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1 Glossary

Table S1: Glossary: overview of frequently used digital PCR terminology, adapted from
Table 1 in [2].

term description alternative name
baseline the fluorescence of the negative partitions fluorescence noise
channel part of the light spectrum used to detect

signal, typically annotated as emission wave
length

color, detection
channel, emission
channel

cluster group of partitions that display similar fluo-
rescence intensities

(partition) popula-
tion

crosstalk the signal or fluorescence from one channel is
mistakenly seen in the wrong place, often in-
dicated by non-orthogonality

duplex dPCR reaction in which at least 2 different
targets are quantified using 2 different detec-
tion channels

fluorescence intensity the fluorescence of a partition fluorescence ampli-
tude, end-point flu-
orescence, relative
fluorescence unit

higher-order multiplexing dPCR reaction in which more targets are
quantified than the number of fluorescent de-
tection channels

intensity multiplex-
ing

lower-order clusters simple clusters that contain only a single tar-
get

negative control complex biological specimen that does not
contain the target

negative population partition group that contains no target negative cluster
no-template control sample that contains no targets and is used as

a general control for extraneous nucleic acid
contamination or non-specific amplification

ntc, blanco, blank
sample

partition the subreaction used for limiting dilution and
subsequently measured as positive or negative
post reaction

droplet, chamber

positive control sample that contains target and is used to test
if the assay is performing correctly

positive population partition group that contains one or more tar-
gets. In (non-higher-order) multiplex assays,
there can be as many as 2n − 1 positive clus-
ters, where n is the number of targets. They
can be single positive, double positive, triple,
etc.

positive cluster

rain the partitions that are located within the
space between the positive and negative clus-
ters

resolution a measure of the separation in fluorescence be-
tween positive and negative partitions

peak resolution,
separability score

singleplex assay used to detect one target sequence
threshold the line that separates the partition clusters

based on fluorescence intensity
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2 Package version

Table S2: Package session information

package version
stats 4.2.2
e1071 1.7-12
dbscan 1.1-11

dpcp
retrieved from
https://github.com/alfodefalco/dPCP

on January 15th, 2023
flowSOM 2.6.0
flowPeaks 1.44.0
flowClust 3.36.0
flowMerge 2.46.0
SamSPECTRAL 1.52.0

calico
retrieved from
https://github.com/billytcl/calico

on January 15th, 2023
ddPCRclust 1.18.0
sn 2.1.0
spatstat 3.0.2
DepthProc 2.1.5
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3 Data generation mechanism

Figure S1: (A) HR dataset without removal of datapoints towards the negative population
(B) simulated data using the method described in section Probabilistic model (C) simulated
data with no constraints imposed and density 6 times of the original dataset (D) simulated
data with constraints imposed and density 6 times of the original dataset. Note: the
density is increased to make the contrast resulting from the constraint more visible.
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Figure S2: Goodness-of-fit for the MM dataset (A)-(B) Density plots of the original and
simulated data respectively and (C) depth-depth plots. 1,2,3,4 represent the negative
population, single positive 1, double positive and single positive 2 respectively. The further
the data points from the cluster center, the darker those data points are. Depth values
indicate how deep a data point is within the data distribution, with more central or typical
points having higher depths and outliers having lower depths [1]

.
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Figure S3: Goodness-of-fit for the LR dataset (A)-(B) Density plots of the original and
simulated data respectively and (C) depth-depth plots. 1,2,3,4 represent the negative
population, single positive 1, double positive and single positive 2 respectively. The further
the data points from the cluster center, the darker those data points are. Depth values
indicate how deep a data point is within the data distribution, with more central or typical
points having higher depths and outliers having lower depths [1]

.
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4 Resolution measurement

Figure S4: resolution measurement. High concentration to rare concentration refer to
different concentration levels. Good, medium and poor correspond to the datasets in
Fig.1.
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5 Examples of simulated data

Figure S5: (A) high concentration with no rain (B) rare concentration (C) high concentra-
tion with high percentage of rain (D) high concentration with no rain and non-orthogonal
assay (E) high concentration with no rain and two modes with small overlapping (F) high
concentration with unequal cluster sizes

6 Parameter optimization

The details about the selected optimal parameters are in Table S3. In the following sections,
we also showed the best clustering results with the parameters found via default values,
manual and automatic search (see Fig.S6 to S16).
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DBSCAN

For the HR dataset, the manual search yielded the optimal result (fig.S6B), with the
corresponding optimal parameters detailed in Table... For the MM and LR datasets, the
best result was achieved through automatic search using the adjusted Rand index (fig.S6H
and L). Note that for the datasets MM and LR, the automatic search with silhouette
coefficients again selected parameters resulting in only one or two clusters.

Figure S6: The best clustering results obtained using DBSCAN via different methods.
Rows represent distinct datasets ranging from HR to MM and LR. Columns represent
various methods, including the default setting, manual search, and automatic search with
silhouette coefficients or adjusted Rand index, respectively.

ddPCRclust

For HR and LR datasets, all methods produced clustering results that were quite similar
(see Fig.S7A,B,C,I,J and K). However, the automatic search with adjusted Rand index
slightly outperformed other methods. In the case of the MM dataset, all methods yielded
incorrect clustering outcomes, identifying only two clusters (Fig.S7E,F and G). While we
initially attempted these parameters on simulated data, they worked well in some scenarios
but generating errors (produce only only one cluster) in others. Consequently, we reverted
to the default settings.
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Figure S7: The best clustering results obtained using ddPCRclust via different methods.
Rows represent distinct datasets ranging from HR to MM and LR. Columns represent
various clustering methods, including the default setting, manual search, and automatic
search with silhouette coefficients or adjusted Rand index, respectively.

With the default parameters, ddpcrclust demonstrated functionality across a broader
range of scenarios. Nevertheless, it still encountered errors in certain situations. Notably,
when applied to the simulated data of the MM dataset, testing was halted due to memory
limitations in some scenarios (we ran simulation on high-performance computing). As a
result, we made the decision to exclude ddpcrclust from the simulation comparison.

dpcp

dpcp is a two-step approach. It starts with DBSCAN to identify the primary clusters.
Then those cluster centroids will be used for the initialization of c-means in the second
step. The key parameters are ‘eps’ and ‘minPts’ in the first step.

We used ‘dbscan combination’ function to identify the optimal input parameters. We
selected those parameters with which the primary clusters are distinct (see Fig.S8,S9 and
S10).
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Figure S8: DBSCAN clustering results with varying ‘eps’ and ‘minPts’ for HR dataset
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Figure S9: DBSCAN clustering results with varying ‘eps’ and ’minPts’ for MM dataset
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Figure S10: DBSCAN clustering results with varying ‘eps’ and ’minPts’ for LR dataset

We also performed the automatic search and compared the results with default setting
and dbscan combination (see Fig.S11). The results show that for HR and MM datasets,
all methods were the same. For the LR dataset, the default setting did not work because
the primary clusters cannot be correctly identified. All other 3 methods gave the same
results. In this case, we go with the parameters found with dbscan combination.
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Figure S11: The best clustering results obtained using dpcp via different methods. Rows
represent distinct datasets ranging from HR to MM and LR. Columns represent various
clustering methods, including the default setting, dbscan combination search, and auto-
matic search with silhouette coefficients or adjusted Rand index, respectively. Note that
with the default setting, the primary clusters are not distinct for LR dataset. dpcp thus
gave an error.

flowSOM

For all three datasets, manual search gave the best clustering results (see Fig.S12).
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Figure S12: The best clustering results obtained using flowSOM via different methods.
Rows represent distinct datasets ranging from HR to MM and LR. Columns represent
various clustering methods, including the default setting, manual search, and automatic
search with silhouette coefficients or adjusted Rand index, respectively.

flowpeaks

For HR and MM datasets, the manual search yielded the optimal result (fig.S13B and
F). For the LR dataset, the best result was achieved through automatic search using the
adjusted Rand index (fig.S13L). Note that for the dataset MM, the automatic search with
silhouette coefficients selected parameters resulting in only two clusters. This highlights
a potential challenge when relying solely on automatic parameter search without prior
knowledge of the true grouping.
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Figure S13: The best clustering results obtained using flowPeaks via different methods.
Rows represent distinct datasets ranging from HR to MM and LR. Columns represent
various clustering methods, including the default setting, manual search, and automatic
search with silhouette coefficients or adjusted Rand index, respectively.

flowclust and flowmerge

The key parameter is the initialization of the cluster centroids. For this method, we
used the ‘flowClust2Prior’ function in the ‘flowStats’ R package, which generates a prior
specification based on a flowClust fit object and can be passed to a second round of
flowClust() with usePrior=“yes”.

To our surprise, the result shows that feeding the prior of the centroids does not help
with clustering (Fig.S14). Even the cluster number is sometimes incorrect (3 instead of 4
clusters found). Based on those results, we chose to stay with the default setting and did
not feed any prior for flowClust and flowmerge which is based on the results of flowClust
model.
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Figure S14: The best clustering results obtained using flowClust via different methods.
Rows represent distinct datasets ranging from HR to MM and LR. Columns represent
the default setting without prior, default prior by using ‘flowClust2Prior’ function, and
modified prior by feeding directly the correct centroids.
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SamSPECTRAL

Figure S15: The best clustering results obtained using SamSPECTRAL via different meth-
ods. Rows represent distinct datasets ranging from HR to MM and LR. Columns represent
various clustering methods, including the default setting, manual search, and automatic
search with silhouette coefficients or adjusted Rand index, respectively.

For HR dataset, the default setting and manual search gave the best results. For other
datasets, automatic search with adjusted rand index is the best (see Fig.S15).

calico

The key parameter is the raster size in the gridding step to reduce the differences in cluster
sizes.

For all datasets, default setting, manual search or automatic search yielded the same
results (Fig.S16). This method tends to misclassify the data points on the edge. And the
adjustment of parameters does not seem to improve it. In this case, we will go with the
default setting.
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Figure S16: The best clustering results obtained using calico via different methods. Rows
represent distinct datasets ranging from HR to MM and LR. Columns represent various
clustering methods, including the default setting, manual search, and automatic search
with silhouette coefficients or adjusted Rand index, respectively. Note that for the dataset
HR, the automatic search gave an error. A possible reason is that for this high-resolution
dataset with well-separated clusters, raster sizes will have very little impact on the clus-
tering performance. The output of silhouette coefficients or adjusted rand index did not
change. Thus the algorithm failed to find the optimal parameter.
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7 Simulation results

Figure S17: Averaged adjusted rand index (ARI) across the 150 factor combinations using
the optimal parameters

Figure S18: Adjusted rand index of data points at edge across the 150 factor combinations
using the optimal parameters
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Figure S19: Relative bias of λ1 using the optimal parameters. Note: cmeans, kmeans,
flowclust, flowclust in automatic mode, flowmerge, flowSOM and calico were omitted from
the bias analysis since their overall performance is poor.

Figure S20: Relative bias of λ2 using the optimal parameters. Note: cmeans, kmeans,
flowclust, flowclust in automatic mode, flowSOM and calico were omitted from the bias
analysis since their overall performance is poor.

Figure S21: Adjusted rand index of data points at edge across the 150 factor combinations
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Figure S22: Relative bias of λ2. Note: cmeans, kmeans, flowclust, flowclust in automatic
mode and calico were omitted from the bias analysis since their overall performance is
poor.

Figure S23: The top 10 variables with the largest absolute t-values of calico when fitting
the adjusted rand index as the response variable. A positive t-value means this variable
has a positive impact. For adjusted rand index, the higher the better.
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Figure S24: The top 10 variables with the largest absolute t-values of calico when fitting
the relative bias of λ1 as the response variable. A positive t-value means this variable has
a positive impact. For relative bias, the lower the better.

Figure S25: The top 10 variables with the largest absolute t-values of dbscan when fitting
the adjusted rand index as the response variable. A positive t-value means this variable
has a positive impact. For adjusted rand index, the higher the better.
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Figure S26: The top 10 variables with the largest absolute t-values of dbscan when fitting
the relative bias of λ1 as the response variable. A positive t-value means this variable has
a positive impact. For relative bias, the lower the better.

Figure S27: The top 10 variables with the largest absolute t-values of dpcp when fitting
the adjusted rand index as the response variable. A positive t-value means this variable
has a positive impact. For adjusted rand index, the higher the better.
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Figure S28: The top 10 variables with the largest absolute t-values of dpcp when fitting
the relative bias of λ1 as the response variable. A positive t-value means this variable has
a positive impact. For relative bias, the lower the better.

Figure S29: The top 10 variables with the largest absolute t-values of flowpeaks when
fitting the adjusted rand index as the response variable. A positive t-value means this
variable has a positive impact. For adjusted rand index, the higher the better.
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Figure S30: The top 10 variables with the largest absolute t-values of flowpeaks when fitting
the relative bias of λ1 as the response variable. A positive t-value means this variable has
a positive impact. For relative bias, the lower the better.

Figure S31: The top 10 variables with the largest absolute t-values of flowSOM when
fitting the adjusted rand index as the response variable. A positive t-value means this
variable has a positive impact. For adjusted rand index, the higher the better.
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Figure S32: The top 10 variables with the largest absolute t-values of flowSOM when fitting
the relative bias of λ1 as the response variable. A positive t-value means this variable has
a positive impact. For relative bias, the lower the better.

Figure S33: The top 10 variables with the largest absolute t-values of kmeans with initials
when fitting the adjusted rand index as the response variable. A positive t-value means
this variable has a positive impact. For adjusted rand index, the higher the better.
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Figure S34: The top 10 variables with the largest absolute t-values of kmeans with initials
when fitting the relative bias of λ1 as the response variable. A positive t-value means this
variable has a positive impact. For relative bias, the lower the better.

Figure S35: The top 10 variables with the largest absolute t-values of samSPECTRAL
when fitting the adjusted rand index as the response variable. A positive t-value means
this variable has a positive impact. For adjusted rand index, the higher the better.
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Figure S36: The top 10 variables with the largest absolute t-values of samSPECTRAL
when fitting the relative bias of λ1 as the response variable. A positive t-value means this
variable has a positive impact. For relative bias, the lower the better.

Figure S37: The top 10 variables with the largest absolute t-values of samSPECTRAL in
automatic mode when fitting the adjusted rand index as the response variable. A positive
t-value means this variable has a positive impact. For adjusted rand index, the higher the
better.
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Figure S38: The top 10 variables with the largest absolute t-values of samSPECTRAL in
automatic mode when fitting the relative bias of λ1 as the response variable. A positive
t-value means this variable has a positive impact. For relative bias, the lower the better.

Figure S39: Cluster centers identified by the algorithms under the scenario of good res-
olution, very low concentration, orthogonality, unimodal, and equal size of target 1 and
2. Each clustering method is represented by a different color, with symbols indicating the
clusters. The size of the symbols reflects the variation of the estimates.
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Figure S40: (A) centers found (indicated by red round circles) in calico using 480*480 grids
(B) centers found in calico using 200*200 grids. Note that using 480*480 grids, at the high
concentration levels, the single positive and double positive clusters are much larger than
the negative population (at least 10 times), while using 200*200 grids, the size of single
positives and negative population is more comparable (3 to 5 times bigger).

8 Empirical data analysis

Table S4: Performance metrics from the resampling study of the MM dataset

method λ̂1−λ1
λ1

(%) λ̂2−λ2
λ2

(%) ARI ARI non-central number of clusters

dpcp -0.01∥-0.91 -0.45∥-7.03 0.997∥0.996 0.967∥0.968 /

flowSOM -0.10∥-2.01 -0.68∥-1.11 0.994∥0.989 0.941∥0.910 /

kmeans with initials -0.57 -0.62 0.995 0.951 /

kmeans -0.61 -0.62 0.995 0.950 /

flowclust -0.61 -0.62 0.995 0.951 /

flowclust auto -0.61 -0.62 0.995 0.951 4

flowmerge -0.62 -0.77 0.996 0.973 4.06

calico -0.78∥-1.00 -0.75∥-0.59 0.994∥0.992 0.941∥0.942 /

cmeans with initials -0.95 -0.67 0.994 0.943 /

SamSPECTRAL 1.32∥-0.74 -0.67∥-0.39 0.993∥0.997 0.975∥0.981 /

flowpeaks 2.07∥-0.35 -0.09∥-0.90 0.974∥0.997 0.942∥0.974 4.43∥6.37
SamSPECTRAL auto 2.07∥-31.54 -1.79∥-30.03 0.978∥0.965 0.947∥0.932 3.83∥7.4
DBSCAN -2.61∥-2.00 -3.08∥-2.46 0.995∥0.996 0.959∥0.966 5.01∥6.47
ddPCRclust 17.04 1.94 0.930 0.873 /

cmeans 42.70 121.03 0.544 0.528 /

Average relative bias of λ1 and λ2, the ARI calculated for all resampled 10000 data points and
for the data points on the edge only, and the average number of clusters identified. ‘∥’ represents
‘optimal parameter∥default parameter’. For those methods which have only value, either no
optimal parameters are available or the optimal ones coincide with the default ones. The methods
are ranked from low to high relative bias (sum of the absolute relative biases |λ1| + |λ2|) based
on the results with optimal parameters. ‘/’: the number of clusters is pre-defined.
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Figure S41: Clustering results with optimal parameters applied to scenarios where methods
fail with default parameters: calico (A), DBSCAN (B), dpcp (C), flowmerge (D), flowpeaks
(E), flowSOM (F), kmeans with initials (G), samspectral (H), sampectral in automatic
mode (I).

Table S5: Performance metrics from the resampling study of the LR dataset

method λ̂1−λ1
λ1

(%) λ̂2−λ2
λ2

(%) ARI ARI non-central number of clusters

flowmerge -0.21 0 0.999 0.986 4

flowpeaks -1.05∥-1.09 -0.15∥0.19 0.996∥0.995 0.964∥0.963 5.09∥6.24
kmeans with initials -2.88 -0.024 0.985 0.872 /

kmeans -2.88 -0.024 0.985 0.872 /

flowclust -2.88 -0.024 0.985 0.872 /

flowclust auto -2.88 -0.024 0.985 0.872 4

cmeans with initials -2.97 -0.024 0.984 0.869 /

calico -2.97∥-2.96 -0.13∥0.19 0.984∥0.984 0.869∥0.866 /

dpcp -3.35∥-7.63 0∥0.32 0.985∥0.976 0.889∥0.890 /

SamSPECTRAL auto -2.45∥-5.72 -2.03∥-7.56 0.985∥0.985 0.914∥0.928 3.95∥4.57
SamSPECTRAL -7.80∥-6.80 0∥0.27 0.987∥0.989 0.958∥0.964 /

flowSOM -9.54∥-12.40 -0.04∥0.26 0.967∥0.965 0.870∥0.866 /

DBSCAN -5.54∥-12.95 -9.28∥-0.01 0.986∥0.968 0.899∥0.961 5∥3.95
cmeans 13.73 57.88 0.874 0.887 /

ddPCRclust 93.56∥102.60 0.02∥0.382 0.753∥0.725 0.736∥0.710 /

Average relative bias of λ1 and λ2, the ARI calculated for all resampled 10000 data points and
for the data points on the edge only, and the average number of clusters identified. ‘∥’ represents
‘optimal parameter∥default parameter’. For those methods which have only value, either no
optimal parameters are available or the optimal ones coincide with the default ones. The methods
are ranked from low to high relative bias (sum of the absolute relative biases |λ1| + |λ2|) based
on the results with optimal parameters. ‘/’: the number of clusters is pre-defined.
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Figure S42: flowpeaks applied with optimal parameters of LR dataset (not MM dataset)
to the scenario where this method failed

Figure S43: (A) DBSCAN (B) SamSPECTRAL (C) flowclust (D) flowclust in automatic
mode (E) kmeans (F) cmeans clustering results for 10 000 samples of HR dataset
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method runtime (ms)
kmeans with initials 6
cmeans with initials 99
cmeans 115
calico 153
dpcp 261
DBSCAN 284
kmeans 425
flowpeaks 586
flowSOM 635
ddPCRclust 1188
flowclust 1591
flowclust auto 2574
flowmerge 7544
SamSPECTRAL 10089
SamSPECTRAL auto 13805

Table S6: Runtimes of clustering methods. The runtime is averaged over 100 resampled
data points of the HR dataset. The runtime is estimated in R (version 4.2.2) on MacBook
Air (M2, 2022, 8 GB memory, OSX version 12.5)
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