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S.1 More details

S.1.1 A schematic to illustrate A-Trans-GLM

To better illustrate Algorithm 1, we draw a schematic in Figure 5. The blue point represents
the target coefficient 8 = w(® and the surrounding blue circle represents the estimation
error O, (@). The purple point denotes the estimator Bna’ive-Lasso from the classical
Lasso with only target data. The orange point represents w**, which is the population
version of the rough estimator we obtain from the transferring step by pooling target and
source data in A (see Section 2.3), and the surrounding orange circle denotes its estimation
error. It can be seen that w** is a pooled version of {w(k)}ke{o}uAm which is close to 3
when h is small. Starting from an initial estimate of 3, the transferring step of A-Trans-
GLM algorithm updates the estimate to w** (an estimate of w** based on source data in

A and the target data), then the debiasing step yields the final estimator B A-Trans-GLM -
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Figure 5: A schematic of A-Trans-GLM (Algorithm 1). A = {1,2,3}.

S.1.2 Theory

S.1.2.1 Explicit forms of convergence rates in Assumption 5

Proposition 1 (Explicit forms of Tgk), r 5’“), r gk), g%k) and gék) for certain families). Denote

(

[ slogp =0
ng ’ )
1/4

— slo lo,
Qo= q /2 4 (s ) T VR4 sh, ke A,
B /lap oy [sloap  py oy ( logp 1/4\/W ke A
L ng+no ng+ng k ng+no k> h>
where Wy, = 1V||B®) =8|V ||B*) —w® ||y, Assume Assumptions 1 and 2 hold. For Poisson
model, it is further required that h < U~*U and U supye 4 {|B® -8, V||B® —w® ||} < U.
With AWl — ¢ (, [Jozp h) when k € Ap, APV = ¢\ /182 W when k € A5 and

nE+no
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A0 = 12% for some sufficiently large constant C' > 0, we have the following explicit

forms of ng), I‘gk), Tﬁ’“), g%k) and gék) for logistic, linear and Poisson regression models.

(i) For the logistic regression model:

0 slogp 0
r = Ve T = |18ll2/ /7o,

1
T = T = T8 = [ [l 0k € A + 1821 (k € 4]

917(0) = 57(Q) = exp(~¢?).
(i) For the linear model:

slogp
O = = 18l T8 = (1815 v 18112)/ v/,
T = Q- [lw® Lk € Ay) + 8P [L(k € A7)]

1
o = oo [l (b € An) + 1891 (k € A5)]

1
PP = 1/n_0 [(lw®15 v [w®l2)1(k € An) + (1815 V BP|2)1(k € A7)],

a(€) = ¢8(Q) = exp(—¢D), k £ 0;  g1”(C) = exp(—¢?), 95 (C) = exp{—no} + exp(—(?).

(i4i) For the Poisson regression model with bounded predictors (supy, |x™ || < U < 00):

0 _ [slogp ©) 148l + U8y
=y o exp (U[|B]l1), Ty’ =exp(UlBl1) N ;

T = Q- exp {UJw® |1 - Lk € Ap) + U|IB®|1 - 1(k € A5},

1
k) — /n—Qk cexp {U||wW; - 1(k € A) + U|IBW|1 - 1(k € A5},
0
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0 = L foxp Uth) (1+ ool + UTw®]) 106 € A
0
+exp (U[BPL) (1 + 18D + UIIBPL) - 1(k € A5)]
dM(0) = g () = exp(=¢A), k #0; g 2(¢) = exp(—¢?), ¢V (¢) = ¢

S.1.2.2 Bound of a prediction error measure

ng
Denote Liv) (w) = —L 377 log p(z”) — L (y@)T X O + - ;@Z}(wT:Bl(-O)). Suggested

no i no

by Loh and Wainwright (2015), we consider a special measure of the prediction error,
which is defined by (VLY (8) — VLIY(8), 8 — B), where VLY (w) = — L (X(©)Tg© 4

no

nio :2031 mio)zﬁ(’meZ(-o)) € RP. Note that the loss function Lg%) is convex, therefore this quantity
is n_on—negative. As argued in their paper, <VL$Z%) (B) — VL%%) (B), B — B) can be easily
interpreted in GLMs. For example, in the case of linear models where 1 (u) = u?/2, this
measure equals to the in-sample square loss | X© (3 — B)||2. For general GLMs, it is
equivalent to the symmetrized Bregman divergence defined by .

Next we would like to present the bounds of (VL%%) (B) — VL%%) (8),8 — B) with and
without Assumption 4 for A,-Trans-GLM.

Theorem 6 (Bound of a prediction error measure for Ay,-Trans-GLM with Assumption

4). By imposing the same conditions in Theorem 1, we have

0)(A3 0 2 log p 1/2 log p 1/2 log p 1/2
sup <VL£0)<ﬂ>—VL20><B>,ﬂ—ﬂ>ss( ) (7> +h( )

£€2(s,h) o na, + no o
1/2 1/4
N (Slogp) ( log p ) B2,
N na,, + N

Remark 11. When h < s,/'%2 and n 4, > no, the upper bounds in (i) are better than

no

the classical Lasso bound O, (Slogp ) with target data (Loh and Wainwright, 2015).

no

with probability at least 1 —ng*.




Theorem 7 (Bound of a prediction error measure for Ay,-Trans-GLM without Assumption

4). By imposing the same conditions in Theorem 3, we have

0)( A 0 5 logp/? logp ' logp) /*
sup <VL;O><5>—VL;U><ﬁ>,ﬂ—ﬂ>5s< ) (4) +sh( )

£€E(s,h) o N4, + Mo

1/2 1/4
+(810gp> ( log p > B2
Nno nAh+n0

with probability at least 1 —ng?.

Remark 12. When h < /"2 and n 4, > ng, the upper bounds in (i) are better than the

no

classical Lasso bound O, (%{“f”) with target data (Loh and Wainwright, 2015).

S.1.3 Additional numerical results
S.1.3.1 More details about the implementation of numerical experiments

All experiments in this paper are conducted in R. The GLM Lasso is implemented via R
package glmnet (Friedman et al., 2010). We summarize R codes for GLM transfer learning
algorithms in a new R package glmtrans, which is available on CRAN. We use 10-fold
cross-validation to choose the penalty parameter for naive-Lasso and our GLM transfer
learning algorithms. The largest A which achieves one standard error within the minimum
cross-validation error will be chosen for the transferring step, which is sometimes called
“lambda.1se” (Friedman et al., 2010). To effectively debias the transferring step, we choose
the lambda achieving minimal cross-validation error, which is often called “lambda.min”.
Since in transferable source detection, the first step is the same as the transferring step of
{k}-Trans-GLM, therefore we keep the same setting as the transferring step in Algorithm
1, i.e. take “lambda.1se”. And in Algorithm 2, we set the constant Cy = 2. In the two-step



transfer learning procedure of Algorithm 3, we use “lambda.min” in both transferring and
debiasing steps.

In real-data studies, SVM with RBF kernel is implemented by package 1071, and
decision trees are implemented through package rpart. We fit the random forest via
package randomForest, and implement boosting trees through package fastAdaboost.
The number of weak classifiers in boosting trees is set to be 50. Since the sample size of
each state is small and some states have very imbalanced responses, we change the cross-
validation folds from default 10 to 5 for all Lasso-based methods. All the other parameters

are kept the same as the default settings.

S.1.3.2 Transfer learning on A,

In this section, we supplement more numerical results about the performance of Algorithm
1 under different h and ({ng}5_,, p, s) settings. In addition to the previous ({n;}~_,, p,s)

setting studied in Section 4.1.1, the following two settings of ({nx}~_,, p, s) are considered:
(i) ng =150 for all k =0,..., K, p = 1000, s = 15;
(ii) mgp =200 for all k =0,..., K, p = 2000, s = 20.

Given each ({ng}5_,p, s) setting, consider the same setting we use in Section 4.1.1. All
the experiments are replicated 200 times and the average ¢s-estimation errors of Aj,-Trans-
GLM and naive-Lasso under linear, logistic and Poisson regression models are shown in
Figure 6 and 7.

The trends in Figures 6 and 7 are similar to that in Figure 1. As K increases, the
estimation error of K 4,-Trans-GLM continues declining and is lower that of naive-Lasso

on target data only.
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Figure 6: The average fs-estimation of Aj-Trans-GLM and naive-Lasso under linear, lo-
gistic and Poisson regression models with different settings of h and K. n;, = 150 for all
k=0,...,K, p=1000, s = 15. Error bars denote the standard deviations.

S.1.3.3 Transferable source detection

In this section we supplement more experimental results in the case that some sources are
not in the level-h transferring set A4;,. The model settings are the same as those in Section

4.1.2. In addition to the setting used in Section 4.1.2, two more ones are considered:
(i) mp =100 for all £k =0,..., K, p =500, s = 10;
(ii) ng = 150 for all £ =0, ..., K, p = 1000, s = 15.
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Figure 7: The average fs-estimation of Aj-Trans-GLM and naive-Lasso under linear, lo-
gistic, and Poisson regression models with different settings of h and K. n; = 200 for all

k=0,...,K, p=2000, s = 20. Error bars denote the standard deviations.

We vary the values of |K 4, | and h, and repeat each setting for 200 times. The average
ly-estimation errors are summarized in Figures 8 and 9.

Similar to Figure 3, it can be seen that Aj,-Trans-GLM always achieves the best per-
formance. Trans-GLM mimics the behavior of A,-Trans-GLM very well in most cases,
implying that the detection algorithm can accurately identify A. We also observe that
for linear models and logistic regression models, when h = 40, there is a gap between

the estimation error of Aj,-Trans-GLM and Trans-GLM, meaning that when A increases,
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Figure 8: The average (5-estimation error of various models with different settings of A and
K4, when K = 10. ng = 100 for all k = 0,..., K, p = 500, s = 10. Error bars denote the

standard deviations.

Trans-GLM might begin missing sources in 4, or wrongly including sources in Aj,.
Furthermore, we pick the setting when p = 2000 and try different numbers of folds in the
cross-validation procedure of Algorithm 2 (steps 2-5). The results are displayed in Figure
10. The findings suggest that more cross-validation folds may lead to better performance
of Trans-GLM. When the cross-validation folds are large, the detection is likely to be more
accurate. In the meantime, this may cause more computational burdens. Therefore, we

may choose a moderate fold number like 3 or 5 in practice to achieve a good trade-off

10



Linear case: h =20 Logistic case: h =20 Poisson case: h = 20

- 24 . 16-

S 15- o S

o D 20- ¢ H o

S 5 I § 12-

= T 16- IS

£ £ £

-— -— — 08_

2 B 12- ljﬁﬁﬁD 2

j¢ & e .
0.8 - i 0.4 L R
01234546 7 8 910 01234567 8 910 01234567 8 910

Ka, Ka, Ka,
Linear case: h =40 Logistic case: h = 40 Poisson case: h = 40

5 S S

5 b 5 1.25-

C c c

S S S

S T g 1.00-

£ £ £

3 3 2 0.75-

& & &
050+ « v
012345678910 012345678910 012345678910

KAh KAh KAh

methods =®- naive-Lasso =@ A,-Trans-GLM Pooled-Trans-GLM =@- Trans-GLM

Figure 9: The average (5-estimation error of various models with different settings of A and
K4, when K =10. n =150 for all k = 0,..., K, p = 1000, s = 15. Error bars denote the

standard deviations.

between the accuracy and computational costs.

S.1.3.4 Additional results of real data analysis

In this section, we aim to identify variables with significant effects for different targets in
the real-data study (Section 4.2), by applying Algorithm 3. Taking the randomness caused

by the cross-validation procedure in algorithms, we repeat the experiment 500 times. In
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Figure 10: The average (5-estimation error of various models with different settings of h
and K 4, when K = 10. n; =200 for all k = 0,..., K, p = 2000, s = 20. Error bars denote
the standard deviations. The numbers after Trans-GLM indicate the number of folds used

in cross-validation procedure of Algorithm 2 (steps 2-5)

each replication, for each target state, we first run Algorithm 2 to get a point estimate 3 of
the coefficient and the estimated informative source index set A. Then, we run Algorithm
3 with B and A to get the significant variables under 90% confidence level. Equivalently

speaking, we identify coefficient components whose 90% confidence interval (CI) does not
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cover zero and divided them into two parts based on the sign of CI center. Recall our
recoding rule of the response: 0 denotes Republicans and 1 denotes Democrats. Therefore,
given all other variables fixed, increasing the variable with a positive CI center gives rise
to the chance of a county to vote Democrats. In contrast, increasing the variable with a
negative CI center gives rise to the chance of a county to vote Republicans. The results
are summarized in Figure 11, where we list all variables which are significant under 90%
level in at least 5% of 500 replications. We use different colors and shapes to distinguish
the effect of these variables (the sign of their CI centers). The z-axis and y-axis display the
target state ' and the variable names. The description of some main effects is presented in
Table 2. It reveals that RHI825214 is positively significant in 6 of 8 target states, which
means that when other variables are fixed, a larger White percentage in a county leads
to a higher chance to vote Republicans. In opposition to this, EDU685213 is negatively
significant in 4 of 8 target states, showing that when other variables are fixed, a larger
Bachelor or higher degree holder percentage benefits Democrats under county-level. More
interesting findings can be obtained from Figure 11, which are expected to provide some

insights to better understand the election results.

S.2 Proofs

Ap

Define a4n = w — wA» and D = {(X®,y™)}rcr0jua,- In the following, we will use

bolded %’ to represent the vector whose each component comes from the scalar function

I Target state AR is removed because none of the variables are significant in 5% of 500 replications

13
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LND110210.POP060210 - o
RTN131207.AFN120207 - A
MAN450207.LND110210 - o
SB0O015207.LND110210 - o
SB0215207.LND110210 - o
SB0215207.SB0015207 - o
SB0O115207.SB0415207 - A
SB0315207.SB0O015207 - o
NES010213.LND110210 - o
BZA115213.RTN131207 - o
BZA010213.BPS030214 - A
PVY020213.LND110210 - A
PVY020213.SB0315207 - o
INC910213.LND110210 - A
INC910213.SB0O215207 - A
HSG495213.PVY020213 - A
HSG096213.LND110210 - A
HSG096213.INC910213 - o
HSG096213.HSD310213 - A
HSG445213.POP060210 - .
HSG445213.LND110210 - o
HSG445213.INC910213 - A
HSG010214.LND110210 - A
LFE305213.AFN120207 - o
LFE305213.INC910213 - A
EDU685213.INC910213 - A
EDU635213.LND110210 - A
POP815213.POP060210 - o
POP815213.VET605213 - o
POP645213.SB0215207 - .
POP715213.RTN131207 - A
POP715213.WTN220207 - o
POP715213.HSG495213 - A .
RHI725214.BZA110213 - A sign
RHI625214.AFN120207 - . .
RHI625214.SB0415207 - A
RHI625214.BZA010213 - A A Democrats
RHI525214.BPS030214 - A
RHI525214.SB0315207 - .
RHI525214.BZA115213 - o
RHI525214.BZA110213 - A
RHI325214.SBO115207 - A
RHI225214.PVY020213 -
RHI225214.EDU685213 -
RHI125214.PVY020213 -
SEX255214.MAN450207 -
SEX255214.BZA110213 - A
SEX255214.INC910213 - .
SEX255214.EDU635213 - o
AGE775214.BPS030214 - A
AGE295214.LND110210 - o
AGE295214.SB0315207 -
AGE295214.INC110213 -
AGE295214.HSD310213 -
AGE295214.HSG010214 -
AGE295214.LFE305213 -
AGE295214.EDU635213 - o
AGE135214.AFN120207 - o
AGE135214.BZA110213 - A
AGE135214.BZA010213 - A
AGE135214.HSD310213 - A
RTN131207 - o
PVY020213 - A
HSG096213 - A
EDU685213 - A A A A
EDU635213 - A
RHI825214 - o o . o o o
RHI125214 - o
SEX255214 - A
AGE295214 - o o

GA I MI MN MS NC VA
target state

Republicans

variable
| 2 2 2 2

e > > Hre

Figure 11: Variables that are significant under 90% level confidence for different targets in

at least 5% of 500 replications. Provided by Algorithms 2 and 3.
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Variable name

Description

AGE135214
AGE295214
AGE775214
SEX255214
RHI125214
RHI225214
RHI325214
RHI525214
RHI625214
RHI725214
RHI825214
POP715213
POP645213
POP815213
EDU635213
EDU685213
VET605213
LFE305213
HSG010214
HSG445213
HSG096213
HSG495213
HSD310213
INC910213
INC110213
PVY020213
BZA010213
BZA110213
BZA115213
NES010213
SB0O315207
SBO115207
SBO215207
SBO415207
SBO015207
MAN450207
WTN220207
RTN131207
AFN120207
BPS030214
LND110210
POP060210

Persons under 5 years, percent, 2014

Persons under 18 years, percent, 2014

Persons 65 years and over, percent, 2014

Female persons, percent, 2014

White alone, percent, 2014

Black or African American alone, percent, 2014

American Indian and Alaska Native alone, percent, 2014

Native Hawaiian and Other Pacific Islander alone, percent, 2014
Two or More Races, percent, 2014

Hispanic or Latino, percent, 2014

White alone, not Hispanic or Latino, percent, 2014

Living in same house 1 year & over, percent, 2009-2013

Foreign born persons, percent, 2009-2013

Language other than English spoken at home, pct age 54, 2009-2013
High school graduate or higher, percent of persons age 25+, 2009-2013
Bachelor’s degree or higher, percent of persons age 25+, 2009-2013
Veterans, 2009-2013

Mean travel time to work (minutes), workers age 16+, 2009-2013
Housing units, 2014

Homeownership rate, 2009-2013

Housing units in multi-unit structures, percent, 2009-2013
Median value of owner-occupied housing units, 2009-2013
Persons per household, 2009-2013

Per capita money income in past 12 months (2013 dollars), 2009-2013
Median household income, 2009-2013

Persons below poverty level, percent, 2009-2013

Private nonfarm establishments, 2013

Private nonfarm employment, 2013

Private nonfarm employment, percent change, 2012-2013
Nonemployer establishments, 2013

Black-owned firms, percent, 2007

American Indian- and Alaska Native-owned firms, percent, 2007
Asian-owned firms, percent, 2007

Hispanic-owned firms, percent, 2007

Women-owned firms, percent, 2007

Manufacturers shipments; 2007 ($1,000)

Merchant wholesaler sales, 2007 ($1,000)

Retail sales per capita, 2007

Accommodation and food services sales, 2007 ($1,000)

Building permits, 2014

Land area in square miles, 2010

Population per square mile, 2010

Table 2: Description of some variables in the original dataset.



)" with corresponding predictors. Denote

A 1
- - (T y (k) w? (k
Mmm—nM+0§:@)X7wn&+O§:§W ).

" ke{0}UAp ke{0}UA,, i=1
A 1 1
ViwD) = S XY S (X
A 0 ke foroa, A, 10, (0104,

6L(u,D) = L(w™ +u,D) — L(w™) — VL(w*) u.

Denote 0||wl|; as the subgradient of ||w]||; w.r.t. w € RP, which falls between —1 and 1.

For any w € R", denote W = diag (\/W' :c(k) Tw), ..., /0"( a:g?)Tw)) and

xP = wx® X" represents the j-th column of X&) and X

w,j
matrix X,(f ) without the J-th column. Denote X, (k)

j represents the

—; as the submatrix without j-th col-
umn. X represents the j-th column of X ) without the diagonal (j, j) elements. Denote
w”(( M) Tw) - z®), ¥ ) and x,, ) j represent the j-th component, of o) and the

vector without j-th component, respectlvely. Define

2
7](.k) = argminE [m(k()k) — (-’Bf()k)7_j)T’7} = argmin [k {w”((w(k))Tw(k)) ’ [wgk) (x gc])) 7]2} :

yeRpP—1 ~yeRpP—1

Also define nl(f()k)d = Xfu X(k) ]'yj(k and (7';]“6))2 = ]E(nl(f()k)’j)z. And define

it =argming Y E [0 (w®)e®) - 2 — @)1
VERPTL | ke{0luA,
S.2.1 Some lemmas
Lemma 1. Under Assumptions 1 and 4,
1641y = lw™* = Bl < Cih,

where wht is defined by equation (2) and Oy = SUDke{0tuA, Hf},jliﬁf)\h < 00.
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Lemma 2. Under Assumptions 1 and 2, there exists some positive constants k1, ks, C3

and Cy such that,

SL(a*, D) > kal|ull; — rirey | ———ulliuls,  Va:|lul, <1
with probability at least 1 — Cyexp{—Cy(na, + no)}-
Lemma 3. Under Assumptions 1-3 and Assumption 7.(i)-(iii),

sup 7 =~ S
’J

h
Vs \ ng Vs
forany j =1,...,p. Suppose hy < s~ Y2, With probability at least 1 — K4, ngy",

Lemma 4. Assume Assumptions 1-4 and 7 hold. Let \; < , /ﬁ.}.(L(bﬂ)l/zlhl/z)/\
h

I

) log p 1/2
A A2 2
H'Yj -7 ||2§h1< ) +§R1+§R1\/§v

n_Ah —|—n0

15 =~ S VR + sV PR+ b

Lemma 5. Let ;\j = k;% + R1. Impose the same conditions assumed by Lemma 4.

Suppose hy < s: 2. Then with probability at least 1 — KAhnal,

. lo
16— @ill3 < by = 4 s + R,
0

lo; — ojlly S h1 + %

The proof of Lemma 1 will be presented later in Section S.2.2.1. Lemma 2 can be derived
in the same spirit as the proof of Proposition 2 in the full-length version of Negahban et al.
(2009), so we omit the full proof and only highlight the sketch in Section S.2.2.2. Lemma
3 can be proved by following the same idea in the proof of Lemma 1, therefore we omit its

proof as well.
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Also, it is important to point out that all the constants involved in the proofs of The-
orem 1-7 are independent with & = {3, {w®},c4} € Z(s,h), therefore we can take the

supremum over & € Z(s, h) in the final conclusion without changing the rate.

S.2.2 Proof of lemmas
S.2.2.1 Proof of Lemma 1
By definition,

Sk {[W/ () a) — ¢ (w®)Ta)]a®} — o,
ke{0o}uA
which implies

> B [ ((w) T a®) — o/ (BTz®)]z ™}

ke{0}UA

=Y B {[Y(w") ') — /(872 ®)]z®} .

ke A

By Taylor expansion,

Z aE |:/0 ¢//((wAh)T$(k) —i—t(wAh _ B)Ta:(k)):c(k)(a:(k))T} (,w.Ah _ B)

ke{0}uA

= ZakE [/ W/ k) 2 k) +t( (k) _ ,B)Tm(k))m(k)(m(k))T} ('w(k) B B)

ke A

Therefore, by Assumption 4, ||lw?» — 3], < 3 ak||2 12 H1 lw® — 38|, < Cih.

ke A

S.2.2.2 Proof of Lemma 2
By the second-order Taylor expansion, for some tgk) € [0,1],
5L(u,D) = L(w* +u,D) — L(w™) — VL® (w) Ty

18



_ — ™ Z Z[ Ah+u)T (k)> ,L/}((wAh)ngk))

n
An ke{0}UA, i=1

— Z Zw// Ah —|—t(k) T Ek‘))(uTm(k))
na, + o no

n
An ke{0}UA, i=1

= ¢'((w)

Twz(k)

)

ul w(k)

which is the counterpart of equation (63) in the full-length version of Negahban et al. (2009).

Due to the independence of between :cgk) for any ¢ and k, the arguments in Negahban et al.

(2009) directly follow.

S.2.2.3 Proof of Lemma 4

Recall Theorem 1, under the assumptions, we have
2 slogp logp i 1/2
18 =8ll2 5 + h/2 | Ak,
na + no ng
; logp
1B=B8li S sy ———+h,
ng+ng

with probability at least 1 —ny'. By basic inequality,

1 k k)
Sy 2 X = XL A Al

2(na,, +no ke{0}UA,
1 (k) ) A A
< > X = X A3+ Al
2(na, +no) weloroa, B.j B,—j 2

which implies

1 (k) (A Ay (2
B E X R
2(nAh +n0) ” ﬁ}_j(qlg 73 )HQ

ke{0}UAy
1 k) vxr (k) k) A, oA
S — wHw > 94 o A
= na, +n0 Z < B ( B ) BJ’ ( ] 7] )>
ke{0}UA,,
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1 k k A k A ~ A
o > (X0 ) X gt =)
An T 0 4 f010 A

A = 1145 1) (S.2.12)

Denote A® = diag({y"((2{")8)}}%,) and A®) = diag({y" (@) B)}1%,).

1 k) (k) A (k) oA
———— > (XY (P =) XS (= A
B, j B—j i J
4, T+ Mo ke{0}UA), -~ !
1 T
< — S (XETABXE) (4 — )
A, + 10 ke{0}UA, .
k ™ k k A A ~ A
+H YT (XE)TA® - AD) X B (B — ]y = A (S5.2.13)
ke{0}UA, o

T A k) x & )(vj(k) 7;_4;1) is a zero-

It’s easy to see that each component of Zke{O}UAh(X—] N

mean, sub-exponential variable with variance C(n4 + ng)h?. By union bounds,

1 RINT A () 3 (R) (o (B) _ A log p
— Z (X—j> Al )X—j ('7]' -7 ") S hy,
n 10 | (opo, o Ao
with probability at least 1 — p~!. In addition,
1 k N k k A
| X R - AR g
An T e f03u4, i,
1 k ~ k k A
<ol 2 (XETAY = AMXE -y =
An T 0 e foyu, -
For ji, ja # J,
k k k
— > S a0 (@) B) - v (@) B)
A T for0a, =1
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/// (k) (k) o
nM+O > Sl n&+o >3 e @y(B - g

kE{O}UAh =1 kE{O}UAh i=1

<C|B - B2,

where the constant C' is the same for different j; and j,, and a(k) falls on the line segment

between ( )T,B and ( )T,B Therefore, the right-hand side of (S.2.13) can be upper
bounded by

N4, + No

N log p R
C (Hﬁ — B2+ —) hy e 1y =47 s,

with probability at least 1 — p~!
On the other hand,

1

- WE’C) W(k) 1, (k) X(k), An 2 AR
na, + no Z < g( ﬁ) N3, _J(’)’] v; )>

B,
ke{0}UA,

1 (k) (k) A A
< > x) n 7™ =4l
B, B.J J J
Ny, Mo ke{0IUA, -~ .

(WO W) -l

1

1
e s [
Man 10, T dco

+COHX ’yj ’?_;4’1)

where ¢q is a positive constant smaller than 1/4. Note that

1 k) ryar (D) —1 ) ||?
- w® (w .y H

"0 Leforua,
n Vw«@%n%—¢ww#Wﬁ02
< X:E:(
nAh+ 0

k
wefora, = v ((2)7B)

2] , (S.2.14)

2

P2
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— > Z 1B - B,

n““h ke{0}UA;, i=1
< swp [|B-1l3
ke{0}UAp
SR

with probability at least 1— K 4, ny ', where we use Assumption 7.(i) to bound 9" ((wgk))TB).
The last two inequalities follows because of the same reason as that of (S.2.27). Plugging

(S.2.13) and (S.2.14) and into (S.2.12),

1 k) /4 Any 112
IX8) (3 — )|
4(n 4, + no) ke{o%Ah B,—j i J /12
| _logp LA A 2
<C — == 4+ Ry | hy - || — A R
- ( nAh+n0+ 1) e 5"+
C k A AA A A
| > X el I = A o+ A 145 )
An T 0 e t0yuA, .

. I _ ~1 1 (k) logp
with probability at least 1 — K 4,n, . Note that Ao Y ke (0}UA, Xﬂ L < /nAthnO

with probability at least 1 — p~!. Therefore, if \; > C'R;//s with some large c'" >0,

(k) lo
Zke{O}UAh X H +C (\/ A, el + 9?1> hi,

1 (k) (oA A (12 — By 1724 A LA A
Wna +10) D 1 X5 2" =)l < 5)\3‘“(% " =) sl — 5/\j||(’Yj "= )sell
An TI0) L ctoyua,

then since hy < s7Y/2, we have \; > —2¢—

+n0

which implies

+ A1 (¥7 ") sell + CRE, (S.2.15)

with probability at least 1 — K 4,ny". Therefore,
191 = 2l < 4VslA5™ = ™ e + CVER+ I, (8:2.16)
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with probability at least 1—K 4, ny"'. Thus, we have either ||’Ayf‘h—'yf‘h |1 <2C/sR1+2hy <
/s or H’yflh - 7;4’1 |1 < 8\/§H'$/;4h — ;-4"H2. By similar arguments to get (S.2.27), we obtain

1 (k) (A Ay (12 1 9
3 IXY Gy ——— Y IXYE -
B,—j i J ~ J
4(n.4,, +no) ke{0IUA), ’ Ay Tt Mo ke{0}UA),
> (15 — v, (S.2.17)

with probability at least 1 — K 4,ny". Combine (S.2.15), (S.2.16) and (S.2.17) to get the

desired conclusions.

S.2.2.4 Proof of Lemma 5

Similar to (S.2.12), by basic inequality,

1 ©) 2 1
e X5 -0, <

(0) 0 0
< AW W) g, X5 (85— )
1 0 ~
(X (6= ) X (7 =)

As(llesll = llsll)-

Similar to the analysis in the proof of Lemma 4,

2 log ~ 2 Ap
2§C’ o~ + h1'HQj—QjH1+CH’7j — ;I3

2 0 0 ~
+ClB - I+ o [ X8|l - el

1 0 (4
1 X5 (e = )

+A;(llesll = llejllh)

with probability at least 1 — ny'. Note that niOHX L(;O)_ jn](-O)HOO < logp with probability

at least 1 — p~!. Therefore for )\j > ( % + §Rl) with large enough C” > 0, we have
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:\j >C ( % + §R1> hy + < HX ]"7] ”oo Then with probability at least 1 —

1 ©) -
Ing HX&_]-(QJ‘ )

2 1~ . " 1 .
‘2 < 2llejll = SAille; — el + ClIA;™ = "3+ C|IB — B3,
which leads to

X TP T A
10; — ojllr < 4llejll + CX A" =~ 113+ CAHIB — Bl

<y 4+ R+ (, /k’)g’pa%f) ARy

with probability at least 1 — K 4,1, ! Similar to the trick we used before, we can get

log p
165 — ejll3 < Njha + 13" — v 13+ 118 — Bl3 <y ) + h Ry + R

with probability at least 1 — K 4,1y ", which completes the proof.

S.2.3 Proof of theorems
S.2.3.1 Proof of Theorem 1

Transferring step: Define @ = w — w and D = {(X®, y™)},cr030a,. We first

claim that when \,, > 2||VL(w**, D)||o, with probability at least 1 — Cs exp{—Cy(n, +
no)}, it holds that

1 C
@ ||y < 8koChh [_08P + 3£)\w + 24/ L. (S.2.18)
n4, + No K1 K1

To see this, first by the definition of w*», Holder inequality and Lemma 1, we have

SL(a™, D) < A (||wd” |1 + |Jwa 1) + VL(w, D) A

D) = Aw(lwg" [l + |

1 X
< No([lws 1+ gt ) = Ao (@5 [y + gt {l) + wlle [
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3 1. 4,
< SAwlligt = Sl el
3. Lo
< SMwllEg" | = S dwllEg! 1 + 22w Crh. (S.2.19)

If the claim does not hold, consider C = {w : 3|jus|l; — &||use

1 +2Ch > O}. Due to
(S.2.19) and the convexity of L, @ € C. Then for any t € (0,1), it’s easy to see that

gleadll = Jhadt s < - (Sl +20un) < Jeack s+ 260,

implying that ta*» € C. We could find some ¢ satisfying that [|ta*" ||y > 8k2C1h, / niogfno +
3;/—15/\11, + 2,/%h)\w and |[ta ||, < 1. Denote w4 = ta and F(u) = L(w? + u, D) —
L(w?) 4+ Ay (||w?* + ul|; — ||w?t|,). Since F(0) = 0 and F(aA*) < 0, by convexity,

F(a*h) = F(ta' + (1 —)0) < tF(a) < 0. (S.2.20)

However, by Lemma 2 and the same trick of (S.2.19),

~

F(a) > §L(a*, D) + VL(w") @' — Ay w1 + Al w + @,

log p
n4, + No

_ logp | _ _ 3\ mA
> a2 — — 28 1o ||| @ ||y — SN ||@E |1 — 20 Ch A
> rplla™ |3 Klliz”m\,ﬁtno“ 1@ 5 wllws" 1 wCh

Note that since @» € C, it holds that

- - - 3
> g3 — ks [ | [|a (|, — §>\w||u?h||1 e a5t |y — 2\ Cih

1, . - .
§||u“4h||1 < 2||u§‘”||1 + 2Cwh < 2¢/s||ah ||y + 201 A.

When n 4, + ng > 16x3slog p, we have 2ky /Li’;o < 1 . Then it follows

- 1 . lo 3 _
F(u™) > §H1|!uAhH§ — [%mz,/ﬁcwh + §Aw\/5] @™ |5 — 20 C1h > 0,
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which conflicts with (S.2.20). Therefore our claim at the beginning holds.
Next, let’s prove ||VL(w?") o < /% with probability at least 1 — (n4, + ng) ™.

To see this, notice that

1

Vi) = 3 (X)) (X )
na, o A,
1
=—— > (XYW /(XY
na, o (4,
1

——— Y (X (XPB) + o (X Bw)]. (8:2.21)
4, + Mo ke{0}UA,

Following a similar idea in the proof of Lemma 6 in Negahban et al. (2009), under Assump-

tions 1-3 and the fact n4, > Cslogp, we can show that

1 log p
e > (XN +4/(XPB)| S o e
An TR0 croj04, An T 10

with probability at least 1 — (n4, + ng)™".
The remaining step is to bound the infinity norm of the second term in (S.2.21). Denote
Vig-k) = :ng) [ (") B) + ' ((2™)TwAr)]. Under Assumption 3, by mean value theorem

and Lemma 1, there exists v§k> € (0,1) such that

Ly s

ke{0}UA, i=1

= S (@D + o @) (@A — ) @) (w — ).

n
An ke{0}UA, i=1

’I?,Ah

gb”((a:l(k))T,B%—vgk) (wl(-k))T('wAh —ﬁ))ng) is M r2-subGaussian due to the almost sure bound-

edness of 1" in Assumption 3. And (z!")7(wA — B) is a 4C2h2-subGaussian due to

Lemma 1. Then the multiplication is a 4C} M7 k2 h*-subexponential variable. By definition
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of wr, m D ke (03UAy i Vzg has zero mean. Notice that the inﬁnity norm of the

second term in (S.2.21) equals to nAh1+no SUP;_1..p | Dokeiojua, Dici V | by tail bounds

of subexponential variables and union bounds, we have

1 logp
———— sup V; S CiMykyh
na, + Mo j=1,..p ke{();%h; ’ na, +no’

with probability at least 1 — (n, 4+ n¢)~'. Therefore |VL(w)|s < [~ logp - holds with
probability at least 1 — (n4, + no)~'. Plugging the rate into (S.2.18), we have

1 1 1 /4
y Shy | —2P 4 [ 298P ( o8P ) v, (S.2.22)
Ny, +No na, +no na, +no

with probability at least 1— (n4, +n0) ™", when Ay, < Cy /niogfno with Cy, > 0 sufficiently

large. Since 4» € C, (S.2.22) encloses

HﬁAhHl 53 logp " log p >1/4 /sh+h|1+ Sl()i , (8223)
na, +No na, + no na, +no

-1

Ah

@

with probability at least 1 — (n4, + no)
Debiasing step: Denote D@ = (X ) L) (y, DO)) = —ni( NT X O
n 0 7
o L (@) w), VEO (w, D) = — (X O)Ty O 4 L (XO) T/ (X Ow), 64 =
B — wh, B = w4+ M oM = §An — §4 and 6LO(8,D) = LO(wA + 8, DO) —
LO (apAr 4+ §4» DO — VLO) (A 4§41 DO)T A,

Similar to (S.2.19), when A\s > 2||VL© (8, D©)]|.., we have

SLOE4, D) < As(||6% |1 — (164 1) — VLO (a4 + 4, DO)T 44
= >‘5(2||5Ah||1 - ||ﬁAh||1) + ||Vf/(0)(ﬁ’D(O))HOOH@Ahul

_ [V L0 (@ 4 54 DOY _ vE0(8, D] g
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Ly
< 2]l 1 = SAelloM
1
_ n_ ['(,b/((X(O))T('uA)Ah + 5Ah)) . ’l,b/((X(O))T,@)]T N
0
1
< 2256 lx — —AaHv*‘” bt g M —HX |2 + ¢ - —HX(O) A2,

(S.2.24)

where ¢y > 0 is an enough small constant. The last inequality holds because

1

— — [ (XY (@A + 64)) — o/ (X O)7B)]" ¢
o
— i(ﬁAh)T(X(O))TA(O)X(O){)-Ah
No
1
< oM X T o | X5

where A© = diag({¢/" ()78 + t;(”)TaA»)}7,) is a ng x ny diagonal matrix and
by Assumption 3, [|AQ || pax < My. Denote 34 = toA» and FO(v) = LO (wAr + 54 +
v, D)) — LO) (qpAr 4§41 DO) 4 \5([| 4% +v]|; — |04 ||;). Since F(0) = 0 and FO (4#) <
0, by convexity, for any ¢ € (0, 1],

FO 4y = FO(tpn + (1 —1)0) < tFO(at) < 0. (S.2.25)

We set t € (0,1] such that |||, < 1, which allows us to apply Proposition 1 in Loh
and Wainwright (2015) on ©4». By basic inequality (S.2.25) and the same arguments in
(S.2.24),

1 .
[543 — o - 2L 542 < FO @) — VIO (1 + 5Ah,p<o>>TﬁAh
No
1
< 2)\6||5Ah||1 — —)\5||1)Ah||1 + 4—M¢ ||X(0) AhHZ

+¢cp - —||X o4 |2, (S.2.26)
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< 3|lugt|; + 4C1h. We

In the discussion of transferring step, we showed that ||@%"
leverage on this fact to bound niOHX a’n||2 by || X OaAn|2.
If 3||ag” ||, > 4Cyh, we will have ||ag? |, < 6]lag"|];. Then by Theorem 1.6 of Zhou

(2009),
1 1 1
X O A2 < a2 < 208 gy J 08P (S.2.27)
ng na —I—TL na +n0

with probability at least 1 — C(n4 + ng) ™' — Cexp{—ng}.
If 3||ag" |y < 4Cih, we will have ||az||; < 8C1h < /5. Also ||a*|, < 1 with
probability 1 — C(n4 + ng)~'. Denote

Mo(s) = {u € R”: Jlull; <1, [Jullo < s},

I (s) = {u e R? : |lull; < 1,[|ull; < Vst

By Lemma 3.1 of Plan and Vershynin (2013), II;(s) C 2conv(Ily(s)), where conv(Ily(s))
is the closure of convex hull of IIj(s). Then following a similar argument in the proof of
Theorem 2.4 in Mendelson et al. (2008) leads to (S.2.27) as well.

Next we want to bound || X ©@o4+||2 by [|o4*(]3. By another basic inequality,

0< LOB, D) - LOB, D) - VL8, D) (3 - B)
As([|B = wr ||y — [|64%]1) + [|[VLO(B, D) |18 — Bl

IN

) < 1, -
< A5(18 = @Ml = 184 11) + 32118 — Bl
3 ) 1 A
< 22618 — @ s = S3sll4
3

5)\56% + )\6HUAH1 - —/\5H5A”H1,

which implies

[0 ||, < |62 |, + Cih < 3||@| + 4C1h.
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Combined with (S.2.23), this leads to |0 ||, < ||o

|1 < /s when slogp/(n4, +no) and
h are small enough. Due to the strict convexity, 6L (§4+ D) > 0, leading to |64, <
3||a*# ||, + 3h. Then,

64 [l < (18 — ||y + (|84 [y < 4l|@" (| +4h < V. (5.2.28)
Similar to the analysis of the case 3||ug" |, < 4Cyh above, we can get
Co - —HX 3 < oo - Ol |3,

with probability at least 1 — C'exp{—ng}. As long as ¢oC < ¢1/2, by (S.2.26), we have

1 1 1 1
[543 — 2 SEENEAR < 2l = ot s+ O+ Oy R
o N4, T 1o na, T 1o

+ ¢1 /2] |2 (S.2.29)

with probability at least 1 — C'ng*.

IF As|04 |1 < CRE880 + Chy o8 E:

1 1
slogp h ogp
n.Ah + no n.Ah + no

Since |||, < 1, by (S.2.29), it holds

15 Ath< slogp h log p < slogp 4 log p AR,
, T 1o N4, + Mo n4, + No ng

with probability at least 1 — C'ng*.
If Ag||04%]|y > OS82 4 Ch, /82— ||§An||) < o+ [|64*]|3, which leads to

A, T10o na,+no’

Uun
[P + ot 3.

Iic

log p

[543 < 228107411 — _)‘5||UAh||1=

30



implying || 94|, < 4[|64*||; < 4C1h. Besides, by plugging this result into (S.2.29), we have

1 I
o2 < 2082 g [OBP A2 (S.2.30)
N4, + No no

with probability at least 1 — C'ng .

When slogp/(na, + no) and h is small enough, and because h logop = 0(1), the right
hand side of (S.2.30) can be very small. This means that we showed |94 ||, < ¢ < 1 with
probability at least 1 — C'ng'. Note that this result holds for any ¢ € (0,1] such that
|94#]], < 1. Now let’s consider our interested vector ©*. Suppose ||[o# |2 > C niloiﬁ -+
C [h bn%] A h? for some constant C' > 0 with probability at least C'ng*', then we can
choose t € (0, 1] such that ¢ < |||, < 1, which is contradicted with the fact ||[o4# ||y < ¢

with probability at least 1 — C'ng'. Therefore

lo A”||2<7510gp + [h\/log ]/\h2<1
+n No

1

with probability at least 1 — C'ny'. Then we can go over the analysis procedure of o

again with ©* (on the high-probability event ||&"#||s < 1) to get the ¢;-bound

1
o4 < sy [ —22— 4,
nAh +n0

with probability at least 1 — C'ng*.

Finally, we connect the conclusions above with the upper bounds on ||@*# ||, and ||a* ||,

which completes the proof.
S.2.3.2 Proof of Theorem 2

The analysis in the proof of Theorem B and Theorem 2 in Li et al. (2021), which proved

the ¢, minimax rate under linear models, can be directly extended to the GLMs. We only
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point out some key observations. The readers can refer to the supplements of their paper
for the full proof.

The proofs of Theorem B and Theorem 2 in Li et al. (2021) leverage on Fano’s method,
which involves Kullback-Leibler divergence. For w; and w, in R?, consider two GLMs where
ylz ~ Py|z;w:) = p(y) exp{yz"wi—(z"w:)} and ylz ~ P(y|z; w2) = p(y) exp{yz" wa—
P(xTw,)}. Denote the corresponding joint distribution of (x,y) as fu, and fu, and sup-

pose marginal distributions of x are the same. Then by definition and Assumption 3,

KL(fuw, | fwz) = Ean g, [0 (@ (tw1 + (1 = t)ws)) - [27 (w1 — w2))?]

< O]Emewl [wT(wl - wz)]Q]’

for some constant C' > 0, if |[{)"||cc < 00 o1 ||| < U as. and ||Jw; — we|); < C' with
some C’" > 0. By using this fact, all the analysis of /;-estimation error in their proof works
out for GLM.

About the /;-estimation error, we can make slight changes to make the argument work
again. In case (i) of the proof of Theorem 2 (or case (i) of Theorem B) in Li et al.

(2021), replace the d-packing under ¢, norm with the d-packing under ¢; norm, and set

logp
nA-+no

suppose sy/logp/ng > h. Set 6o = m li’% =< h where m is the integer part of hy/ng/logp.

In (ii-3), the same argument works and we set o = h. So finally we can get the minimax

0y rate sy/logp/(na+ng) + [sy/logp/ng] A h.

. In case (ii-1), we can do the same and set §, = cos(/ 22, In (ii-2), we

(So = CoS P

S.2.3.3 Proof of Theorem 3

Throughout this proof, we denote w*» as any vector w satisfying |[w — B||; < h. Such a

w*r indeed exists, e.g. wr = Y ke (0}uA, arw® . Note that w** here does not necessarily
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enjoy the moment condition (2), which will bring more bias. This is the price we have to
pay for relaxing Assumption 4. Other notations are defined the same as in the proof of
Theorem 1.

The main idea of the proof is similar to that in proof of Theorem 1. We only highlight
the different parts here and do not dig into all the details.

First, the claim in (S.2.18) still holds here, i.e. when A, > 2||VL(w**, D)||s, with
probability at least 1 — C5exp{—Cy(na, + no)}, it holds that

1
18]y < SraCuhy | —BP 4 g¥53 20/ L hde. (S.2.31)
na, +no K1 K1

Via the decomposition in (S.2.21), ||V L(w**, D)||s can be bounded by two parts where the
o k k k k
first part has rate O, (, /ﬁ). Denote Vzg ) = xgj)[ Y ((x; N T ®)) 4 ((a E NTapAn)].

=i >ov

ke{0}UA, i=1

- S D Pl (w — w®)) a) rt).
n.Ah + N k
e{0}uA4,, =1

Similar as before, the multiplication ¢ ((x (k)) ’w(k)—H)(k) (27T (wAr —w(k)))xg?) (2T (wAn —

(3 (3

w®) is a CF M} k7 h*-subexponential variable. And by Cauchy-Schwarz inequality and sub-
Gaussian properties (Vershynin, 2018),

k k k
E[VP| < (Bl ) VAE[(@)T (wh — w®)2)V? < k,h.

Therefore, by tail bounds of sub-exponential variables and union bounds, we have

1 o (k) logp
————— sup Vil S kuh + Ci Mykyhy | ————,
N4, + Mo j=1,...p ke{[)%A“ZZ; J n4, + no
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with probability at least 1 — (n4, + n9)~" V p~!, which implies that ||[VL(w™)|e <

\ /niogfno + h with probability at least 1—(n4, +n0) ' Vp~t. Let Ay = Cip <1 /njogfno + h)

and Ay, > 2||VL(w*#, D)o in high probability. Plugging it into (S.2.31), we get

1 1 1/4
Ry - +\fh+\/_< oep > , (S.2.32)
ng, +n n4, + No

with probability at least 1 —(n4, +n9)~' Vp~!. Similarly, we can obtain the ¢;-error bound

@t |y S sy | —2P— o sh o+ sh < o8P > , (S.2.33)
N4, + n4, + No

with probability at least 1 — (ny4, +mng) "' Vp~'. Next, consider the debiasing step. Similar
as the proof of Theorem 1, let \s = Cj 1(;% which satisfies \s > 2||VLO (3, D), in

high probability to get

A 1
1B-BI2< 5L 4 ap2y
n.Ah +n0

A og 1/4
188l S 5[ 2L+ sh+ Vi (ﬂ) |
n A + na, +No

with probability at least 1 — Cng.

1
h ng] N
o

S.2.3.4 Proof of Theorem 4

Lemma 6. Under Assumptions 1-3, sup Lo(B8%®) — Lo(8) < [|1B% — 8|12 < k.
keA
Proof of Lemma 6. Note that the term involving E[p(y(®)] is canceled when taking the

difference, therefore we drop that term and consider Lo(w) = —E[¢/(w”z®)wz] +

E[y(w?x®)]. Since VLy(B) = 0 and V2Lo(w) = E[¢"(wz@)z© (2)7]. By mean-
theorem, 3t*) € (0,1), such that

Lo(BY) = Lo(B) = (8% — BTEW"(872¥ +9(8Y) - B)Ta")a ¥ (@)T](8% ~ B).
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I'2 A 1—\1

Lo(B) Ly(B) Lo
Assumption 5 our goal
T . I ~1rl/ Adk)r
Lo(B™) - LI(B®) i gwry

Figure 12: The idea behind Assumptions 4, 5 and Theorem 4.

Under Assumption 3.(i):

Lo(B"W) — Lo(B) < ME[((=)"(B® - 8))*] < IB% — 8]I3.

Under Assumption 3.(ii), by Cauchy-Schwarz inequality and the subGaussian moment
bound (Vershynin, 2018):

1/2

Lo(B™)~Lo(B) < |E (max V' (@)8 + Z)> [E(()"(8"-8))"1"" < 18%-8l13-

z:|z|<1

The second half inequality automatically holds since B is a linear combination of 3 and
w® . And it’s easy to see that all the constants appearing in the inequalities are uniform

for all k£ € A, which completes the proof. O

Next, we prove Theorem 4. We have

Q>
I
(-

#lrl s A 2 ’ Flrl/ A r
(L5 (BOT) — Lo(8))2/3 < \/; DI B~ Lo()

1

= [IEE 8O — @) + 1E5(8) - Lo)I]

r=1

ﬁ
I

A
e
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ol i),

with probability at least 1 — g§°>(g ) — géo)(g ). As Figure 12 shows, by Lemma 6, for k € A,
there holds

sup [LIN(B®Iy — LB < 2sup |LI(BRI) — LI (@RI
+ sup |I:g’](/3(k)) . IA/ET](,B) o LO(IB(k)) + LO(,B)|

+ |Lo(B®) — Lo(B))
< C( F(k i hQ)

< Co(6 v 0.01), (S.2.34)

simultaneously with probability at least 1 — |.A| maxye A[g@({ ) + gék)(g )] for sufficiently
small ¢ > 0 when minge4 ng and ny go to infinity since F(k) + I‘ )4 p? = o(1). On the
other hand, by Assumption 5 and the fact VLy(8) = 0, for k € A,

inf L (3®IT) — L (3O1)
> |Lo(B®) — Lo(B)] — T — ¢ — ¢r
1
=118% — B2 - Amin ( / V2Lo(B + t(B® — ﬂ))dt) — 1 —r®™ ¢l
0

> 18® —g|I2- A -1 —¢r® — cr
> [ + 1) v - rf? -

> Cy(6 Vv 0.01),

simultaneously with probability at least 1—|.A°| maxge.c[g{™ (Cy )+ (C5 )]~ | A maxye 4e
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[QW(C) + gék)(C)]. It entails

P(A # A,) <P (U {Eg‘” ORI, 0.01)} Uy {ﬁg’“) IO <6 v 0.01)})

keA ke Ac

<P (ig’“ QRN RY 0.01)) +3 P (ﬁg’“) IO <6 v 0.01))

ke A ke Ac
<3P (inf L30Ty — FI(BOIY s cy(6 v 0. 01))
ke A

+ Z (sup |L ( [7"]) L[T (ﬁ(O [r]>| < CO(U v 0. 01))

keAe "

< Al max[gi”(¢) + 957 (O)] + A7 max[g” (C5 ) + 657 (C ).

For any 0 > 0, there exist constants C’(0) and ¢’ > 0 such that when Cy = C’(9),
K maxye (g (C5 )+ 68" (Coh)] < 6/2, K maxpealg!” () +957(¢)] < 6/2 and C2[(T" +
Fgo)) V1] > C’Flk) + CT(k On the other hand, there exists N = N(4) > 0, such that when
mingeoyua, e > N(9), ¢’ (F(k +T® + h2> /1C"(6)-(6v0.01)] is sufficiently small to make
(S.2.34) hold.

and N = N(6) > 0 such that

In summary, for any ¢ > 0, there exist constants C’(0

)
when Cy = C'(0) and mingegoyua, e > N (), (.A #Ap) <94

S.2.3.5 Proof of Theorem 5

no

1/4
Denote R, = 4/ ;jofrfo + {hl/ 2 (logp ) } A h. First we present the following proposition.

Proposition 2. Assume Assumptions 1-4 and 7 hold (except (v)). Let \; < logp_ 4

na, +no

1/4 N
{i - (m) hlﬁl A % foranyj=1,...,p, and \; < 1‘;% +R,. Then with probability

NG no
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at least 1 — K 4, ng?,

R lo
19 = %13 S b ngop + R+ R (5.2.35)
15 = 4Oy S VERy + VR0 + by, (5.2.36)

1 1/4
7§ nIVIE = S R (%) + PR o B, (5.2.37)
0

(S.2.35) and (S.2.36) can be proved by combining conclusions in Lemmas 4 and 5. The
proof of (S.2.37) can be found in Section S.2.4.2.

Next we will leverage Proposition 2 to show (10) and (11). First, we notice that

b=+ - B(X ) [y — /(X )

0

=B+ B(XO)YO - (X0 + —B(XO)[¢/(X V) - /(X))
0 0

=B+ —O(XOY YO - /(XO8) + - OSP(B- f)

) No
+ - O(X ) diag({(W")}) — v () B)}12) X OB - )
0

where 1150) falls on the line between (LD(-O))T,B and (a:z(-o))TB. Therefore for any j =1,...,p,

b= ;= [es = @)TED] (B B)+ (8, (XY — /(X))
R h P ’
+ (0,7 (XO) T diag ({1 (@) — v (=) 8)}12) X OB — B).

S/

38



For convenience, we write the j-th row of the matrix

I = —Y1p
—Y2,1 1 Y2,
_’A)/p,l _’S’p,2 _’s/p,p
as (’S'](O))T and the j-th row of matrix
1 —71,2 —Tip
—Y2.1 1 —Y2.p
_'719,1 _'7p,2 _7p,p
0
as (7)1,
For (i), notice that
SO A
[£56; - e
n 2 (0)\t (0)\¢
1 & ;) (v; ")
==Yy (@) B) (@) L — B 2 (@) 8) () L,
no = 75 T; .
n 2 (0)\¢ no (0)yt
1 <~ (© 0 o (%) 1 0 0 o (%)
==Yy (@) B) (@) L — — 3 &Py (") 8) (=) L,
Mo 7 L Mo Tj
n (0) ON;
I < (0 0 0 (") 0 0 (v )
+=> 2 (@) B8) (@) L= — E |2y (=) 8) (") L,
(0 0 e _ ~1/2
S = e + 1772 = 772 + gy
1/2 log p A 1/2041/2 —1/2
5 3%1 + hl - + hl §R1 + h'max + no 5

o
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implying that

1) <56, — e 188l
1/2 log p A 1/20~1/2 —1/2 log p
o Ny, + o
= o(ng"?), (S.2.38)

under Assumption 7.

For (3),

(3) < nio HX(O)@j

| atasttur@®) - vr(@y B m) x OB - B)

)
1

where |[0"(@”) — ¢"((@")"8)] - (") (8 ~ B)| < v (" + (1~ )(@")"B) - & ~
@NTB]|(T(B - B) < |(@™)T(8 — B)|2. Therefore by similar arguments to get
(S.2.27), we have

3) < (14118, — ©4]1) - 1B - B2 <, B2 = o(ng?) (5.2.39)

under Assumption 7.

For (2), we can see that

2) = nioé}“ (XO)T[Y© — /(X O8)] = ni 2 67z [y — ¢/ (@”)"B)], (S.2.40)

where E{(0,)7z{"[y" — ¢/((\")7B)]} = 0 and

E{0T2"[y” — v/ (=) B)]}* = E{(0T=\")*¢"((=\")"B)}
= OJE [20(=")"v" (=)' 8)] ©;
=o’sYe,
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by Assumption 7. Thus by Lindeberg’s conditions,
Vo - (2) 5 N(0,8,,). (S.2.41)
On the other hand,

)@]Tzﬁ@)j — e,

< |07(£40, - ='®))

+ ‘(@j - @j)EE;O)@j

Note that
248, -=5es]
NG 0
g G o @™
TR 72 P72
J J o
= llna, +no - i i t 7A_j2 n.a, + no ~— ( i 2

nAh + No ik ! T2 F

Y M

ke{0}UAy, 4, + Mo J J
1 (k) nr AT (k) T (k (k) T ( AJ('O))T
< T [ x, "
’ oo
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1 k k 0 0
e 2o () @) TIE) - ()17
h i,k 0
(5)
1 k k k 0)\t /A
e @ ) - @) G - )
h k o
©)
(0)\+ (0)\+
1 (v ) (v; )
— Z[ (T @) s ]— > mE |2 (B2 @) s
An O | ik J ke{0}UA), j
@
Mk ® g ar By e )T o) o one )
Y B el (BTl @) L — a8 @)
ke{ojud, An T 10 j ]
>
)
It’s easy to see that
1 (k) (k) , (K)\NT /A (E)\NT (ENT [ A (k) T(A('O)>T
n4, + No " T; -

\/nAh + 1y Z k )|2

ki
<18 -Bl:
S §R17

with probability at least 1 —ng'.
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Similarly,
- . lo 1/
) S IR =9+ 177 = 7 S Rk b (FE2) AR

1 1/4
(6) < 1772 — 7% S R + 12 (ﬂ) CRPRYE
No

(7) S (nAh + nO)_1/27

0
(v
2

J

< hmax7

~

1

with probability at least 1 — K 4,ny"'. Besides,
1851l <1185l +118; = B[l S V/s.
with probability at least 1 — K 4,ny". Therefore,
O7(3 .0 (0)
0] (X;0,-%,'9))

< 16,]1 ||£50, - =®;

o0

Ry + hl/? (—(;gp> + hPRYZ 4 B
0

<V

Y

with probability at least 1 — K 4,1y !, Similarly, we can obtain the same upper bound for

the second term ‘((:)j - @j)Eg))@j in (S.2.40). Then finally,

1 1/4
SB[ (SE0) MR | = 1)

0’Y.0. -0, .
‘ Rl A 3.J To

with probability at least 1 — K 4,ny". Then by Slutsky’s lemma, equations (S.2.38), (S.2.41)

and (S.2.39), )
Vo(b; — B;) 4 A0, 1)

\/O73;6,

43
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S.2.3.6 Proof of Theorem 6

Assume Assumption 3.(i) holds or Assumption 3.(ii) with h < C"U~U for some C’ > 0
holds. When \s = Clsy /%2 where C5 > 0is a sufficiently large constant: By the definition

“no
of B, we have VLY (8) + As - ]|8 — w**||; = 0. Then by Holder inequality,
(VLI (B) = VLI (8), 8 = B) = (=As - 0l|B — [ — VL) (8), B - B)
< XslB =Bl + VLY (B)[wollB = Bl (8:2.42)
Considering the fact that HVL,(%) (Bl < lj’% with probability at least 1 —ngy' (Lemma
6 in Negahban et al. (2009)) and the upper bound of ||3 — 8|1 we prove in Theorem 1, the
desired upper bound of (VL&L%) (B) — vLY (8),8 — B) follows.

S.2.3.7 Proof of Theorem 7

Assume Assumption 3.(i) holds or Assumption 3.(ii) with h < C"U~U for some C’ > 0
holds. If we take \s = Cs k;%, where Cs > 0 is a sufficiently large constant: Similar to

(S.2.42), we can obtain

(VLO(B) - VLO(B),8 - B) < Xs| B — Bl + IVLY(B) |18 — Bl

To bound || — ||, it suffices to combine (S.2.28) and the upper bound of [|a4#||, in
(S.2.33). Then the final upper bound follows.

S.2.4 Proof of propositions
S.2.4.1 Proof of Proposition 1

The rate of I'; can be derived from the following Lemma 7 and the union bound, together

with the tail inequality (S.2.32). The rate of I'y comes from the following Lemma 8.
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Lemma 7. Under the same assumptions as Theorem /4, we have the following conclusions:

(i) For logistic regression model:

rlrlea(k)r rlr 1 (k)[r
wm@ﬂﬂ”U—LHw®HSC<L+M%~Q-wmww”—GkaEA

1

meWﬁW%—i@mWnsc(r+ %-Q-wMWWW—HthGAﬂ

sup |L§ (BO) — L§1(8)] < C'sup |80 — Bl - (1+0),
with probability at least 1 — exp{—(?}.

(i) For linear model:

wm@#ﬂ“U—LHWWHSC(L+M%~Q-wwwmvmﬂﬂWﬁW“—GWukEA

2y ~ r 2y 1 2 T c
wmdkﬂmb—LHWWMSC(uwﬁg<)ww®mwmw”—ﬂmukeA,

sup | (BO) = Lgl(B)] < 1Bl - 1B = B> - (1+ ),
with probability at least 1 — exp{—(*}.

(iii) For Poisson regression model with supy, |||, < U a.s.:

A1l A . Al 1 2 r
mMEﬂHWU—LHWWNSC(L+M%-Q-wpwwwWMVHmmHWW”—meweAq

Ay ~ r 2y 1 o~ r C
wmﬂﬂﬂ”U—LywwﬂﬁC<Hwk%()fm%mWWMHWW”—ﬂkaeA,
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ILEBOY — LEV(B)] < exp (U)|8]h) - 1BV = 8|z - (1+¢),
with probability at least 1 — exp{—(*}.

Remark 13. It’s important to point out that based on Algorithm 2, the randomness of I:([)r],
Bkl (k #0), and BO s independent. Here B and BOU are regarded as fized and
we only consider the randomness from [AJ([)T].

Proof of Lemma 7. For convenience, we assume ng is divisible by 3. Note that the term

/3 by (O)M) is canceled when we take the difference between L (,3 ) and

involving > "%
Lgﬂ (B%). So in the following, we drop that term from the definition of L%] in equation
(3). We only prove the bound for |Lo(B®) — Ly (B%))| when k € A. The cases that k = 0

or k € A° can be similarly discussed. Besides, according to the proof of Theorem 3, when

k € A, we define 3% = 2ni%fnk'8 + 7 /3 vy ), which gives us the final results shown in

Proposition 1.

(i) For logistic regression model, notice that

La(B®INY — [ (30N < — | (¢ OFNT x OF] (3R] _ gk)
| 0( ) — Lo(B™)] < n0/3 (y™) (B B
1 no/3
O)FN\T Z(k)[r]y _ O)[INT 3(k)
el D R R CRO N
For the first term on the right-hand side, it holds that
1 no/3
ONT x O)r] gkl _ (Ot 3(B)[rl _ gk)
O (B Zr 1(BWN — W),

n 0)[r . . .
where n—/3 Do 0/3 |(x; ()1 ]) (BR) —B"M)|is a #BH,B(’“)—B(’“)H% sub-Gaussian with mean

less than C/|| Bk — B®||5, where C > 0 is a uniform constant, implying that

1 A 1 .
(O xOF (W _ gky < (14, [ ¢) . a®r — gw
n0/3!(y ) (B B )IN( Ve C) 18 B2,
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with probability at least 1 — exp{—¢?}. On the other hand, the second term can be
bounded by n0/3 Zno/g (VN7 (B30I — 30| which can be similarly bounded as

the first term, leading to the desired conclusion.

s 0l _ gr,,.0)r] Ol 2 .
(ii) For linear model, note that y =p"z,"" +¢ " and ¢Y(u) = u?/2, leading to

no/3

[Lo(BM) — L(B¢ _no/g 2@ (B0 - )

no/3
1 O[]\ T OFNT (A0 _ 3k
+ 7 [ 2@ B @B - BY)

i=1

no/3
1| . - T
HEWE > (@ T (BWI 4+ gH) (3N — gEN)T O]

i=1

It is easy to see that .-z S e (@PMT(B®I — g s —Hﬁ Wl — gk |-

subGaussian with zero mean, while - SO T g (2T (30 — gk)) and
n 0)[r r r 0)[r r

L SO (W 4+ gE)(BEI — )T are _L||30)|]| 3R — B0 ,-

subexponential with mean at most C||3®||,||3® — B*)||, (Vershynin, 2018), where

C > 0 is a uniform constant, then by tail bounds and union bounds, the conclusion

follows.

(iii) For Poisson regression model with a.s. bounded covariates, it holds that

no/3

ZyZ(O)[T](wz(o)[T]>T<B(k)[T] _ IB(k))

7l 3(k)r] _
OO - L) < 1>

1 o/ OFNTZWIE  ((O)T gk
+ el )T (= hTe )



Conditioning on X O we know that y ' (20T (30— gk) ~ P01sson(e( )TB)
(2T (3®WIN_B®)). By the fact that Poisson(e(® UUM)T'@) ae@””

: 0
given wl( )| we have

e, subexponential

no/3 no/3
LN~ 0 007 30 1 ©OFyTg O)F\T Ak k
; BWIl _ gk) < e BRIl _ gk)
s [ el | % [ (@ )
1 20T ol
+ maxe )8 E () Wi — Y2 ¢

7’L0/3

with probability at least 1 — exp{—(?}. By Hélder inequality, the first term on the
right hand side can be bounded by a 2Ul1811 || 3(K)lr] — 8(k)||2_subexponential with mean

at most Ce2UIBl|| 3WI — 31|12 leading to

/3
1| O[T N 1 R
(@;""NTB( O NT (3R] _ gk)y| < 144/ —- eUlBl gkl _ g(k)
e M TP O e R Y

with probability at least 1 — exp{—¢?}. On the other hand, by applying Bernstein

inequality (Theorem 2.8.2 in Vershynin (2018)) as well as union bounds, we have

/3
1 20T i 1
3 o[r] B — )2 < (1 . )
maxe E S 4/ ¢
no/3 (@ S ng

. eVlBl Sl;ip 18W0T — g™,

with probability at least 1 —exp{—(?}. Summarizing the conclusions before, we obtain

the desired conclusion.
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Lemma 8. Under the same assumptions as Theorem /4, we have the following conclusions:
(i) For logistic regression model:
IL5(8) = Lo(B)| V| L5 (BY) — L§'(8) = Lo(B) + Lo(B)| < c\/njo- [l -
with probability at least 1 — exp{—(*}.

(ii) For linear model:

1L5Y(B) — Lo(B)| V |L5(BW) — Lo(B) — Lo(B™) + Lo(B)|

1
<O\ (Il ™13 v w®12) - €,

with probability at least 1 — exp{—(?}.
(iii) For Poisson regression model with supy, ||| < U a.s.:
L5 (8) = Lo(B)| v L5 (BY) — L§'(8) = Lo(BY) + Lo(B)]

1
< Cyf-exp (U ) [+ [l + Ullw®]L] - ¢,

with probability at least 1 — (2.

Proof of Lemma 8. Similar to the proofs of Lemmas 6 and 7, the terms involving Z?ﬁ{g p(yz(o) M)

and E[p(y)] are canceled when taking the difference. Therefore without loss of generality,
to prove the rate of sup, ][AJ([)T] (B — ZAL([)T] (B) — Lo(B®) + Lo(B)|, throughout this proof, we
discard these terms and consider

Lo(w) = ~E[/'(8"2")w" 2] + E[p(w’ =],

n0/3 n0/3

Z 0)[r] T ,.,(0)[] 1 Z T ,.(0)[r]
i 3 x; 4+ — w T, .
Y n0/3 - ¢( )

=1

i 1
Liw) = =3
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(i) For logistic regression model:

no/3
+ ”01/3 > [@Zﬂ(ﬂ%gonrl)(B<k>)Tm50>[r} B[ (8T 0)( I@(k))Tw(o)]]
=1
1|28
T3 > [@b((ﬁ(k))%go)[r]) — By((8%)T 2O
=1

Since —7 /3 Zno/g[ Oy (,BT )](B(k)) ( ' is a zero-mean || 3*)||2-subexponential

variable, we have

1 no/3

- O] _ 13T 0] (NT O] | < RO S.9.43
g3 |2l BT ENE ) S el ¢ (8243

with probability at least 1 — exp{—(?}. For the second term, since v’ is bounded,
W' (BTN (BENT O are 1i.d. ||B%)||2-subexponential, leading to

no/3
1
I R | PR e
n0/3 ng
(S.2.44)
with probability at least 1 —exp{—(?}. For the last term, consider g(u[lr], o ugg /3) =

Syl where ull = (20M)78® s an iid. ||B®)|2-subGaussian. Since ¢ is
1-Lipschitz under ¢;-norm, by Theorem 1 in Kontorovich (2014) and union bounds,

1 no/3

no/3 > [9(B®) 20 ~ Eu((8® \f [w®l,- ¢, (S.2.45)

90



with probability at least 1 — exp{—(?}. By (S.2.43), (S.2.44) and (S.2.45), the con-
clusion follows.

(ii) For linear model: recall that yfo) = (wgo)[r])Tﬁ(O) + eEOM, then

2§18 — Lo(8)
1 no/3

O)r] . O \T
< E € x, B
n0/3 — < )

no/3
+n01/3 2 @8- @8 ~ Bl )6 - ()8

no/3

2n0/3 Z[ OFHT W)z _ g[(2@)T 02|

By subexponential tail bounds, we have

1 no/3

'S I 1 1
D@ B S 4 [— 18V (S ¢
n0/3 i1 Un Un
1 no/3
0 r O r
T S (@O0 (2T E — E[(z@)TBO . ()T 30
=1
\/ HﬁHasupHﬁ H2<<\/ Hﬁlbsupr(’“)HQ,
no/3

0)[r] 1
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with probability at least 1 — exp{—(?}, which leads to the desired conclusion
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(iii) For Poisson regression model: similar to the logistic regression model, it holds that
258" — Lo(8®)

r 20! r
Dol = e () T

no/3

3 [ (g)7 2 — Bl (50720

1=1
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+
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For the first term on the right-hand side, because [yZ(O)[T] —ef TwEO)[T]](IB(k))T:BEO)[T} is an
i.i.d. zero-mean eVlBl1||3*)||,-subexponential variable, it follows

no/3
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— 2 (D = BT < eI g, - ¢
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with probability at least 1 —exp{—(?}. For the last term on the right-hand side, note
that exp{(8*)7z”"} is bounded by exp{U||8"||;}. Therefore by tail probability,
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with probability at least 1 — exp{—¢2}. Denote v = (80 Tz Finally, to
bound the second term on the right-hand side, we follow the same idea to get
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1 r T r 1
— = DM — B S U180 s - exp{UIBY 1} 4/ - <.
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with probability at least 1 — exp{—(?}. By combining all the conclusions above, we

obtain the desired bound.
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The remaining task is to calculate the rate of |ﬁ([)r] (B) — Lo(B)| under three scenarios.
For logistic case, since p = 0, the calculation in (i) naturally follows and the same

bound can be derived. For the linear case, we only have to show that

1 R omne 1
2wl < L g0z y 1 g®
7 2 BGOP| 5 2 (B 18

with probability at least 1 — exp{—np}. This can be easily checked by consider-

Oﬂr

ing yZ = BTz """ + ego)[r] and applying subexponential tail bounds. For Poisson

regression model, notice that

Var(log({1) < E[(w{"")?log? s} < /E[(y*)1]/E(tog' s,
Due to moment bounds of subexponential variables and Jensen’s inequality:

El(y"")"] S Ba [Eyoo”")!] < exp(av]8]1),

E(log? 41"y < log? EyOV < U481

Then by Chebyshev inequality and union bounds, it’s straightforward to prove that
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OF _ g, 0| < iU U )
s o B 5 LUl e lal)

with probability at least 1 — (2, which completes our proof.

S.2.4.2 Proof of Proposition 2

As analyzed in the proof of Theorem 5, it remains to show (S.2.37). Recall that 77 =

— 55, = (na, +10) 7 e qoyon, (X0) T diag ({9 (2(")TB)} i ) X — (na, +
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) Zke{o}UAh<X )leag({lﬁ”(( k)Tﬁ) ) _kj)’)’]( ), TJ‘? = E(ﬁo,)j,j — Eg)’;’_j'yj(.o) =
[(x§0)> QP”((:L' ) ﬁ)] - [x§0)¢ll(( ) :8)( ) ] 0 (G')j,jrl stays away from zero

because of Assumption 7.(iii). And we have
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And we have the following control for each term:

()] < o [Tl (@) B+ ) (5 - ) (a ) (B—ﬂ)‘
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with probability at least 1 — ng'.
Since {(xg?))Qw” ((a:gk))T,B)}Zk are independent sub-Gaussian variables with finite vari-

1/2

ance, by concentration inequality, |(2)| < (n.4, +mno)”"/* with probability 1 —exp{—(n4, +

ng)}. Similarly, |(6)| < (na, + no)~"/? with probability 1 — exp{—(n4, + n0o)}.
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with probability at least 1 — ng*.
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] 1/4
ik (—ng> FRPRYZ LRy
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1(5)] <

n4, + No

with probability at least 1 — K 4,n5" by (S.2.35).

k
1S sup (B2, = 552, )] S
ke Ay,

Combine all the inequalities above to finish the proof of (S.2.37). Note that the bound

of |7“—].‘2 — Tj_2| follows because inf; 7']-2 =0(1).
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