data <- read.table("data_pcr_wnt4.txt", header = T, sep = "\t", dec = ".", fill = T)
data <- na.omit(data)
data$genotype <- factor(data$genotype, levels = c("WT", "Mut"))
data$Time <- factor(data$Time,
levels = c("iPS", "M1_36h00", "M2_06h00", "M2_12h00", "M2_24h00", "M2_36h00", "M2_48h00", "M3_24h00", "M3_48h00"))
data %>%
kbl() %>%
kable_paper("hover", full_width = F) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
scroll_box(height = "300px")
Sample_Reference | genotype | dCt_NA | Experiment | Time | |
---|---|---|---|---|---|
1 | 21-121 | WT | 10.968917 | iPS09 | M1_36h00 |
2 | 21-122 | WT | 10.824213 | iPS09 | M1_36h00 |
3 | 21-123 | WT | 10.597625 | iPS09 | M1_36h00 |
4 | 21-124 | WT | 11.054709 | iPS09 | M1_36h00 |
5 | 21-125 | WT | 10.803181 | iPS09 | M1_36h00 |
6 | 21-126 | Mut | 11.268597 | iPS09 | M1_36h00 |
7 | 21-127 | Mut | 10.833555 | iPS09 | M1_36h00 |
8 | 21-128 | Mut | 11.437712 | iPS09 | M1_36h00 |
9 | 21-129 | Mut | 11.397972 | iPS09 | M1_36h00 |
10 | 21-130 | Mut | 10.896109 | iPS09 | M1_36h00 |
11 | 22-59 | WT | 13.474622 | iPS12 | M1_36h00 |
12 | 22-60 | WT | 12.854784 | iPS12 | M1_36h00 |
13 | 22-61 | WT | 13.403718 | iPS12 | M1_36h00 |
14 | 22-62 | WT | 13.256742 | iPS12 | M1_36h00 |
15 | 22-63 | WT | 13.739456 | iPS12 | M1_36h00 |
16 | 22-64 | WT | 12.999229 | iPS12 | M1_36h00 |
17 | 22-65 | Mut | 13.488350 | iPS12 | M1_36h00 |
18 | 22-66 | Mut | 13.279820 | iPS12 | M1_36h00 |
20 | 22-68 | Mut | 13.960793 | iPS12 | M1_36h00 |
21 | 22-69 | Mut | 13.429072 | iPS12 | M1_36h00 |
22 | 22-70 | Mut | 13.516084 | iPS12 | M1_36h00 |
23 | 23-181 | WT | 12.969380 | iPS26a | M1_36h00 |
24 | 23-182 | WT | 14.790546 | iPS26a | M1_36h00 |
25 | 23-183 | WT | 13.532569 | iPS26a | M1_36h00 |
26 | 23-184 | WT | 12.652472 | iPS26a | M1_36h00 |
27 | 23-185 | WT | 13.798628 | iPS26a | M1_36h00 |
28 | 23-186 | WT | 13.772450 | iPS26a | M1_36h00 |
29 | 23-187 | WT | 13.576309 | iPS26b | M1_36h00 |
30 | 23-188 | WT | 13.758336 | iPS26b | M1_36h00 |
31 | 23-189 | WT | 14.128927 | iPS26b | M1_36h00 |
32 | 23-190 | WT | 13.756866 | iPS26b | M1_36h00 |
33 | 23-191 | WT | 15.025131 | iPS26b | M1_36h00 |
34 | 23-192 | WT | 12.547846 | iPS26b | M1_36h00 |
35 | 23-193 | Mut | 13.948061 | iPS26a | M1_36h00 |
36 | 23-194 | Mut | 13.662630 | iPS26a | M1_36h00 |
37 | 23-195 | Mut | 13.262788 | iPS26a | M1_36h00 |
38 | 23-196 | Mut | 13.411038 | iPS26a | M1_36h00 |
39 | 23-197 | Mut | 14.591857 | iPS26a | M1_36h00 |
40 | 23-198 | Mut | 13.347418 | iPS26a | M1_36h00 |
41 | 23-199 | Mut | 14.233018 | iPS26b | M1_36h00 |
42 | 23-200 | Mut | 13.416318 | iPS26b | M1_36h00 |
43 | 23-201 | Mut | 13.735318 | iPS26b | M1_36h00 |
44 | 23-202 | Mut | 13.129638 | iPS26b | M1_36h00 |
45 | 23-203 | Mut | 13.499030 | iPS26b | M1_36h00 |
46 | 23-204 | Mut | 13.827831 | iPS26b | M1_36h00 |
47 | 22-71 | WT | 10.080000 | iPS12 | M2_06h00 |
48 | 22-72 | WT | 10.170000 | iPS12 | M2_06h00 |
49 | 22-73 | WT | 10.180000 | iPS12 | M2_06h00 |
50 | 22-74 | WT | 10.460000 | iPS12 | M2_06h00 |
51 | 22-75 | WT | 10.850000 | iPS12 | M2_06h00 |
55 | 22-79 | Mut | 11.240000 | iPS12 | M2_06h00 |
56 | 22-80 | Mut | 10.900000 | iPS12 | M2_06h00 |
57 | 22-81 | Mut | 11.650000 | iPS12 | M2_06h00 |
58 | 22-82 | Mut | 11.100000 | iPS12 | M2_06h00 |
59 | 23-205 | WT | 11.054595 | iPS26a | M2_06h00 |
60 | 23-206 | WT | 11.812902 | iPS26a | M2_06h00 |
61 | 23-207 | WT | 11.681471 | iPS26a | M2_06h00 |
62 | 23-208 | WT | 11.922643 | iPS26b | M2_06h00 |
63 | 23-209 | WT | 12.125399 | iPS26b | M2_06h00 |
64 | 23-210 | WT | 11.618021 | iPS26b | M2_06h00 |
65 | 23-211 | Mut | 11.988661 | iPS26a | M2_06h00 |
66 | 23-212 | Mut | 12.587582 | iPS26a | M2_06h00 |
67 | 23-213 | Mut | 12.839417 | iPS26a | M2_06h00 |
68 | 23-214 | Mut | 10.974736 | iPS26b | M2_06h00 |
69 | 23-215 | Mut | 11.111114 | iPS26b | M2_06h00 |
70 | 23-216 | Mut | 11.659846 | iPS26b | M2_06h00 |
72 | 22-84 | WT | 12.929497 | iPS12 | M2_12h00 |
73 | 22-85 | WT | 12.403162 | iPS12 | M2_12h00 |
74 | 22-86 | WT | 13.817458 | iPS12 | M2_12h00 |
75 | 22-87 | WT | 12.599973 | iPS12 | M2_12h00 |
76 | 22-88 | WT | 12.961526 | iPS12 | M2_12h00 |
77 | 22-89 | Mut | 13.319420 | iPS12 | M2_12h00 |
78 | 22-90 | Mut | 12.778232 | iPS12 | M2_12h00 |
79 | 22-91 | Mut | 15.304095 | iPS12 | M2_12h00 |
80 | 22-92 | Mut | 13.447275 | iPS12 | M2_12h00 |
81 | 22-93 | Mut | 13.739190 | iPS12 | M2_12h00 |
82 | 22-94 | Mut | 14.860156 | iPS12 | M2_12h00 |
83 | 23-217 | WT | 11.850000 | iPS26a | M2_12h00 |
84 | 23-218 | WT | 11.900000 | iPS26a | M2_12h00 |
85 | 23-219 | WT | 12.200000 | iPS26a | M2_12h00 |
86 | 23-220 | WT | 12.240000 | iPS26b | M2_12h00 |
87 | 23-221 | WT | 12.470000 | iPS26b | M2_12h00 |
88 | 23-222 | WT | 11.920000 | iPS26b | M2_12h00 |
89 | 23-223 | Mut | 11.590000 | iPS26a | M2_12h00 |
90 | 23-224 | Mut | 11.660000 | iPS26a | M2_12h00 |
91 | 23-225 | Mut | 11.530000 | iPS26a | M2_12h00 |
92 | 23-226 | Mut | 11.090000 | iPS26b | M2_12h00 |
93 | 23-227 | Mut | 11.520000 | iPS26b | M2_12h00 |
94 | 23-228 | Mut | 12.300000 | iPS26b | M2_12h00 |
95 | 21-131 | WT | 8.636774 | iPS09 | M2_24h00 |
96 | 21-132 | WT | 8.872737 | iPS09 | M2_24h00 |
97 | 21-133 | WT | 8.643445 | iPS09 | M2_24h00 |
98 | 21-134 | WT | 8.964903 | iPS09 | M2_24h00 |
99 | 21-135 | WT | 8.936666 | iPS09 | M2_24h00 |
100 | 21-136 | Mut | 9.183241 | iPS09 | M2_24h00 |
101 | 21-137 | Mut | 9.146442 | iPS09 | M2_24h00 |
102 | 21-138 | Mut | 9.310853 | iPS09 | M2_24h00 |
103 | 21-139 | Mut | 9.251401 | iPS09 | M2_24h00 |
105 | 22-95 | WT | 8.604618 | iPS12 | M2_24h00 |
106 | 22-96 | WT | 9.665904 | iPS12 | M2_24h00 |
107 | 22-97 | WT | 9.083129 | iPS12 | M2_24h00 |
108 | 22-98 | WT | 9.420029 | iPS12 | M2_24h00 |
109 | 22-99 | WT | 9.336870 | iPS12 | M2_24h00 |
111 | 22-101 | Mut | 9.727879 | iPS12 | M2_24h00 |
112 | 22-102 | Mut | 9.637028 | iPS12 | M2_24h00 |
113 | 22-103 | Mut | 9.570942 | iPS12 | M2_24h00 |
114 | 22-104 | Mut | 8.874881 | iPS12 | M2_24h00 |
115 | 22-105 | Mut | 9.138786 | iPS12 | M2_24h00 |
116 | 22-106 | Mut | 10.308006 | iPS12 | M2_24h00 |
117 | 23-229 | WT | 10.351647 | iPS26a | M2_36h00 |
118 | 23-230 | WT | 9.963634 | iPS26a | M2_36h00 |
119 | 23-231 | WT | 9.544190 | iPS26a | M2_36h00 |
120 | 23-232 | WT | 9.237132 | iPS26b | M2_36h00 |
121 | 23-233 | WT | 9.464677 | iPS26b | M2_36h00 |
122 | 23-234 | WT | 9.179122 | iPS26b | M2_36h00 |
123 | 23-235 | Mut | 8.236533 | iPS26a | M2_36h00 |
124 | 23-236 | Mut | 8.546755 | iPS26a | M2_36h00 |
125 | 23-237 | Mut | 8.329521 | iPS26a | M2_36h00 |
126 | 23-238 | Mut | 9.257416 | iPS26b | M2_36h00 |
127 | 23-239 | Mut | 9.128082 | iPS26b | M2_36h00 |
128 | 23-240 | Mut | 9.537755 | iPS26b | M2_36h00 |
129 | 22-107 | WT | 9.583928 | iPS12 | M2_48h00 |
130 | 22-108 | WT | 8.839619 | iPS12 | M2_48h00 |
131 | 22-109 | WT | 9.327402 | iPS12 | M2_48h00 |
132 | 22-110 | WT | 8.354727 | iPS12 | M2_48h00 |
133 | 22-111 | WT | 8.836753 | iPS12 | M2_48h00 |
135 | 22-113 | Mut | 8.837236 | iPS12 | M2_48h00 |
136 | 22-114 | Mut | 9.389348 | iPS12 | M2_48h00 |
137 | 22-115 | Mut | 9.384913 | iPS12 | M2_48h00 |
138 | 22-116 | Mut | 10.068714 | iPS12 | M2_48h00 |
139 | 22-117 | Mut | 9.914596 | iPS12 | M2_48h00 |
141 | 23-241 | WT | 9.671722 | iPS26a | M2_48h00 |
142 | 23-242 | WT | 9.925353 | iPS26a | M2_48h00 |
143 | 23-243 | WT | 9.614664 | iPS26a | M2_48h00 |
144 | 23-244 | WT | 8.646234 | iPS26b | M2_48h00 |
145 | 23-245 | WT | 8.725549 | iPS26b | M2_48h00 |
146 | 23-246 | WT | 8.366160 | iPS26b | M2_48h00 |
147 | 23-247 | Mut | 8.843941 | iPS26a | M2_48h00 |
148 | 23-248 | Mut | 8.441494 | iPS26a | M2_48h00 |
149 | 23-249 | Mut | 8.858197 | iPS26a | M2_48h00 |
150 | 23-250 | Mut | 9.140035 | iPS26b | M2_48h00 |
151 | 23-251 | Mut | 8.974015 | iPS26b | M2_48h00 |
152 | 23-252 | Mut | 9.063062 | iPS26b | M2_48h00 |
153 | 23-253 | WT | 9.445384 | iPS26a | M3_24h00 |
154 | 23-254 | WT | 9.563054 | iPS26a | M3_24h00 |
155 | 23-255 | WT | 9.672036 | iPS26a | M3_24h00 |
156 | 23-256 | WT | 9.022181 | iPS26b | M3_24h00 |
157 | 23-257 | WT | 9.505750 | iPS26b | M3_24h00 |
158 | 23-258 | WT | 9.145056 | iPS26b | M3_24h00 |
159 | 23-259 | Mut | 9.574976 | iPS26a | M3_24h00 |
160 | 23-260 | Mut | 10.006980 | iPS26a | M3_24h00 |
161 | 23-261 | Mut | 9.695734 | iPS26a | M3_24h00 |
162 | 23-262 | Mut | 9.298908 | iPS26b | M3_24h00 |
163 | 23-263 | Mut | 9.300082 | iPS26b | M3_24h00 |
164 | 23-264 | Mut | 9.825245 | iPS26b | M3_24h00 |
165 | 23-265 | WT | 9.364017 | iPS26a | M3_48h00 |
166 | 23-266 | WT | 9.688260 | iPS26a | M3_48h00 |
167 | 23-267 | WT | 9.403668 | iPS26a | M3_48h00 |
168 | 23-268 | WT | 9.315279 | iPS26b | M3_48h00 |
169 | 23-269 | WT | 9.595745 | iPS26b | M3_48h00 |
170 | 23-270 | WT | 9.587202 | iPS26b | M3_48h00 |
171 | 23-271 | Mut | 9.556211 | iPS26a | M3_48h00 |
172 | 23-272 | Mut | 10.835456 | iPS26a | M3_48h00 |
173 | 23-273 | Mut | 10.829852 | iPS26a | M3_48h00 |
174 | 23-274 | Mut | 9.188921 | iPS26b | M3_48h00 |
175 | 23-275 | Mut | 9.537677 | iPS26b | M3_48h00 |
176 | 23-276 | Mut | 9.433194 | iPS26b | M3_48h00 |
177 | 21-146 | WT | 14.298830 | iPS09 | M3_48h00 |
178 | 21-147 | WT | 14.662112 | iPS09 | M3_48h00 |
179 | 21-148 | WT | 14.758909 | iPS09 | M3_48h00 |
180 | 21-149 | WT | 15.623959 | iPS09 | M3_48h00 |
181 | 21-150 | WT | 15.871068 | iPS09 | M3_48h00 |
182 | 21-151 | Mut | 14.641644 | iPS09 | M3_48h00 |
183 | 21-152 | Mut | 14.215118 | iPS09 | M3_48h00 |
184 | 21-153 | Mut | 14.599433 | iPS09 | M3_48h00 |
185 | 21-154 | Mut | 14.406458 | iPS09 | M3_48h00 |
186 | 21-155 | Mut | 14.316703 | iPS09 | M3_48h00 |
187 | 23-157 | WT | 13.088468 | iPS19 | iPS |
188 | 23-158 | WT | 10.818503 | iPS19 | iPS |
189 | 23-159 | WT | 11.538493 | iPS19 | iPS |
190 | 23-160 | WT | 12.112421 | iPS19 | iPS |
191 | 23-161 | WT | 11.436573 | iPS19 | iPS |
192 | 23-162 | WT | 11.378405 | iPS19 | iPS |
193 | 23-169 | WT | 10.972909 | iPS19 | iPS |
194 | 23-170 | WT | 12.157229 | iPS19 | iPS |
195 | 23-171 | WT | 11.469306 | iPS19 | iPS |
196 | 23-172 | WT | 13.656572 | iPS19 | iPS |
197 | 23-173 | WT | 12.862438 | iPS19 | iPS |
198 | 23-174 | WT | 11.188994 | iPS19 | iPS |
199 | 23-163 | Mut | 12.391291 | iPS19 | iPS |
200 | 23-164 | Mut | 12.760026 | iPS19 | iPS |
201 | 23-165 | Mut | 12.656075 | iPS19 | iPS |
202 | 23-166 | Mut | 12.065749 | iPS19 | iPS |
203 | 23-167 | Mut | 12.805175 | iPS19 | iPS |
204 | 23-168 | Mut | 12.603698 | iPS19 | iPS |
205 | 23-175 | Mut | 12.457595 | iPS19 | iPS |
206 | 23-176 | Mut | 13.957425 | iPS19 | iPS |
207 | 23-177 | Mut | 13.223399 | iPS19 | iPS |
208 | 23-178 | Mut | 13.660377 | iPS19 | iPS |
209 | 23-179 | Mut | 13.816491 | iPS19 | iPS |
210 | 23-180 | Mut | 14.118085 | iPS19 | iPS |
We first examine the distribution of dCt_NA
across the
different timepoints and colored by experiments.
ggplot(data = data, aes(x = genotype, y = dCt_NA)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(aes(colour = Experiment), size = 0.8) +
theme_classic() + facet_grid(. ~ Time)
We next look at the distribution of dCt_NA
across the
different experiments and colored by timepoints.
ggplot(data = data, aes(x = genotype, y = dCt_NA, colour = Time)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(position=position_jitterdodge(jitter.width = 0.1), size = 0.8) +
theme_classic() + facet_grid(. ~ Experiment)
We use a mixed-effect model, to analyse the dependent variable
dCt_NA
with respect to:
fixed effects (i.e., the genotype
and
Time
variables)
random effects (i.e., the Experiment
variable)
We include an interaction term between genotype
and
Timepoint
as we are interested in the effect of
genotype
at each Timepoint
and the effect of
genotype
seems not to be homogeneous at each timepoint.
We obtain the following:
mod = lmer(dCt_NA ~ genotype*Time + (1 | Experiment), data = data)
summary(mod)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dCt_NA ~ genotype * Time + (1 | Experiment)
## Data: data
##
## REML criterion at convergence: 630
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.18630 -0.39623 0.00636 0.51528 3.11162
##
## Random effects:
## Groups Name Variance Std.Dev.
## Experiment (Intercept) 0.04406 0.2099
## Residual 1.43649 1.1985
## Number of obs: 201, groups: Experiment, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 11.8900 0.4047 10.6357 29.381 1.58e-11 ***
## genotypeMut 1.1529 0.4893 179.8338 2.356 0.019536 *
## TimeM1_36h00 1.0835 0.4871 14.1355 2.224 0.042912 *
## TimeM2_06h00 -0.8016 0.5549 22.0699 -1.445 0.162617
## TimeM2_12h00 0.5927 0.5549 22.0699 1.068 0.296991
## TimeM2_24h00 -3.0002 0.5692 23.1012 -5.271 2.36e-05 ***
## TimeM2_36h00 -2.1400 0.6479 36.5878 -3.303 0.002145 **
## TimeM2_48h00 -2.8073 0.5549 22.0699 -5.059 4.52e-05 ***
## TimeM3_24h00 -2.3711 0.6479 36.5878 -3.660 0.000791 ***
## TimeM3_48h00 0.1467 0.5547 22.1699 0.264 0.793846
## genotypeMut:TimeM1_36h00 -1.0435 0.6060 179.8607 -1.722 0.086794 .
## genotypeMut:TimeM2_06h00 -0.6196 0.7168 179.8898 -0.864 0.388485
## genotypeMut:TimeM2_12h00 -0.8849 0.6998 179.8746 -1.265 0.207686
## genotypeMut:TimeM2_24h00 -0.7588 0.7261 180.1573 -1.045 0.297369
## genotypeMut:TimeM2_36h00 -1.9370 0.8475 179.8338 -2.286 0.023448 *
## genotypeMut:TimeM2_48h00 -1.0599 0.7075 179.8338 -1.498 0.135884
## genotypeMut:TimeM3_24h00 -0.9282 0.8475 179.8338 -1.095 0.274891
## genotypeMut:TimeM3_48h00 -1.2082 0.7075 179.8338 -1.708 0.089421 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
hist(residuals(mod), nclass = 50)
We can compute the marginal effects of the fixed effects and their interaction term.
Anova(mod)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: dCt_NA
## Chisq Df Pr(>Chisq)
## genotype 2.3349 1 0.1265
## Time 334.7602 8 <2e-16 ***
## genotype:Time 6.6091 8 0.5793
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We are interested in the genotype
effect at each
timepoint.
emm.all <- emmeans(mod, ~ genotype | Time)
pairs(emm.all)
## Time = iPS:
## contrast estimate SE df t.ratio p.value
## WT - Mut -1.1529 0.489 180 -2.356 0.0195
##
## Time = M1_36h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut -0.1095 0.358 180 -0.306 0.7598
##
## Time = M2_06h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut -0.5333 0.524 180 -1.018 0.3100
##
## Time = M2_12h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut -0.2680 0.500 180 -0.535 0.5930
##
## Time = M2_24h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut -0.3941 0.537 181 -0.734 0.4639
##
## Time = M2_36h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut 0.7841 0.692 180 1.133 0.2587
##
## Time = M2_48h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut -0.0930 0.511 180 -0.182 0.8557
##
## Time = M3_24h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut -0.2247 0.692 180 -0.325 0.7457
##
## Time = M3_48h00:
## contrast estimate SE df t.ratio p.value
## WT - Mut 0.0553 0.511 180 0.108 0.9139
##
## Degrees-of-freedom method: kenward-roger
We now adjust the p-values using the Benjamini-Hochberg to identify
at which timepoints the dCT_NA
are significantly different
between WT and Mut.
p <- summary(pairs(emm.all))$p.value
adj.p <- p.adjust(p, method = "BH")
names(adj.p) <- levels(data$Time)
adj.p
## iPS M1_36h00 M2_06h00 M2_12h00 M2_24h00 M2_36h00 M2_48h00 M3_24h00
## 0.1758127 0.9139401 0.9139401 0.9139401 0.9139401 0.9139401 0.9139401 0.9139401
## M3_48h00
## 0.9139401
From these p-values, we can conclude that the genotype does not significantly impact the expression level of WNT4 at any timepoint.
We can plot the marginal means estimated by the mixed model for the
genotype
as a function of Time
.
emmip_output<-emmip(mod, genotype ~ Time)
emmip_dataframe<-emmip_output$data
emmip_dataframe
## genotype Time yvar SE df tvar xvar
## WT iPS 11.89 0.405 11.4 WT iPS
## Mut iPS 13.04 0.405 11.4 Mut iPS
## WT M1_36h00 12.97 0.271 33.6 WT M1_36h00
## Mut M1_36h00 13.08 0.276 35.9 Mut M1_36h00
## WT M2_06h00 11.09 0.383 78.8 WT M2_06h00
## Mut M2_06h00 11.62 0.399 88.3 Mut M2_06h00
## WT M2_12h00 12.48 0.383 78.8 WT M2_12h00
## Mut M2_12h00 12.75 0.370 70.2 Mut M2_12h00
## WT M2_24h00 8.89 0.408 77.9 WT M2_24h00
## Mut M2_24h00 9.28 0.409 79.2 Mut M2_24h00
## WT M2_36h00 9.75 0.512 125.2 WT M2_36h00
## Mut M2_36h00 8.97 0.512 125.2 Mut M2_36h00
## WT M2_48h00 9.08 0.383 78.8 WT M2_48h00
## Mut M2_48h00 9.18 0.383 78.8 Mut M2_48h00
## WT M3_24h00 9.52 0.512 125.2 WT M3_24h00
## Mut M3_24h00 9.74 0.512 125.2 Mut M3_24h00
## WT M3_48h00 12.04 0.383 80.0 WT M3_48h00
## Mut M3_48h00 11.98 0.383 80.0 Mut M3_48h00
##
## Degrees-of-freedom method: kenward-roger
emmip(mod, genotype ~ Time)
This plot is the same as the previous one but using the actual data. Note that this does not take into account the variability across experiments.
df <- aggregate(data[, 3], by = list(data$genotype, data$Time), mean)
ggplot(df, aes(x=Group.2, y = x, group = Group.1)) + geom_line(aes(color=Group.1)) + geom_point(aes(color=Group.1))
Overall, the genotype does not affect WNT4 expression at any timepoint.
sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Sonoma 14.3.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Europe/Paris
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] corrplot_0.92 car_3.1-2 carData_3.0-5 ggbeeswarm_0.7.2
## [5] emmeans_1.9.0 lmerTest_3.1-3 lme4_1.1-35.1 Matrix_1.6-5
## [9] kableExtra_1.3.4 lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1
## [13] dplyr_1.1.4 purrr_1.0.2 readr_2.1.5 tidyr_1.3.0
## [17] tibble_3.2.1 ggplot2_3.4.4 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.0 viridisLite_0.4.2 farver_2.1.1
## [4] vipor_0.4.7 fastmap_1.1.1 TH.data_1.1-2
## [7] digest_0.6.34 estimability_1.4.1 timechange_0.3.0
## [10] lifecycle_1.0.4 survival_3.5-7 magrittr_2.0.3
## [13] compiler_4.3.2 rlang_1.1.3 sass_0.4.8
## [16] tools_4.3.2 utf8_1.2.4 yaml_2.3.8
## [19] knitr_1.45 labeling_0.4.3 xml2_1.3.6
## [22] multcomp_1.4-25 abind_1.4-5 withr_3.0.0
## [25] numDeriv_2016.8-1.1 grid_4.3.2 fansi_1.0.6
## [28] xtable_1.8-4 colorspace_2.1-0 scales_1.3.0
## [31] MASS_7.3-60.0.1 cli_3.6.2 mvtnorm_1.2-4
## [34] rmarkdown_2.25 generics_0.1.3 rstudioapi_0.15.0
## [37] httr_1.4.7 tzdb_0.4.0 minqa_1.2.6
## [40] cachem_1.0.8 splines_4.3.2 parallel_4.3.2
## [43] rvest_1.0.3 vctrs_0.6.5 boot_1.3-29
## [46] webshot_0.5.5 sandwich_3.1-0 jsonlite_1.8.8
## [49] hms_1.1.3 pbkrtest_0.5.2 beeswarm_0.4.0
## [52] systemfonts_1.0.5 jquerylib_0.1.4 glue_1.7.0
## [55] nloptr_2.0.3 codetools_0.2-19 stringi_1.8.3
## [58] gtable_0.3.4 munsell_0.5.0 pillar_1.9.0
## [61] htmltools_0.5.7 R6_2.5.1 evaluate_0.23
## [64] lattice_0.22-5 highr_0.10 backports_1.4.1
## [67] broom_1.0.5 bslib_0.6.1 Rcpp_1.0.12
## [70] svglite_2.1.3 coda_0.19-4.1 nlme_3.1-164
## [73] xfun_0.41 zoo_1.8-12 pkgconfig_2.0.3