] survival_3.5-7 scales_1.3.0 lubridate_1.9.3 forcats_1.0.0
## [13] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2 readr_2.1.5
## [17] tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.4 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.4 xfun_0.41 bslib_0.6.1
## [4] rstatix_0.7.2 lattice_0.22-5 tzdb_0.4.0
## [7] vctrs_0.6.5 tools_4.3.2 generics_0.1.3
## [10] stats4_4.3.2 parallel_4.3.2 sandwich_3.1-0
## [13] fansi_1.0.6 highr_0.10 pkgconfig_2.0.3
## [16] Matrix_1.6-5 lifecycle_1.0.4 farver_2.1.1
## [19] compiler_4.3.2 munsell_0.5.0 codetools_0.2-19
## [22] htmltools_0.5.7 sass_0.4.8 yaml_2.3.8
## [25] pillar_1.9.0 jquerylib_0.1.4 broom.helpers_1.14.0
## [28] MASS_7.3-60.0.1 cachem_1.0.8 abind_1.4-5
## [31] multcomp_1.4-25 commonmark_1.9.0 tidyselect_1.2.0
## [34] digest_0.6.34 mvtnorm_1.2-4 stringi_1.8.3
## [37] labeling_0.4.3 splines_4.3.2 fastmap_1.1.1
## [40] grid_4.3.2 colorspace_2.1-0 cli_3.6.2
## [43] magrittr_2.0.3 utf8_1.2.4 TH.data_1.1-2
## [46] libcoin_1.0-10 withr_3.0.0 backports_1.4.1
## [49] timechange_0.3.0 rmarkdown_2.25 matrixStats_1.2.0
## [52] ggsignif_0.6.4 zoo_1.8-12 modeltools_0.2-23
## [55] hms_1.1.3 evaluate_0.23 knitr_1.45
## [58] markdown_1.12 rlang_1.1.3 glue_1.7.0
## [61] xml2_1.3.6 rstudioapi_0.15.0 jsonlite_1.8.8
## [64] R6_2.5.1