Data

data <- read.table("data_pcr_wnt4.txt", header = T, sep = "\t", dec = ".", fill = T)

data <- na.omit(data)
data$genotype <- factor(data$genotype, levels = c("WT", "Mut"))
data$Time <- factor(data$Time, 
                    levels = c("iPS", "M1_36h00", "M2_06h00", "M2_12h00", "M2_24h00", "M2_36h00", "M2_48h00", "M3_24h00", "M3_48h00"))
data %>%
  kbl() %>%
  kable_paper("hover", full_width = F) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  scroll_box(height = "300px")
Sample_Reference genotype dCt_NA Experiment Time
1 21-121 WT 10.968917 iPS09 M1_36h00
2 21-122 WT 10.824213 iPS09 M1_36h00
3 21-123 WT 10.597625 iPS09 M1_36h00
4 21-124 WT 11.054709 iPS09 M1_36h00
5 21-125 WT 10.803181 iPS09 M1_36h00
6 21-126 Mut 11.268597 iPS09 M1_36h00
7 21-127 Mut 10.833555 iPS09 M1_36h00
8 21-128 Mut 11.437712 iPS09 M1_36h00
9 21-129 Mut 11.397972 iPS09 M1_36h00
10 21-130 Mut 10.896109 iPS09 M1_36h00
11 22-59 WT 13.474622 iPS12 M1_36h00
12 22-60 WT 12.854784 iPS12 M1_36h00
13 22-61 WT 13.403718 iPS12 M1_36h00
14 22-62 WT 13.256742 iPS12 M1_36h00
15 22-63 WT 13.739456 iPS12 M1_36h00
16 22-64 WT 12.999229 iPS12 M1_36h00
17 22-65 Mut 13.488350 iPS12 M1_36h00
18 22-66 Mut 13.279820 iPS12 M1_36h00
20 22-68 Mut 13.960793 iPS12 M1_36h00
21 22-69 Mut 13.429072 iPS12 M1_36h00
22 22-70 Mut 13.516084 iPS12 M1_36h00
23 23-181 WT 12.969380 iPS26a M1_36h00
24 23-182 WT 14.790546 iPS26a M1_36h00
25 23-183 WT 13.532569 iPS26a M1_36h00
26 23-184 WT 12.652472 iPS26a M1_36h00
27 23-185 WT 13.798628 iPS26a M1_36h00
28 23-186 WT 13.772450 iPS26a M1_36h00
29 23-187 WT 13.576309 iPS26b M1_36h00
30 23-188 WT 13.758336 iPS26b M1_36h00
31 23-189 WT 14.128927 iPS26b M1_36h00
32 23-190 WT 13.756866 iPS26b M1_36h00
33 23-191 WT 15.025131 iPS26b M1_36h00
34 23-192 WT 12.547846 iPS26b M1_36h00
35 23-193 Mut 13.948061 iPS26a M1_36h00
36 23-194 Mut 13.662630 iPS26a M1_36h00
37 23-195 Mut 13.262788 iPS26a M1_36h00
38 23-196 Mut 13.411038 iPS26a M1_36h00
39 23-197 Mut 14.591857 iPS26a M1_36h00
40 23-198 Mut 13.347418 iPS26a M1_36h00
41 23-199 Mut 14.233018 iPS26b M1_36h00
42 23-200 Mut 13.416318 iPS26b M1_36h00
43 23-201 Mut 13.735318 iPS26b M1_36h00
44 23-202 Mut 13.129638 iPS26b M1_36h00
45 23-203 Mut 13.499030 iPS26b M1_36h00
46 23-204 Mut 13.827831 iPS26b M1_36h00
47 22-71 WT 10.080000 iPS12 M2_06h00
48 22-72 WT 10.170000 iPS12 M2_06h00
49 22-73 WT 10.180000 iPS12 M2_06h00
50 22-74 WT 10.460000 iPS12 M2_06h00
51 22-75 WT 10.850000 iPS12 M2_06h00
55 22-79 Mut 11.240000 iPS12 M2_06h00
56 22-80 Mut 10.900000 iPS12 M2_06h00
57 22-81 Mut 11.650000 iPS12 M2_06h00
58 22-82 Mut 11.100000 iPS12 M2_06h00
59 23-205 WT 11.054595 iPS26a M2_06h00
60 23-206 WT 11.812902 iPS26a M2_06h00
61 23-207 WT 11.681471 iPS26a M2_06h00
62 23-208 WT 11.922643 iPS26b M2_06h00
63 23-209 WT 12.125399 iPS26b M2_06h00
64 23-210 WT 11.618021 iPS26b M2_06h00
65 23-211 Mut 11.988661 iPS26a M2_06h00
66 23-212 Mut 12.587582 iPS26a M2_06h00
67 23-213 Mut 12.839417 iPS26a M2_06h00
68 23-214 Mut 10.974736 iPS26b M2_06h00
69 23-215 Mut 11.111114 iPS26b M2_06h00
70 23-216 Mut 11.659846 iPS26b M2_06h00
72 22-84 WT 12.929497 iPS12 M2_12h00
73 22-85 WT 12.403162 iPS12 M2_12h00
74 22-86 WT 13.817458 iPS12 M2_12h00
75 22-87 WT 12.599973 iPS12 M2_12h00
76 22-88 WT 12.961526 iPS12 M2_12h00
77 22-89 Mut 13.319420 iPS12 M2_12h00
78 22-90 Mut 12.778232 iPS12 M2_12h00
79 22-91 Mut 15.304095 iPS12 M2_12h00
80 22-92 Mut 13.447275 iPS12 M2_12h00
81 22-93 Mut 13.739190 iPS12 M2_12h00
82 22-94 Mut 14.860156 iPS12 M2_12h00
83 23-217 WT 11.850000 iPS26a M2_12h00
84 23-218 WT 11.900000 iPS26a M2_12h00
85 23-219 WT 12.200000 iPS26a M2_12h00
86 23-220 WT 12.240000 iPS26b M2_12h00
87 23-221 WT 12.470000 iPS26b M2_12h00
88 23-222 WT 11.920000 iPS26b M2_12h00
89 23-223 Mut 11.590000 iPS26a M2_12h00
90 23-224 Mut 11.660000 iPS26a M2_12h00
91 23-225 Mut 11.530000 iPS26a M2_12h00
92 23-226 Mut 11.090000 iPS26b M2_12h00
93 23-227 Mut 11.520000 iPS26b M2_12h00
94 23-228 Mut 12.300000 iPS26b M2_12h00
95 21-131 WT 8.636774 iPS09 M2_24h00
96 21-132 WT 8.872737 iPS09 M2_24h00
97 21-133 WT 8.643445 iPS09 M2_24h00
98 21-134 WT 8.964903 iPS09 M2_24h00
99 21-135 WT 8.936666 iPS09 M2_24h00
100 21-136 Mut 9.183241 iPS09 M2_24h00
101 21-137 Mut 9.146442 iPS09 M2_24h00
102 21-138 Mut 9.310853 iPS09 M2_24h00
103 21-139 Mut 9.251401 iPS09 M2_24h00
105 22-95 WT 8.604618 iPS12 M2_24h00
106 22-96 WT 9.665904 iPS12 M2_24h00
107 22-97 WT 9.083129 iPS12 M2_24h00
108 22-98 WT 9.420029 iPS12 M2_24h00
109 22-99 WT 9.336870 iPS12 M2_24h00
111 22-101 Mut 9.727879 iPS12 M2_24h00
112 22-102 Mut 9.637028 iPS12 M2_24h00
113 22-103 Mut 9.570942 iPS12 M2_24h00
114 22-104 Mut 8.874881 iPS12 M2_24h00
115 22-105 Mut 9.138786 iPS12 M2_24h00
116 22-106 Mut 10.308006 iPS12 M2_24h00
117 23-229 WT 10.351647 iPS26a M2_36h00
118 23-230 WT 9.963634 iPS26a M2_36h00
119 23-231 WT 9.544190 iPS26a M2_36h00
120 23-232 WT 9.237132 iPS26b M2_36h00
121 23-233 WT 9.464677 iPS26b M2_36h00
122 23-234 WT 9.179122 iPS26b M2_36h00
123 23-235 Mut 8.236533 iPS26a M2_36h00
124 23-236 Mut 8.546755 iPS26a M2_36h00
125 23-237 Mut 8.329521 iPS26a M2_36h00
126 23-238 Mut 9.257416 iPS26b M2_36h00
127 23-239 Mut 9.128082 iPS26b M2_36h00
128 23-240 Mut 9.537755 iPS26b M2_36h00
129 22-107 WT 9.583928 iPS12 M2_48h00
130 22-108 WT 8.839619 iPS12 M2_48h00
131 22-109 WT 9.327402 iPS12 M2_48h00
132 22-110 WT 8.354727 iPS12 M2_48h00
133 22-111 WT 8.836753 iPS12 M2_48h00
135 22-113 Mut 8.837236 iPS12 M2_48h00
136 22-114 Mut 9.389348 iPS12 M2_48h00
137 22-115 Mut 9.384913 iPS12 M2_48h00
138 22-116 Mut 10.068714 iPS12 M2_48h00
139 22-117 Mut 9.914596 iPS12 M2_48h00
141 23-241 WT 9.671722 iPS26a M2_48h00
142 23-242 WT 9.925353 iPS26a M2_48h00
143 23-243 WT 9.614664 iPS26a M2_48h00
144 23-244 WT 8.646234 iPS26b M2_48h00
145 23-245 WT 8.725549 iPS26b M2_48h00
146 23-246 WT 8.366160 iPS26b M2_48h00
147 23-247 Mut 8.843941 iPS26a M2_48h00
148 23-248 Mut 8.441494 iPS26a M2_48h00
149 23-249 Mut 8.858197 iPS26a M2_48h00
150 23-250 Mut 9.140035 iPS26b M2_48h00
151 23-251 Mut 8.974015 iPS26b M2_48h00
152 23-252 Mut 9.063062 iPS26b M2_48h00
153 23-253 WT 9.445384 iPS26a M3_24h00
154 23-254 WT 9.563054 iPS26a M3_24h00
155 23-255 WT 9.672036 iPS26a M3_24h00
156 23-256 WT 9.022181 iPS26b M3_24h00
157 23-257 WT 9.505750 iPS26b M3_24h00
158 23-258 WT 9.145056 iPS26b M3_24h00
159 23-259 Mut 9.574976 iPS26a M3_24h00
160 23-260 Mut 10.006980 iPS26a M3_24h00
161 23-261 Mut 9.695734 iPS26a M3_24h00
162 23-262 Mut 9.298908 iPS26b M3_24h00
163 23-263 Mut 9.300082 iPS26b M3_24h00
164 23-264 Mut 9.825245 iPS26b M3_24h00
165 23-265 WT 9.364017 iPS26a M3_48h00
166 23-266 WT 9.688260 iPS26a M3_48h00
167 23-267 WT 9.403668 iPS26a M3_48h00
168 23-268 WT 9.315279 iPS26b M3_48h00
169 23-269 WT 9.595745 iPS26b M3_48h00
170 23-270 WT 9.587202 iPS26b M3_48h00
171 23-271 Mut 9.556211 iPS26a M3_48h00
172 23-272 Mut 10.835456 iPS26a M3_48h00
173 23-273 Mut 10.829852 iPS26a M3_48h00
174 23-274 Mut 9.188921 iPS26b M3_48h00
175 23-275 Mut 9.537677 iPS26b M3_48h00
176 23-276 Mut 9.433194 iPS26b M3_48h00
177 21-146 WT 14.298830 iPS09 M3_48h00
178 21-147 WT 14.662112 iPS09 M3_48h00
179 21-148 WT 14.758909 iPS09 M3_48h00
180 21-149 WT 15.623959 iPS09 M3_48h00
181 21-150 WT 15.871068 iPS09 M3_48h00
182 21-151 Mut 14.641644 iPS09 M3_48h00
183 21-152 Mut 14.215118 iPS09 M3_48h00
184 21-153 Mut 14.599433 iPS09 M3_48h00
185 21-154 Mut 14.406458 iPS09 M3_48h00
186 21-155 Mut 14.316703 iPS09 M3_48h00
187 23-157 WT 13.088468 iPS19 iPS
188 23-158 WT 10.818503 iPS19 iPS
189 23-159 WT 11.538493 iPS19 iPS
190 23-160 WT 12.112421 iPS19 iPS
191 23-161 WT 11.436573 iPS19 iPS
192 23-162 WT 11.378405 iPS19 iPS
193 23-169 WT 10.972909 iPS19 iPS
194 23-170 WT 12.157229 iPS19 iPS
195 23-171 WT 11.469306 iPS19 iPS
196 23-172 WT 13.656572 iPS19 iPS
197 23-173 WT 12.862438 iPS19 iPS
198 23-174 WT 11.188994 iPS19 iPS
199 23-163 Mut 12.391291 iPS19 iPS
200 23-164 Mut 12.760026 iPS19 iPS
201 23-165 Mut 12.656075 iPS19 iPS
202 23-166 Mut 12.065749 iPS19 iPS
203 23-167 Mut 12.805175 iPS19 iPS
204 23-168 Mut 12.603698 iPS19 iPS
205 23-175 Mut 12.457595 iPS19 iPS
206 23-176 Mut 13.957425 iPS19 iPS
207 23-177 Mut 13.223399 iPS19 iPS
208 23-178 Mut 13.660377 iPS19 iPS
209 23-179 Mut 13.816491 iPS19 iPS
210 23-180 Mut 14.118085 iPS19 iPS

Plots

We first examine the distribution of dCt_NA across the different timepoints and colored by experiments.

ggplot(data = data, aes(x = genotype, y = dCt_NA)) +
         geom_boxplot(outlier.shape = NA) +
         geom_jitter(aes(colour = Experiment), size = 0.8) +
         theme_classic() + facet_grid(. ~ Time)
Figure 1: dCt (raw data) as a function of the genotype at each time point

Figure 1: dCt (raw data) as a function of the genotype at each time point

We next look at the distribution of dCt_NA across the different experiments and colored by timepoints.

ggplot(data = data, aes(x = genotype, y = dCt_NA, colour = Time)) +
         geom_boxplot(outlier.shape = NA) +
         geom_jitter(position=position_jitterdodge(jitter.width = 0.1), size = 0.8) +
         theme_classic() + facet_grid(. ~ Experiment)
Figure 2: dCt (raw data) as a function of the genotype in each experiment

Figure 2: dCt (raw data) as a function of the genotype in each experiment

Analysis

We use a mixed-effect model, to analyse the dependent variable dCt_NA with respect to:

  • fixed effects (i.e., the genotype and Time variables)

  • random effects (i.e., the Experiment variable)

We include an interaction term between genotypeand Timepoint as we are interested in the effect of genotypeat each Timepoint and the effect of genotypeseems not to be homogeneous at each timepoint.

We obtain the following:

mod = lmer(dCt_NA ~ genotype*Time + (1 | Experiment), data = data)

summary(mod)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dCt_NA ~ genotype * Time + (1 | Experiment)
##    Data: data
## 
## REML criterion at convergence: 630
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.18630 -0.39623  0.00636  0.51528  3.11162 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  Experiment (Intercept) 0.04406  0.2099  
##  Residual               1.43649  1.1985  
## Number of obs: 201, groups:  Experiment, 5
## 
## Fixed effects:
##                          Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)               11.8900     0.4047  10.6357  29.381 1.58e-11 ***
## genotypeMut                1.1529     0.4893 179.8338   2.356 0.019536 *  
## TimeM1_36h00               1.0835     0.4871  14.1355   2.224 0.042912 *  
## TimeM2_06h00              -0.8016     0.5549  22.0699  -1.445 0.162617    
## TimeM2_12h00               0.5927     0.5549  22.0699   1.068 0.296991    
## TimeM2_24h00              -3.0002     0.5692  23.1012  -5.271 2.36e-05 ***
## TimeM2_36h00              -2.1400     0.6479  36.5878  -3.303 0.002145 ** 
## TimeM2_48h00              -2.8073     0.5549  22.0699  -5.059 4.52e-05 ***
## TimeM3_24h00              -2.3711     0.6479  36.5878  -3.660 0.000791 ***
## TimeM3_48h00               0.1467     0.5547  22.1699   0.264 0.793846    
## genotypeMut:TimeM1_36h00  -1.0435     0.6060 179.8607  -1.722 0.086794 .  
## genotypeMut:TimeM2_06h00  -0.6196     0.7168 179.8898  -0.864 0.388485    
## genotypeMut:TimeM2_12h00  -0.8849     0.6998 179.8746  -1.265 0.207686    
## genotypeMut:TimeM2_24h00  -0.7588     0.7261 180.1573  -1.045 0.297369    
## genotypeMut:TimeM2_36h00  -1.9370     0.8475 179.8338  -2.286 0.023448 *  
## genotypeMut:TimeM2_48h00  -1.0599     0.7075 179.8338  -1.498 0.135884    
## genotypeMut:TimeM3_24h00  -0.9282     0.8475 179.8338  -1.095 0.274891    
## genotypeMut:TimeM3_48h00  -1.2082     0.7075 179.8338  -1.708 0.089421 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
hist(residuals(mod), nclass = 50)
Figure 3: Histogram of the residuals from the linear mixed models

Figure 3: Histogram of the residuals from the linear mixed models

We can compute the marginal effects of the fixed effects and their interaction term.

Anova(mod)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: dCt_NA
##                  Chisq Df Pr(>Chisq)    
## genotype        2.3349  1     0.1265    
## Time          334.7602  8     <2e-16 ***
## genotype:Time   6.6091  8     0.5793    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We are interested in the genotype effect at each timepoint.

emm.all <- emmeans(mod,  ~ genotype | Time)
pairs(emm.all)
## Time = iPS:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut  -1.1529 0.489 180  -2.356  0.0195
## 
## Time = M1_36h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut  -0.1095 0.358 180  -0.306  0.7598
## 
## Time = M2_06h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut  -0.5333 0.524 180  -1.018  0.3100
## 
## Time = M2_12h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut  -0.2680 0.500 180  -0.535  0.5930
## 
## Time = M2_24h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut  -0.3941 0.537 181  -0.734  0.4639
## 
## Time = M2_36h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut   0.7841 0.692 180   1.133  0.2587
## 
## Time = M2_48h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut  -0.0930 0.511 180  -0.182  0.8557
## 
## Time = M3_24h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut  -0.2247 0.692 180  -0.325  0.7457
## 
## Time = M3_48h00:
##  contrast estimate    SE  df t.ratio p.value
##  WT - Mut   0.0553 0.511 180   0.108  0.9139
## 
## Degrees-of-freedom method: kenward-roger

We now adjust the p-values using the Benjamini-Hochberg to identify at which timepoints the dCT_NA are significantly different between WT and Mut.

p <- summary(pairs(emm.all))$p.value
adj.p <- p.adjust(p, method = "BH")
names(adj.p) <- levels(data$Time)
adj.p
##       iPS  M1_36h00  M2_06h00  M2_12h00  M2_24h00  M2_36h00  M2_48h00  M3_24h00 
## 0.1758127 0.9139401 0.9139401 0.9139401 0.9139401 0.9139401 0.9139401 0.9139401 
##  M3_48h00 
## 0.9139401

From these p-values, we can conclude that the genotype does not significantly impact the expression level of WNT4 at any timepoint.

We can plot the marginal means estimated by the mixed model for the genotypeas a function of Time.

emmip_output<-emmip(mod, genotype ~ Time)
emmip_dataframe<-emmip_output$data
emmip_dataframe
##  genotype Time      yvar    SE    df tvar xvar    
##  WT       iPS      11.89 0.405  11.4 WT   iPS     
##  Mut      iPS      13.04 0.405  11.4 Mut  iPS     
##  WT       M1_36h00 12.97 0.271  33.6 WT   M1_36h00
##  Mut      M1_36h00 13.08 0.276  35.9 Mut  M1_36h00
##  WT       M2_06h00 11.09 0.383  78.8 WT   M2_06h00
##  Mut      M2_06h00 11.62 0.399  88.3 Mut  M2_06h00
##  WT       M2_12h00 12.48 0.383  78.8 WT   M2_12h00
##  Mut      M2_12h00 12.75 0.370  70.2 Mut  M2_12h00
##  WT       M2_24h00  8.89 0.408  77.9 WT   M2_24h00
##  Mut      M2_24h00  9.28 0.409  79.2 Mut  M2_24h00
##  WT       M2_36h00  9.75 0.512 125.2 WT   M2_36h00
##  Mut      M2_36h00  8.97 0.512 125.2 Mut  M2_36h00
##  WT       M2_48h00  9.08 0.383  78.8 WT   M2_48h00
##  Mut      M2_48h00  9.18 0.383  78.8 Mut  M2_48h00
##  WT       M3_24h00  9.52 0.512 125.2 WT   M3_24h00
##  Mut      M3_24h00  9.74 0.512 125.2 Mut  M3_24h00
##  WT       M3_48h00 12.04 0.383  80.0 WT   M3_48h00
##  Mut      M3_48h00 11.98 0.383  80.0 Mut  M3_48h00
## 
## Degrees-of-freedom method: kenward-roger
emmip(mod, genotype ~ Time)
Figure 4: Mean dCt predicted by the linear model as a function of time

Figure 4: Mean dCt predicted by the linear model as a function of time

This plot is the same as the previous one but using the actual data. Note that this does not take into account the variability across experiments.

df <- aggregate(data[, 3], by = list(data$genotype, data$Time), mean)
ggplot(df, aes(x=Group.2, y = x, group = Group.1)) + geom_line(aes(color=Group.1)) + geom_point(aes(color=Group.1))
Figure 5: Mean dCt computed from the actual data (across experiments) as a function of time

Figure 5: Mean dCt computed from the actual data (across experiments) as a function of time

Interpretation

Overall, the genotype does not affect WNT4 expression at any timepoint.

sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Sonoma 14.3.1
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: Europe/Paris
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] corrplot_0.92    car_3.1-2        carData_3.0-5    ggbeeswarm_0.7.2
##  [5] emmeans_1.9.0    lmerTest_3.1-3   lme4_1.1-35.1    Matrix_1.6-5    
##  [9] kableExtra_1.3.4 lubridate_1.9.3  forcats_1.0.0    stringr_1.5.1   
## [13] dplyr_1.1.4      purrr_1.0.2      readr_2.1.5      tidyr_1.3.0     
## [17] tibble_3.2.1     ggplot2_3.4.4    tidyverse_2.0.0 
## 
## loaded via a namespace (and not attached):
##  [1] tidyselect_1.2.0    viridisLite_0.4.2   farver_2.1.1       
##  [4] vipor_0.4.7         fastmap_1.1.1       TH.data_1.1-2      
##  [7] digest_0.6.34       estimability_1.4.1  timechange_0.3.0   
## [10] lifecycle_1.0.4     survival_3.5-7      magrittr_2.0.3     
## [13] compiler_4.3.2      rlang_1.1.3         sass_0.4.8         
## [16] tools_4.3.2         utf8_1.2.4          yaml_2.3.8         
## [19] knitr_1.45          labeling_0.4.3      xml2_1.3.6         
## [22] multcomp_1.4-25     abind_1.4-5         withr_3.0.0        
## [25] numDeriv_2016.8-1.1 grid_4.3.2          fansi_1.0.6        
## [28] xtable_1.8-4        colorspace_2.1-0    scales_1.3.0       
## [31] MASS_7.3-60.0.1     cli_3.6.2           mvtnorm_1.2-4      
## [34] rmarkdown_2.25      generics_0.1.3      rstudioapi_0.15.0  
## [37] httr_1.4.7          tzdb_0.4.0          minqa_1.2.6        
## [40] cachem_1.0.8        splines_4.3.2       parallel_4.3.2     
## [43] rvest_1.0.3         vctrs_0.6.5         boot_1.3-29        
## [46] webshot_0.5.5       sandwich_3.1-0      jsonlite_1.8.8     
## [49] hms_1.1.3           pbkrtest_0.5.2      beeswarm_0.4.0     
## [52] systemfonts_1.0.5   jquerylib_0.1.4     glue_1.7.0         
## [55] nloptr_2.0.3        codetools_0.2-19    stringi_1.8.3      
## [58] gtable_0.3.4        munsell_0.5.0       pillar_1.9.0       
## [61] htmltools_0.5.7     R6_2.5.1            evaluate_0.23      
## [64] lattice_0.22-5      highr_0.10          backports_1.4.1    
## [67] broom_1.0.5         bslib_0.6.1         Rcpp_1.0.12        
## [70] svglite_2.1.3       coda_0.19-4.1       nlme_3.1-164       
## [73] xfun_0.41           zoo_1.8-12          pkgconfig_2.0.3