

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Assessment of LDL Cholesterol and Long-Term Mortality Among Primary Prevention Adults: A Cohort Study with Implications for Risk Assessment and Patient Counseling

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-077949
Article Type:	Original research
Date Submitted by the Author:	20-Jul-2023
Complete List of Authors:	Kip, Kevin; University of Pittsburgh Medical Center, Clinical Analytics Diamond, David; University of South Florida, Department of Psychology Mulukutla, Suresh; University of Pittsburgh, Heart and Vascular Institute Marroquin, Oscar; UPMC, Clinical Analytics
Keywords:	EPIDEMIOLOGY, Primary Prevention, Adult cardiology < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	1	
5	-	
6	2	Assessment of LDL Cholesterol and Long-Term Mortality Among Primary Prevention
7 8 9	3	Adults: A Cohort Study with Implications for Risk Assessment and Patient Counseling
10	4	
12 13	5	Kevin E. Kip, Ph.D.
14 15	6	Clinical Analytics, UPMC, Pittsburgh, Pennsylvania
16 17 18	7	kipke2@upmc.edu
19 20	8	
21 22	9	David M. Diamond, Ph.D.
23 24 25	10	University of South Florida, Tampa, Florida
26 27	11	<u>ddiamond@usf.edu</u>
28 29 30	12	
31 32	13	Suresh R. Mulukutla, MD
33 34	14	Heart and Vascular Institute, UPMC, Pittsburgh, Pennsylvania
35 36 37	15	mulukutlasr@upmc.edu
38	16	
39 40 41	17	Oscar C. Marroquin, MD
41 42 43	18	Clinical Analytics, UPMC, Pittsburgh, Pennsylvania
44 45	19	marroquinoc@upmc.edu
46 47 48	20	
40 49		
50 51		
52 53		
54 55		
56		
57 58		Page 1 of 33
59 60		- For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml
00		

BMJ Open

2		
3	21	Abstract
4 5		
5 6 7	22	Objectives. Among primary prevention-type adults not on lipid-lowering therapy, results are
7 8 9	23	conflicting on the relationship between low density lipoprotein cholesterol (LDL-C) and long-
10 11	24	term mortality. We sought to evaluate the relationship between LDL-C and all-cause long-term
12 13	25	mortality in a real-world evidence population of adults.
14 15 16	26	Design. Retrospective cohort study of adults during the period January 4, 2000 through
16 17 18	27	December 31, 2022.
19 20	28	Setting. Large U.S. health care system.
21 22	29	Participants. Non-diabetic adults aged 50 to 89 years not on statin therapy at baseline or within
23 24 25	30	1-year and classified as primary prevention-type patients (e.g., no prior history of ASCVD). To
26 27	31	mitigate potential reverse causation, patients who died within 1-year or had baseline total
28 29	32	cholesterol (T-C) \leq 120 mg/dL or LDL-C $<$ 30 mg/dL were excluded from analysis.
30 31 22	33	Main Exposure Measure. Baseline LDL-C categories of 30-79, 80-99, 100-129, 130-159, 160-
32 33 34	34	189, or \geq 190 mg/dL.
35 36	35	Main Outcome Measure. The primary outcome was all-cause mortality with follow-up starting
37 38	36	365 days after baseline cholesterol measurement.
39 40 41	37	Results. Over a mean of 6.1 years of follow-up, a U-shaped relationship was observed between
42 43	38	the 6 LDL-C categories and mortality with crude 10-year mortality rates of 19.8%, 14.7%,
44 45	39	11.7%, 10.7%, 10.1%, and 14.0%, respectively. Adjusted mortality hazard ratios as compared to
46 47 48	40	the referent group of LDL-C 80-99 mg/dL, were: 30-79 mg/dL (1.23), 100-129 mg/dL (0.87),
49 50	41	130-159 mg/dL (0.88), 160-189 mg/dL (0.91), ≥190 mg/dL (1.19), respectively. Unlike LDL-C,
51 52	42	both T-C/HDL cholesterol and triglycerides/HDL cholesterol ratios were independently
53 54 55 56 57	43	associated with long-term mortality.

Page 2 of 33

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Conclusions. Among non-diabetic primary prevention-type patients aged 50 to 89 years and not

on statin therapy, the lowest risk for long-term mortality appears to exist in the wide LDL-C
range of 100-189 mg/dL which is much higher than current recommendations and does not
support the prevailing premise that "lower LDL-C is better". For counseling of these patients,

48 minimal consideration should be given to the LDL-C concentration.

tor oper texter only

50	
	STRENGTHS AND LIMITATIONS OF THIS STUDY
	• The cohort consisted of a large "real-world" sample of adults across a large health system with long-term follow-up and sufficient precision for subgroup analyses.
	 The study design mitigated potential for reverse causation of mortality by excluding
	patients who died within 1-year of baseline cholesterol measurement or had
	exceptionally low total or LDL cholesterol levels at baseline.
	• The analysis was limited to all-cause mortality and thus was unable to assess cause-
	specific mortality.
51	
	Page 4 of 33
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

52 INTRODUCTION

53	Heart disease (HD), which includes atherosclerotic cardiovascular disease (ASCVD) as
54	its primary component, is the leading cause of death in the United States. ¹⁻² A near universal but
55	not absolute belief ³ is that high total cholesterol (T-C), low density lipoprotein cholesterol
56	(LDL-C) in particular (the so-called "bad" cholesterol), is a root cause of ASCVD, ⁴ and that
57	"lower is better" with a suggested optimal LDL-C level at or below 100 mg/dL. ⁵⁻⁶ In this regard,
58	the American College of Cardiology (ACC) unequivocally implicates elevated LDL-C as a de-
59	facto cause of ASCVD (and hence mortality) by stating that lowering of LDL-C with moderate
60	intensity generic statins allows for efficacious and cost-effective primary prevention for those
61	patients with an estimated 10-year risk of ASCVD \geq 7.5%. ⁷
62	An individual's risk of ASCVD (within 10 years) is routinely estimated by health
63	professionals using the online ACC-ASCVD Risk Estimator which incorporates not only T-C,
64	LDL-C, and high-density lipoprotein cholesterol (HDL-C), but also age, sex, race, systolic and
65	diastolic blood pressure, smoking and diabetes history, and current treatment (anti-hypertensive,
66	statin, and/or aspirin therapy). ⁸ For primary prevention of ASCVD among adults ages 40-75
67	years who are classified at 10-year "intermediate risk" of ASCVD) (estimated risk 7.5% to
68	<20.0%), the ACC/AHA guidelines recommend that moderate-intensity statin therapy be
69	considered with the goal of reducing LDL-C by 30-49%.9 Again, the premise of this
70	recommendation is that elevated LDL-C is an important causal risk factor for ASCVD and
71	mortality.
72	The overall belief that "lower LDL-C is better" for primary prevention of ASCVD is

supported by the 25.5% estimated prevalence of use of statins in this setting for adults aged 40 to
74 75 years.¹⁰ This frequent use of statins for primary prevention of ASCVD in adults may be

Page 5 of 33

Page 7 of 42

BMJ Open

attributed, in part, to routine use of the ACC-ASCVD Risk Estimator in clinical practice. To illustrate, **Table 1** shows ASCVD 10-year risk calculations for primary prevention by age, race, and sex for a hypothetical non-diabetic patient with approximate guideline-driven "normal" values for all clinical variables used in the risk equation. As seen, all males aged 59 years and older will be classified as being of at least "intermediate risk" of ASCVD principally because of their age and despite "normal" risk factor values, and hence, would potentially be referred for statin therapy per the ACC/AHA guidelines.⁹ Parenthetically, **Table 1** unexpectedly shows a much more restricted range for 10-year risk estimates across years of age for blacks (males in particular). In the backdrop of the generally accepted belief that "lower LDL-C is better," multiple sources of information suggest that high LDL-C may not be a significant cause of ASCVD or premature mortality. First, in brief, in an extensive recent meta-analysis of 60 randomized controlled trials that compared either placebo, usual care or less-intensive therapy to active or more potent lipid-lowering therapy, the number needed to treat (NNT) to reduce one death with active or more potent lipid-lowering therapy was exceptionally high at 754 persons. Moreover, there was no relationship between LDL-C percent lowering and risk of cardiovascular

mortality.¹¹ In the context of lipid-lowering therapy, these findings do not support the belief that
"lower LDL-C is better."

Second, acute coronary syndromes (ACS) routinely occur in patients with "normal"
LDL-C. For example, in a large cohort of 136,905 patients hospitalized with CAD (79%
attributed to ACS), of whom, 21% were on lipid-lowering therapy at admission, less than onequarter had an admission LDL-C >130 mg/dL.¹². In addition, women are generally considered to
be at overall lower risk of CHD mortality than men (e.g.,¹³), yet tend to have higher T-C and

Page 6 of 33

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

LDL-C,¹⁴ which is counterintuitive to higher LDL-C being associated with ASCVD and premature mortality.

Third, the field of life insurance medicine, which focuses principally on predicting mortality hazards,¹⁵ arguably conducts the most robust actuarial analyses of life expectancy (since organizational profit is directly related to prediction accuracy). Notably, in this field, the T-C/HDL-C ratio has been shown to be the best single measure of all-cause mortality risk among various lipid tests, including LDL-C.¹⁶ This is further supported by examination of selected life insurance underwriting guidelines (obtained publicly and summarized) from a large US insurance company.¹⁷ As seen in **Supplement Table 1**, T-C and HDL-C are used jointly in policy underwriting, whereas LDL-C is not used, and lipid-lowering therapy is not emphasized. Moreover, notwithstanding other important patient factors (e.g., blood pressure, smoking, etc.), **Supplement Table 1** shows that a person 70 years of age or older can potentially qualify for a "preferred-plus" life insurance policy having a T-C value as high as 300 mg/dL so long as the T-C/HDL-C ratio is 5.0 or lower (i.e., HDL-C >60 mg/dL). This aligns with meta-analyses/systematic reviews that report HDL-C to be inversely associated with all cause and CVD mortality risks.¹⁸⁻¹⁹ The above-described examples of conflicting beliefs and findings, along with general propensity for health professionals to prescribe LDL-C lowering therapies for primary prevention based in part through routine risk assessment with ACC-ASCVD Risk Estimator, call for a critical appraisal and analysis of the relationship between LDL-C and long-term risk of mortality in adults. Therefore, within a large, "real-world" healthcare system, we sought to evaluate the relationship between LDL-C and all-cause long-term mortality among non-diabetic

Page 7 of 33

BMJ Open

primary prevention-type adults aged 50 to 89 years. The analysis did not focus on the use ofstatin therapy for primary prevention.

- 10 123 **METHODS**

We conducted a retrospective cohort study of adults aged 50 to 89 years with hospital and/or office visit data captured through the University of Pittsburgh Medical Center (UPMC) electronic medical record (EMR) system. The date period for analysis was January 4, 2000 through December 31, 2022. The Quality Improvement Review Committee and Institutional Review Board provided ethical review and approval of the study as an exempt protocol, and all data remained deidentified for this analysis. Conduct and dissemination of results from this observational study were performed in accordance with the STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) statement (see Appendix).

132 Data Sources

Health-related data captured in the UPMC EMR and its ancillary clinical systems were aggregated and harmonized in a clinical data warehouse, as previously described.²⁰⁻²¹ For all patients, we accessed sociodemographic data, medical history, and billing charges for all outpatient and inpatient encounters with diagnoses and procedures coded based on the International Classification of Diseases, Ninth and 10th Revisions.²²⁻²³ Deaths were identified using hospital discharge dispositions of "ceased to breathe" sourced from the inpatient medical record system; deaths after discharge were identified via the Death Master File from the Social Security Administration's National Technical Information Service.²⁴

141 Eligibility Criteria

Page 8 of 33

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30 31	
31	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47 70	
40 40	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

142	The index date for selection and analysis of patients aged 50 to 89 years was the first date
143	of cholesterol measurement performed whether through hospitalization or in conjunction with an
144	office visit. For analysis, we required non-missing laboratory values for T-C, LDL-C, and HDL-
145	C. The patient population was restricted to "primary prevention" patients, defined as no prior
146	history of diabetes, coronary artery disease (CAD), carotid artery disease, peripheral vascular
147	disease, cardiac arrest, hemorrhagic or ischemic stroke, or transient ischemic attack (TIA). Other
148	eligibility criteria included: self-reported race of either white or black (due to very low
149	prevalence of other races), and not on statin therapy at baseline or within 1-year of follow-up. In
150	addition, to help offset potential bias due to reverse causation (i.e., very low cholesterol being a
151	marker for malnutrition and overall poor health), we excluded patients who died within 1-year of
152	the baseline cholesterol measurement, as well as those with baseline T-C and/or LDL-C values
153	of ≤ 120 or < 30 mg/dL, respectively.
154	Classification of Lipids
155	From the baseline measurement, we classified patients into mutually exclusive lipid-level
156	categories using common thresholds ²⁵ including LDL-C (30-79, 80-99, 100-129, 130-159, 160-
157	189, or 190 mg/dL or higher) and T-C (121-160, 161-200, 201-240, 241-280, or 281 mg/dL or
158	higher). In supplemental analyses, we classified the T-C/HDL-C ratio as $\leq 3.0, >3.0-4.0, >4.0$ -

5.0, >5.0-6.0, or >6.0, and triglycerides/HDL-C ratio into quintiles. Again, to potentially mitigate
potential bias due to reverse causation, we selected the LDL-C category of 80-99 mg/dL as the
referent group, rather than the lowest LDL-C group (30-79 mg/dL).

162 **Primary Outcome**

163 The primary outcome was all-cause mortality with the number of days and years of164 follow-up calculated starting 365 days after the baseline cholesterol measurement. For patients

Page 9 of 33

Page 11 of 42

BMJ Open

1		
2 3 4	165	who did not die, thei
5 6	166	cholesterol measurer
7 8 0	167	Statistical Analysis
9 10 11	168	For patients v
12 13	169	medians for continue
14 15 16	170	presented. For each
17 18	171	mortality rates at 1-,
19 20	172	out to 12 years. Patie
21 22	173	was used to estimate
23 24 25	174	over the full follow-
25 26 27	175	model that included
28 29	176	< .01 A second adjus
30 31	177	follow-up. Separate
32 33 34	178	are not presented due
35 36	179	up to initiate statin u
37 38	180	LDC-C and included
39 40 41	181	Subgroup Analyses
42 43	182	Subgroup and
44 45	183	mortality included as
46 47	184	classification (low/b
48 49 50	185	We used SAS
51 52	186	
53 54	187	RESULTS
55 56		
57 58		Page 10 of 33
60		For p

o did not die, their length of follow-up was calculated starting 365 days after the baseline lesterol measurement and until their last record in the EMR system.

For patients within the respective study-defined baseline LDL-C categories, means and tians for continuous variables and counts and percentages for categorical variables are ented. For each LDL-C category, the Kaplan-Meier method was used to calculate cumulative tality rates at 1-, 5-, and 10-year follow-up, with survival curves plotted at 6-month intervals to 12 years. Patients who did not die were censored at last date of follow-up. Cox regression used to estimate hazard ratios (and corresponding 95% confidence intervals) of mortality r the full follow-up period by LDL-C. A crude model was first fit followed by an adjusted del that included covariates selected by a forward stepwise approach using an entry p-value of 1 A second adjusted model was fit that added initiation of statin use any time after 1-year of ow-up. Separate estimates for the relationship between initiation of statin use and mortality not presented due to expected immortal time bias (i.e., requirement to be alive during followto initiate statin use). Secondary analyses of lipid parameters used the same methods as for C-C and included categories of the T-C/HDL-C and triglycerides/HDL-C ratios. group Analyses Subgroup analyses for estimation of the relationship between LDL-C category and

tality included age (50-69, 70-89), sex (female, male), and baseline ASCVD risk

We used SAS, version 9.4 (SAS Institute) for all analyses.

sification (low/borderline, intermediate, high, risk not determined).

2
2
2
4
5
6
7
8
0
9 10
10
11
12
13
14
15
10
16
17
18
19
20
21
21
22
23
24
25
26
27
27
28
29
30
31
32
22
27
34
35
36
37
38
30
10
40
41
42
43
44
45
-1-J A.C
40
47
48
49
50
51
51
52
53
54
55
56
57
50
30
59

60

1

188	The prevalence of patients within the six LDL-C categories was as follows: 30-79
189	(9.1%), 80-99 (18.3%), 100-129 (39.1%), 130-159 (24.4%), 160-189 (7.1%), or 190 mg/dL or
190	higher (2.0%) (Table 2). The mean age of patients ranged nominally across the six LDL-C
191	categories from 60.7 to 61.7 years. There was a general indication of overall higher baseline risk
192	in the group of patients with LDL-C from 30-79 mg/dL (Table 2) (consistent with the stated
193	concern of potential reverse causation). This included a numerically higher prevalence of current
194	smokers and those with a history of various comorbidities (e.g., atrial fibrillation, arrythmia,
195	congestive heart failure, chronic obstructive pulmonary disease), as well as nominally higher
196	prevalence of selected medication use (e.g., ACE inhibitors, beta-blockers, diuretics, opioids,
197	direct oral anticoagulants). History of cancer was slightly higher in the two lowest LDL-C
198	categories, whereas estimated 10-year ASCVD risk was highest in those with baseline LDL-C
199	≥190 mg/dL.
200	Overall Assessment of Mortality
201	The mean and median follow-up after excluding the study requirement to have survived
202	at least 1-year after baseline cholesterol measurement was 6.1 and 5.9 years, respectively, and
203	17% of patients had 10 or more years of follow-up. In ascending order from lowest LDL-C
204	category (30-79 mg/dL) to highest LDL-C category (≥190 mg/dL), 10-year cumulative mortality
205	rates were U-shaped at 19.8%, 14.7%, 11.7%, 10.7%, 10.1%, and 14.0% (Table 3, Figures 1
206	and 2). Adjusted mortality hazard ratios (HR) (model 2), as compared to the referent group of
207	LDL-C 80-99 mg/dL, were as follows: 30-79 mg/dL (1.23), 100-129 mg/dL (0.87), 130-159
208	mg/dL (0.88), 160-189 mg/dL (0.91), ≥190 mg/dL (1.19), respectively. Thus, the 3 LDL-C

categories within the range of 100-189 mg/dL showed similar, slightly lower mortality risk

210 compared to the referent group of LDL-C 80-99 mg/dL.

Page 11 of 33

BMJ Open

2
2
5
4
5
6
7
/
8
9
10
10
11
12
13
14
17
15
16
17
18
10
19
20
21
22
22
23
24
25
26
20
27
28
29
30
21
31
32
33
34
25
35
36
37
38
20
39
40
41
42
⊤∠ 4⊃
43
44
45
46
40
4/
48
49
50
50 F 1
21
52
53
54
57
55
56
57
58
50

59

60

211 Subgroup Analyses

For the 2 different age groups, the 3 LDL-C categories within the range of 100-189 212 mg/dL showed relatively similar and slightly lower mortality risk compared to the referent group 213 of LDL-C 80-99 mg/dL (Table 3, Figure 2). In a similar manner for both females and males, the 214 3 LDL-C categories within the range of 100-189 mg/dL showed relatively similar and slightly 215 216 lower mortality risk compared to the referent group of LDL-C 80-99 mg/dL (Supplement Table 2). Males with LDL-C >190 mg/dL did not have a significantly higher risk of mortality than 217 those with LDL-C 80-99 mg/dL (adjusted HR = 1.06, 95% CI: 0.85-1.32). When stratified by 218 219 10-year ASCVD risk score, again, the 3 LDL-C categories within the range of 100-189 mg/dL showed relatively similar and statistically lower mortality risk compared to the referent group of 220 LDL-C 80-99 mg/dL (Supplement Table 3). 221

222 Secondary Lipid Measures

Patients with a T-C/HDL-C ratio >6.0 had a significantly higher risk of mortality than 223 those with a T-C/HDL-C ratio <3.0 (adjusted HR = 1.28, 95% CI: 1.18-1.38, Supplement Table 224 4), with similar results by age (Figure 2). For the 3 T-C/HDL-C ratio categories $\leq 3.0, \geq 3.0-4.0$, 225 and >4.0-5.0, risk of mortality was similar. The triglycerides/HDL-C ratio showed the most 226 227 consistent evidence of a gradient relationship with mortality with lower values (quintiles) progressively conferring lower risk of mortality (Supplement Table 5) and similar results by 228 229 age (Figure 2). Compared to patients in the highest quintile of triglycerides/HDL-C ratio (value 230 of \geq 3.44), those in the lowest quintile (value of \leq 1.06) had an estimated 24% lower risk of mortality (adjusted HR = 0.76, 95% CI: 0.72-0.81). Thus, in aggregate and irrespective of age, 231 232 the secondary lipid measures of T-C/HDL-C ratio and triglycerides/HDL-C ratio appeared to be

Page 12 of 33

more predictive of mortality than LDL-C, and a triglycerides/HDL-C ratio about 1 or lowerappears to be optimal.

236 DISCUSSION

In this analysis among non-diabetic primary prevention-type patients aged 50 to 89 years not on statin therapy at baseline, we found no evidence of a gradient relationship between LDL-C and long-term mortality risk. Instead, we observed that within the entire LDL-C range of 100-189 mg/dL, mortality risk was similar and slightly lower than the referent LDL-C category of 80-99 mg/dL. These data conflict with the prevailing belief that "lower LDL-C is better"⁵⁻⁶ vet align closely with results from a large general population study from Denmark among adults with a mean age of 58 years.²⁶ In that study, a U-shaped relationship between LDL-C and long-term mortality was also observed, and the concentration of LDL-C associated with the lowest risk of all-cause mortality among individuals not receiving lipid lowering treatment was 140 mg/dL. Collectively, these results indicate that the "optimal" or "normal" range for LDL-C for primary prevention among adults is likely wide and considerably higher than the suggested optimal LDL-C level of <100 mg/dL.⁵⁻⁶

For multiple reasons, we chose to evaluate a population of non-diabetic primary prevention type adults aged 50 to 89 years not on statin therapy. First, both the prevalence and potential indication for initiating lipid-lowering therapy is relatively high in this population.^{9,10,27} Second, prevailing guidelines and philosophy for initiating lipid-lowering therapy for secondary prevention of ASCVD and among persons with diabetes are well entrenched.²⁸⁻³⁰ Third, consideration of initiating lipid-lowering therapy for primary prevention, particularly among older adults, should be carefully weighed based on empirical data³¹⁻³² and potential side effects,

Page 13 of 33

including but not limited to muscle pain or weakness³³ and increased risk of developing
diabetes.³⁴⁻³⁶

Beyond our principal finding of no indication that "lower LDL-C is better," other prominent findings were that overall and independent of age, the T-C/HDL-C and triglycerides/HDL-C ratios were predictive of long-term mortality risk, the latter of which presented in a gradient manner. The importance of high HDL-C alone, or in conjunction with other lipids, has been recognized. In brief, oxidative stress and inflammation are integral in the pathophysiology of atherosclerosis and cardiovascular disease.³⁷ Importantly, HDL-C exerts several physiological roles, prevents oxidation of LDL, and inhibits expression of pro-inflammatory cytokines by macrophages, as well as expression of adhesion molecules by endothelial cells,³⁸⁻⁴⁰ and it is inversely associated with both all cause and CVD mortality risks.¹⁸⁻¹⁹ Moreover, it is likely not coincidental nor trivial that the field of life insurance medicine recognizes and prioritizes the importance of HDL-C over LDL-C in determining underwriting classifications.^{16,17,41} Unfortunately, from a public health perspective, a meta-analysis of 31 randomized controlled trials on the use of HDL-C modifying treatments showed little to no effect on cardiovascular and all-cause mortality.⁴² There is an overall lack of consensus on the magnitude and statistical and clinical interpretation of the reduction in mortality risk potentially achieved with the use of LDL-C

lowering therapies. Multiple reviews suggest that absolute mortality risk reductions from
treatment with statins are small as compared to the more frequent reporting and emphasis of
relative risk reductions.⁴³⁻⁴⁶ Moreover, mortality reductions with recent use of PCSK-9 inhibitors
to lower LDL-C have been unimpressive.⁴⁷ Our postulate from both this review (e.g.,¹¹) and
empirical analysis is that whatever small reductions in mortality risk may occur with use of

Page 14 of 33

LDL-C lowering therapies, they are most likely not causally related to LDL-C lowering, but
potentially to more broad pleiotropic effects. For example, statin use has been shown to reduce
inflammatory markers,⁴⁸ reduce vascular endothelial growth factor (VEGF) concentrations,⁴⁹
reduce platelet activity,⁵⁰ and increase nitric oxide bioavailability and stabilize atherosclerotic
plaques.⁵¹ These potential mechanisms of statins, rather than concomitant lowering of LDL-C per
se, may be expected to result in some reduction of ASCVD events.

Arguably, it is irrelevant to patients as to the exact mechanism(s) by which use of statins may result in small absolute reductions in mortality risk. However, research suggests that use of statins (and possibly other LDL-C lowering therapies) may provide some patients with a false sense of security.⁵² as expressed by higher caloric and fat intake and faster increase in BMI for statin users than for nonusers.⁵³ This observation places a premium on health professionals promoting established (causal) mechanisms that reduce future risk of major ASCVD events, including weight, blood pressure, and blood sugar control, physical activity, avoidance of smoking, and stress reduction. Similarly, our results suggest that adult non-diabetic patients counselled for primary prevention of ASCVD be apprised of their estimated future risk of ASCVD with minimal consideration of their LDL-C concentration and more consideration of the T-C/HDL and triglyceride/HDL-C ratios along with other known causes of ASCVD (e.g., smoking, physical inactivity). Moreover, use of coronary artery calcium scoring in primary prevention is supported by a wealth of data showing that it substantially improves risk prediction including when combined with traditional risk factors and scores.⁵⁴⁻⁵⁶ Lastly, our analysis indicates that the routinely used ACC-ASCVD Risk Estimator over-emphasizes patient risk simply on age (i.e., intermediate or high-risk classification) when in the context of having

Page 15 of 33

1 2		
2 3 4	301	"normal" parameters otherwise, and that the equation itself may have differential validity by
5 6	302	race.
7 8 9	303	Limitations
10 11	304	Our study has limitations. First, we were unable to assess cause-specific mortality which
12 13	305	would have provided additional insight into the relationship between LDL-C and CVD mortality.
14 15	306	Second, we chose the index date for follow-up mortality assessment to begin 1-year after
16 17 18	307	baseline cholesterol measurement to ideally minimize potential bias due to reverse causation
19 20	308	(i.e., low LDL-C being an overall marker of malnutrition and poor health). However, low LDL-C
21 22	309	has been frequently reported in cancer patients (e.g., ^{25,57,58}) and many cancers have a viral
23 24 25	310	etiologic component ⁵⁹ and with potentially long latency. Theoretically, some patients with the
25 26 27 28 29 30 31 32 33 34	311	lowest LDL-C values in our analysis may have been in the early stages of cancer development
	312	and hence elevated long-term mortality risk. This is why we chose LDL-C 80-99 mg/dL as the
	313	referent group (rather than 30-79 mg/dL), and the observation that mortality risk was similar
	314	across a wide range of LDL-C values (100–189 mg/dL) argues against appreciable bias due to
35 36	315	reverse causation. Third, absence of statin use at baseline and within the first year of the study
37 38 39 40 41 42 43	316	(inclusion criterion) was based on patient reported data in the EMR and not from prescription
	317	data – this leaves open the possibility for some misclassification. Lastly, we cannot rule out
	318	potential residual confounding despite statistical adjustment for a large set of covariates
44 45	319	associated with mortality.
46 47	320	Conclusions
48 49 50	321	Our analysis indicates that among non-diabetic primary prevention-type patients aged 50
51 52	322	to 89 years and not on statin therapy, the lowest risk for long-term mortality exists in the wide
53 54	323	LDL-C range of 100-189 mg/dL which is much higher than current recommendations. Our
55 56 57		
58		Page 16 of 33
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	3
5 6	3
7 8	3
9 10	3
11 12	3
13 14	-
15 16	3
17 18	3
19 20 21	3
21 22 23	3
23 24 25	3
26 27	3
28 29	3
30 31	3
32 33	3
34 35	3
36 37	3
38 39 40	3
40 41 42	2
43 44	5
45 46	3
47 48	3
49 50	3
51 52	3
53 54	3
55 56	3
57 58	
59 60	

1

324	analysis also	shows that lower T-C/HDL-C and triglycerides/HDL-C ratios are independently
825	associated wi	th lower mortality risk, whereas LDL-C appears to be of limited to no predictive
826	value. Lastly,	, our analysis indicates that the ACC-ASCVD Risk Estimator routinely used to
827	estimate 10-y	ear risk of ASCVD, and corresponding risk classification (with corresponding
828	pharmacolog	ical treatment implications), overemphasizes individual patient risk by age alone
329	and may have	e differential validity by race. Collectively, these observations suggest that adult
30	non-diabetic	patients counselled for primary prevention of ASCVD be apprised of their
331	estimated fut	ure risk of ASCVD with minimal consideration of their LDL-C concentration and
332	more conside	eration of the T-C/HDL and triglycerides/HDL-C ratios along with other established
333	causes of AS	CVD (e.g., high blood pressure, smoking, physical inactivity) and potentially
34	coronary arte	ry calcium scoring.
335		
336	Figure Lege	nds
337	Figure 1.	Plot of cumulative mortality rates in 6-month intervals over 12 years of follow-up
338		by baseline LDL-C category. Dashed lines depict the 3 lowest LDL-C categories
39		(30-79, 80-99, 100-129 mg/dL) and solid lines depict the highest LDL-C
840		categories (130-159, 160-189, ≥190 mg/dL).
841	Figure 2.	Plot of mortality hazard ratios (HR, filled circles) and 95% confidence intervals
842		(vertical lines) across categories of LDL cholesterol (top), total cholesterol to
843		HDL cholesterol ratio (middle), and triglycerides to HDL cholesterol ratio
344		(bottom). The left side of the graph is for patients aged 50-69 years; the right side
845		is for patients aged 70-89 years. The dashed line reflects the referent group null
846		value (1.0) for the HR. Q: quintile.
847		

Page 17 of 33 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	348	Author Affiliations.
	349	Kevin E. Kip, Ph.D.
	350	Clinical Analytics, UPMC, Pittsburgh, Pennsylvania
	351	kipke2@upmc.edu
	352	
	353	David M. Diamond, Ph.D.
	354	University of South Florida, Tampa, Florida
19 20	355	<u>ddiamond@usf.edu</u>
21 22 23	356	
23 24 25 26 27 28 29 30 31	357	Suresh R. Mulukutla, MD
	358	Heart and Vascular Institute, UPMC, Pittsburgh, Pennsylvania
	359	mulukutlasr@upmc.edu
	360	
32 33 34	361	Oscar C. Marroquin, MD
34 35 36 37 38 39 40 41 42 43	362	Clinical Analytics, UPMC, Pittsburgh, Pennsylvania
	363	marroquinoc@upmc.edu
	364	
	365	Corresponding Author.
44 45	366	Kevin E. Kip, PhD, Vice President of Clinical Analytics, UPMC Health Services Division, 3600
46 47	367	Forbes & Meyran, Forbes Tower, 9th Floor, Suite 9030, Pittsburgh, PA 15213; e-mail,
48 49 50	368	kipke2@upmc.edu
51 52	369	
53 54	370	
55 56 57		
57 58 59		Page 18 of 33
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	371	Contributors.
5 6	372	Kevin E. Kip, Ph.D. Conception, statistical analysis, writing, and editing
/ 8 9	373	David M. Diamond. Ph.D. Conception, critical review, and editing
10 11	374	Suresh R. Mulukutla, MD. Critical review, and editing
12 13	375	Oscar C. Marroquin, MD. Conception, critical review, and editing
14 15 16	376	
17 18	377	Primary Funding Source. This research received no specific grant from any funding agency in
19 20	378	the public, commercial, or not-for-profit sectors.
21 22	379	
23 24 25	380	Competing Interests Statement. None.
26 27	381	
28 29	382	Patient and Public Involvement. Patients and/or the public were not involved in the design,
30 31 32	383	conduct, reporting, or dissemination of this research.
33 34	384	
35 36	385	Patient Consent for Publication. Not applicable.
37 38 20	386	
40 41	387	Ethics Approval. The Quality Improvement Review Committee and Institutional Review Board
42 43	388	at the University of Pittsburgh Medical Center provided ethical review and approval of the study
44 45 46	389	as an exempt protocol, and all data remained deidentified for this analysis.
47 48	390	
49 50	391	Provenance and Peer Review. Not commissioned, externally peer reviewed.
51 52 53 54 55 56 57	392	
58 59		Page 19 of 33
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Reproducible Research Statement. *Study protocol*: No separate study protocol was required a
priori, as this retrospective analysis was deemed a quality improvement initiative with ethical
review and approval granted by the UPMC Quality Improvement Review Committee and
Institutional Review Board. *Statistical code*: Selected statistical code may be requested from Dr.
Kevin Kip (e-mail, kipke2@upmc.edu). *Data set*: The data set contains protected health
information and will not be available.

3 4	403	Refere	nces
5 6 7	404	1.	Heron M. Deaths: Leading Causes for 2019. Centers for Disease Control and Prevention,
/ 8 9	405		National Vital Statistics Reports, Vol. 70, No. 9, July 26, 2021. Available at:
10 11	406		https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-09-508.pdf. Accessed June 9, 2023.
12 13	407	2.	US Centers for Disease Control and Prevention. Leading causes of death and injury.
14 15 16	408		Available at <u>https://www.cdc.gov/injury/wisqars/LeadingCauses.html</u> . Accessed June 9,
17 18	409		2023.
19 20	410	3.	Ravnskov U, de Lorgeril M, Diamond DM, et al. LDL-C does not cause cardiovascular
21 22 22	411		disease: a comprehensive review of the current literature. Expert Rev Clin Pharmacol
23 24 25	412		2018; 10:959-70.
26 27	413	4.	Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause
28 29	414		atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and
30 31 32	415		clinical studies. A consensus statement from the European Atherosclerosis Society
33 34	416		Consensus Panel. Eur Heart J 2017; 38:2459-72.
35 36	417	5.	American Heart Association. What is cholesterol? Available at: <u>https://www.heart.org/-</u>
37 38 30	418		/media/Files/Health-Topics/Cholesterol/What-is-Cholesterol.pdf. Accessed June 9, 2023.
40 41	419	6.	O'Keefe JH Jr, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density
42 43	420		lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J Am Coll
44 45 46	421		<i>Cardiol</i> 2004; 43:2142-6.
40 47 48	422	7.	Grundy SM, Stone NJ, Bailey AL, et al. Guideline on the management of blood
49 50	423		cholesterol: A report of the American College of Cardiology/American Heart Association
51 52	424		Task Force on Clinical Practice Guidelines. Circulation 2019; 139:e1082-e1143. Epub
53 54 55	425		2018 Nov 10. Erratum in: Circulation 2019; 18:e1182-e1186.
56 57 58		Page 2	1 of 33

1 2			
- 3 4	426	8.	American College of Cardiology. ASCVD Risk Estimate Plus. Available at:
5 6	427		https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/. Accessed June 9,
7 8	428		2023.
9 10 11 12 13 14 15	429	9.	Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary
	430		prevention of cardiovascular disease: A report of the American College of
	431		Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
16 17 19	432		Circulation 2019; 140:e596-e646. Erratum in: Circulation 2019; 140:e649-e650. Erratum
19 20	433		in: Circulation 2020; 141:e60. Erratum in: Circulation 2020; 141:e774.
21 22	434	10.	Jacobs JA, Addo DK, Zheutlin AR, et al. Prevalence of statin use for primary prevention
23 24 25	435		of atherosclerotic cardiovascular disease by race, ethnicity, and 10-year disease risk in the
25 26 27	436		US: National Health and Nutrition Examination Surveys, 2013 to March 2020. JAMA
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	437		Cardiol 2023; 8:443–52.
	438	11.	Ennezat PV, Guerbaai RA, Maréchaux S, Le Jemtel TH, François P. Extent of low-
	439		density lipoprotein cholesterol reduction and all-cause and cardiovascular mortality
	440		benefit: A systematic review and meta-analysis. J Cardiovasc Pharmacol 2023; 81:35-
	441		44.
	442	12.	Sachdeva A, Cannon CP, Deedwania PC, et al. Lipid levels in patients hospitalized with
	443		coronary artery disease: an analysis of 136,905 hospitalizations in Get With The
	444		Guidelines. Am Heart J 2009; 157:111-17.
	445	13.	Bots SH, Peters SAE, Woodward M. Sex differences in coronary heart disease and stroke
	446		mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob
	447		Health 2017; 27;2(2):e000298.
53 54			
55 56			
57 58		Page 2	22 of 33
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	448	14.	Shohaimi S, Boekholdt MS, Luben R, Wareham NJ, Khaw KT. Distribution of lipid
5 6	449		parameters according to different socio-economic indicators- the EPIC-Norfolk
7 8	450		prospective population study. BMC Public Health 2014; 14:782.
9 10 11	451	15.	Kneepkens RF, Lindeboom R. Age dependent decline of relative risks in life insurance
12 13	452		medical underwriting. J Insur Med 2014; 44:170-83.
14 15	453	16.	Fulks M, Stout RL, Dolan VF. Association of cholesterol, LDL, HDL, cholesterol/HDL
16 17 18	454		and triglyceride with all-cause mortality in life insurance applicants. J Insur Med 2009;
19 20	455		41:244-53. Erratum in: J Insur Med 2011; 42:108.
21 22	456	17.	MetLife. The Condensed Underwriting Guide. May 2013. Available at:
23 24 25	457		http://www.cassaniinsurance.com/wp-content/uploads/2018/02/Met-Life-
26 27	458		condensed_uw_guide.pdf. Accessed June 4, 2023.
28 29	459	18.	Liu L, Han M, Qie R, et al. A dose-response meta-analysis to evaluate the relationship
30 31 32	460		between high-density lipoprotein cholesterol and all-cause and cardiovascular disease
33 34	461		mortality. J Endocrinol Invest 2022; 45:551-62.
35 36	462	19.	Ravnskov U, Diamond DM, Hama R, et al. Lack of an association or an inverse
37 38 20	463		association between low-density-lipoprotein cholesterol and mortality in the elderly: a
39 40 41	464		systematic review. BMJ Open 2016; 6:e010401.
42 43	465	20.	Kip KE, McCreary EK, Collins K, et al. Evolving real-world effectiveness of monoclonal
44 45	466		antibodies for treatment of COVID-19: A cohort study. Ann Intern Med 2023; 176:496-
46 47 48	467		504.
49 50	468	21.	Reitz KM, Seymour CW, Vates J, et al. Strategies to Promote ResiliencY (SPRY): a
51 52 53 54 55	469		randomised embedded multifactorial adaptative platform (REMAP) clinical trial protocol
56 57		F	
58 59		Page	23 of 33
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 42

1 2			
3 4	470		to study interventions to improve recovery after surgery in high-risk patients. BMJ Open.
5 6 7 8 9	471		2020; 10:e037690.
	472	22.	Centers for Disease Control and Prevention. International Classification of Diseases,
9 10 11	473		Ninth Revision, Clinical Modification (ICD-9-CM). Accessed at
12 13	474		www.cdc.gov/nchs/icd/icd9cm.htm on 13 April 2022.
14 15	475	23.	Centers for Disease Control and Prevention. International Classification of Diseases,
16 17 18 19 20	476		Tenth Revision, Clinical Modification (ICD-10-CM). Accessed at
	477		www.cdc.gov/nchs/icd/icd-10-cm.htm on 13 April 2022.
21 22	478	24.	Social Security Administration. Requesting SSA's Death Information. Accessed at
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	479		www.ssa.gov/dataexchange/request_dmf.html on 13 April 2022.
	480	25.	MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US). LDL: The
	481		"Bad" Cholesterol. Available at: https://medlineplus.gov/ldlthebadcholesterol.html.
	482		Accessed June 16, 2023.
	483	26.	Johannesen CDL, Langsted A, Mortensen MB, Nordestgaard BG. Association between
	484		low density lipoprotein and all cause and cause specific mortality in Denmark:
	485		prospective cohort study. BMJ 2020; 371:m4266: Erratum in: BMJ 2021; 12;372.
	486	27.	Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide
	487		decision-making in the primary prevention of atherosclerotic cardiovascular disease: A
	488		special report from the American Heart Association and American College of
	489		Cardiology. Circulation 2019; 139:e1162-e1177. Erratum in: Circulation 2019;
	490		139:e1188.
	491	28.	Banach M, Penson PE. Statins and LDL-C in secondary prevention-so much progress, so
	492		far to go. JAMA Netw Open 2020; 3:e2025675.
55 56 57			
58		Page 2	24 of 33
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 Page 26 of 42

3 4	493	29.	Tecson KM, Kluger AY, Cassidy-Bushrow AE, et al. Usefulness of statins as secondary
5 6	494		prevention against recurrent and terminal major adverse cardiovascular events. $Am J$
7 8 0	495		Cardiol 2022; 176:37-42.
9 10 11	496	30.	Stone NJ, Robinson JG, Lichtenstein AH, et al; American College of
12 13 14 15	497		Cardiology/American Heart Association Task Force on Practice Guidelines. 2013
	498		ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic
16 17 18	499		cardiovascular risk in adults: a report of the American College of Cardiology/American
19 20	500		Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63(25 Pt
21 22	501		B):2889-34. Erratum in: <i>J Am Coll Cardiol</i> 2014; 63(25 Pt B):3024-25. Erratum in: <i>J Am</i>
23 24 25	502		Coll Cardiol 2015; 66:2812.
26 27	503	31.	Gurwitz JH, Go AS, Fortmann SP. Statins for primary prevention in older adults:
28 29	504		uncertainty and the need for more evidence. JAMA 2016; 316:1971-72.
30 31 32	505	32.	Han BH, Sutin D, Williamson JD, et al. ALLHAT Collaborative Research Group. Effect
33 34	506		of statin treatment vs. usual care on primary cardiovascular prevention among older
35 36 37 38 39 40 41	507		adults: The ALLHAT-LLT Randomized Clinical Trial. JAMA Intern Med 2017; 177:955-
	508		65.
	509	33.	Cholesterol Treatment Trialists' Collaboration. Effect of statin therapy on muscle
42 43	510		symptoms: an individual participant data meta-analysis of large-scale, randomised,
44 45	511		double-blind trials. Lancet 2022; 400:832-45. Erratum in: Lancet 2022; 400:1194.
46 47 48 49 50	512	34.	Mansi IA, Chansard M, Lingvay I, Zhang S, Halm EA, Alvarez CA. Association of statin
	513		therapy initiation with diabetes progression: A retrospective matched-cohort study. JAMA
51 52	514		Intern Med 2021; 181:1562-74.
53 54 55			
56 57			
58		Page 2	25 of 33
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 42

1

2 3	515	35.	Crandall JP, Mather K, Rajpathak SN, et al. Statin use and risk of developing diabetes:
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	516		results from the Diabetes Prevention Program. BMJ Open Diabetes Res Care 2017;
	517		5:e000438. Erratum in: BMJ Open Diabetes Res Care 2017; 5: e000438corr1.
	518	36.	Abbasi F, Lamendola C, Harris CS, et al. Statins are associated with increased insulin
	519		resistance and secretion. Arterioscler Thromb Vasc Biol 2021; 41:2786-97.
	520	37.	Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of
	521		oxidative stress: applications to cardiovascular research and practice. <i>Redox Biol</i> 2013;1:
	522		483–91.
	523	38.	Mackness B, Mackness M. The antioxidant properties of high-density lipoproteins in
	524		atherosclerosis. Panminerva Med 2010; 54:83–90.
26 27	525	39.	Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins
28 29 30 31 32 33 34	526		inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler
	527		<i>Thromb Vasc Biol</i> 1995; 15:1987–94.
	528	40.	Nicholls SJ, Rye KA, Barter PJ. High-density lipoproteins as therapeutic targets. Curr
35 36 27	529		<i>Opin Lipidol</i> 2005; 16:345–9.
37 38 39 40 41	530	41.	Gleeson R. Atherogenic dyslipidemiaa medical underwriter's iceberg. J Insur Med
	531		2009; 41:264-9.
42 43	532	42.	Riaz H, Khan SU, Rahman H, et al. Effects of high-density lipoprotein targeting
44 45 46	533		treatments on cardiovascular outcomes: A systematic review and meta-analysis. Eur J
40 47 48 49 50	534		<i>Prev Cardiol</i> 2019; 26:533-43.
	535	43.	Byrne P, Demasi M, Jones M, Smith SM, O'Brien KK, DuBroff R. Evaluating the
51 52 53	536		association between low-density lipoprotein cholesterol reduction and relative and
54 55			
56 57			
58 59		Page 2	6 of 33 For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml
00			

1 2			
2 3 4	537		absolute effects of statin treatment: A systematic review and meta-analysis. JAMA Intern
5 6	538		Med 2022; 182:474-81. Erratum in: JAMA Intern Med 2022; 182:579.
7 8 9	539	44.	Diamond DM, Leaverton PE. Historical review of the use of relative risk statistics in the
10 11	540		portrayal of the purported hazards of high LDL cholesterol and the benefits of lipid-
12 13	541		lowering therapy. Cureus 2023; 15:e38391. Erratum in: Cureus 2023; 15:c116.
14 15 16	542	45.	Ravnskov U, Alabdulgader A, de Lorgeril M, et al. The new European guidelines for
16 17 18	543		prevention of cardiovascular disease are misleading. Expert Rev Clin Pharmacol 2020;
19 20	544		13:1289-94.
21 22	545	46.	Diamond DM, Ravnskov U. How statistical deception created the appearance that statins
23 24 25	546		are safe and effective in primary and secondary prevention of cardiovascular disease.
26 27	547		Expert Rev Clin Pharmacol 2015; 8:201-10.
28 29 30 31 32 33 34	548	47.	Dicembrini I, Giannini S, Ragghianti B, Mannucci E, Monami M. Effects of PCSK9
	549		inhibitors on LDL cholesterol, cardiovascular morbidity and all-cause mortality: a
	550		systematic review and meta-analysis of randomized controlled trials. J Endocrinol Invest
35 36	551		2019; 42:1029-39.
37 38	552	48.	Tabrizi R, Tamtaji OR, Mirhosseini N, et al. The effects of statin use on inflammatory
39 40 41	553		markers among patients with metabolic syndrome and related disorders: A systematic
42 43	554		review and meta-analysis of randomized controlled trials. <i>Pharmacol Res</i> 2019; 141:85-
44 45 46 47 48 49 50	555		103.
	556	49.	Sahebkar A, Ponziani MC, Goitre I, Bo S. Does statin therapy reduce plasma VEGF
	557		levels in humans? A systematic review and meta-analysis of randomized controlled trials.
51 52	558		Metabolism 2015; 64:1466-76.
53 54 55			
56 57			
57 58		Page 2	7 of 33
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 42

1 2			
3 4	559	50.	Puccetti L, Pasqui AL, Pastorelli M, et al. Time-dependent effect of statins on platelet
5 6	560		function in hypercholesterolaemia. Eur J Clin Invest 2002; 32:901-8.
7 8 9	561	51.	Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004;
10 11	562		109(23 Suppl 1):III39-43.
12 13	563	52.	Redberg RF. Statins and weight gain. JAMA Intern Med 2014; 174:1046.
14 15	564	53.	Sugiyama T, Tsugawa Y, Tseng CH, Kobayashi Y, Shapiro MF. Different time trends of
16 17	565		caloric and fat intake between statin users and nonusers among US adults: gluttony in the
18 19 20	566		time of statins? JAMA Intern Med 2014; 174:1038-45.
21 22	567	54.	Blumenthal RS, Cainzos-Achirica M. The Ever-Growing Role of Coronary Artery
23 24	568		Calcium in Primary Prevention. Available at: https://www.acc.org/Latest-in-
25 26 27 28 29 30 31 32 33 34 35 36	569		Cardiology/Articles/2021/06/21/13/05/The-Ever-Growing-Role-of-CAC-in-Primary-
	570		Prevention. Accessed June 20, 2023.
	571	55.	Nasir K, Cainzos-Achirica M. Role of coronary artery calcium score in the primary
	572		prevention of cardiovascular disease. BMJ 2021; 373:n776.
	573	56.	Bittencourt MS, Nasir K, Santos RD, Al-Mallah MH. Very high LDL cholesterol: The
37 38	574		power of zero passes another test. Atherosclerosis 2020; 292:207-8.
39 40	575	57.	Tanne JH. Meta-analysis says low LDL cholesterol may be associated with greater risk of
41 42 43	576		cancer. <i>BMJ</i> 2007; 335:177.
44 45	577	58.	Benn M, Tybjærg-Hansen A, Stender S, Frikke-Schmidt R, Nordestgaard BG. Low-
46 47	578		density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J
48 49 50	579		Natl Cancer Inst 2011; 103:508-19.
50 51 52			
53 54			
55 56 57			
57 58		Page	28 of 33
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	580	59.	Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of
5 6	581		cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 2016;
7 8	582		4:e609-16.
	582		4:e609-16.
58 50		Page	29 of 33
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

White Male		Black (AA) Male		Whi	te Female	Black (AA) Female		
10-yr Risk		Risk	10-yr Risk		10-yr Risk		10-yr	Risk
Age	risk	Category	risk	Category	risk	Category	risk	Category
50	3.5%	Low	5.2%	Borderline	1.4%	Low	2.2%	Low
51	3.8%	Low	5.4%	Borderline	1.5%	Low	2.4%	Low
52	4.2%	Low	5.7%	Borderline	1.7%	Low	2.6%	Low
53	4.6%	Low	6.0%	Borderline	1.8%	Low	2.9%	Low
54	5.1%	Borderline	6.2%	Borderline	2.0%	Low	3.1%	Low
55	5.6%	Borderline	6.5%	Borderline	2.2%	2.2% Low		Low
56	6.1%	Borderline	6.8%	Borderline	2.4%	Low	3.7%	Low
57	6.6%	Borderline	7.1%	Borderline	2.6%	Low	4.0%	Low
58	7.2%	Borderline	7.4%	Borderline	2.9%	Low	4.4%	Low
59	7.9%	Intermediate	7.7%	Intermediate	3.1%	Low	4.7%	Low
60	8.5%	Intermediate	8.0%	Intermediate	3.5% 3.8%	Low	5.1%	Borderline
61	9.2%	Intermediate	8.3%	Intermediate		Low	5.5%	Borderline
62	10.0%	Intermediate	8.7%	Intermediate	4.2%	Low	6.0%	Borderline
63	10.8%	Intermediate	9.0%	Intermediate	4.6%	Low	6.4%	Borderline
64	11.7%	Intermediate	9.3%	Intermediate	5.1%	Borderline	6.9%	Borderline
65	12.5%	Intermediate	9.7%	Intermediate	5.6%	Borderline	7.4%	Borderline
66	13.5%	Intermediate	10.0%	Intermediate	6.2%Borderline6.9%Borderline7.6%Intermediate		8.0%	Intermediate
67	14.5%	Intermediate	10.4%	Intermediate			8.5%	Intermediate
68	15.5%	Intermediate	10.7%	Intermediate			9.1%	Intermediate
69	16.6%	Intermediate	11.1%	Intermediate	8.4%	Intermediate	9.7%	Intermediate
70	17.8%	Intermediate	11.5%	Intermediate	9.3%	Intermediate	10.4%	Intermediate
71	19.0%	Intermediate	11.9%	Intermediate	10.3%	Intermediate	11.1%	Intermediate
72	20.2%	High	12.3%	Intermediate	11.3%	Intermediate	11.8%	Intermediate
73	21.5%	High	12.7%	Intermediate	12.5%	Intermediate	12.5%	Intermediate
74	22.9%	High	13.1%	Intermediate	13.8%	Intermediate	13.3%	Intermediate
75	24.3%	High	13.5%	Intermediate	15.3%	Intermediate	14.1%	Intermediate
76	25.7%	High	13.9%	Intermediate	16.8%	Intermediate	15.0%	Intermediate
77	27.3%	High	14.3%	Intermediate	18.5%	Intermediate	15.9%	Intermediate
70	28.8%	High	14.7%	Intermediate	20.4%	High	16.8%	Intermediate
/8	20.070	1% High 15.2% Intermediate				0		

584	Table 1. ASCVD 10-Year	· Risk Calculations	for Primary F	Prevention* by A	Age. Race. and Sex
504		Misk Calculations	101 I I IIIIai y I	revenuon by r	ige, have, and bea

*Defined as non-diabetic persons with approximate guideline-driven "normal" values for total cholesterol (190 mg/dL), LDL cholesterol (125 mg/dL), HDL cholesterol (45 mg/dL for males, 55 mg/dL for females), systolic blood pressure (125 mmHg), diastolic blood pressure (75 mmHg), no history of smoking, not on anti-hypertensive medications, not on statin therapy, not on aspirin therapy.

https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/

Page **30** of **33**

594 Baseline LDL Cholesterol Value (mg/dL) 30 to 79 80 to 99 100 to 129 130 to 159 160 to 189 190 or higher (n=69,399) Characteristic (n=16, 162)(n=32,517)(n=43,333)(n=12,663)(n=3,586)Age, mean, median 61.7.59 61.4.59 61.1.59 60.7.59 60.7.59 61.4.60 Age, n, (%) 50 to 59 1765, (49.2) 8167, (50.5) 16551, (50.9) 35706, (51.5) 22811, (52.6) 6694, (52.9) 21632, (31.2) 60 to 69 4686, (29.0) 9742, (30.0) 13797, (31.8) 4029, (31.8) 1162, (32.4) 70 to 79 2221, (13.7) 4399, (13.5) 8808, (12.7) 5103, (11.8) 1439, (11.4) 514, (13.3) 80 and older 1088, (6.7) 1825, (5.6) 3253, (4.7) 1622, (3.7)501, (4.0) 145, (4.0) Sex Female 9027, (55.9) 18965, (58.3) 42697, (61.5) 28034, (64.7) 8654, (68.3) 2562, (71.4) Male 7135, (44.1) 13552, (41.7) 26702, (38.5) 15299, (35.3) 4009, (31.7) 1024, (28.6) Race Black 208, (5.8) 1700, (10.5)2350, (7.2) 3855, (5.6) 2076, (4.8) 607, (4.8) White 65544, (94.4) 3378, (94.2) 14462, (89.5) 30167, (92.8) 41257, (95.2) 12056, (95.2) 16871, (25.7) 858, (25.5) Former smoker, n, (%) 4172, (27.3) 8270, (26.9) 10354, (25.3) 2933, (24.5) Current smoker, n, (%) 3287, (21.5) 5430, (17.6) 9822, (15.0) 6274, (15.3) 1998, (16.7) 668, (19.8) Body mass index, mean, median 28.4, 26 28.7, 26 28.8, 27 28.8, 27 28.8, 27 28.6, 27 History of obesity, n, (%) 6011, (37.2) 12438, (38.3) 26946, (38.8) 16949, (39.1) 4899, (38.7) 1326, (37.0) History of obstructive sleep apnea, n, (%) 932, (5.8) 1831, (5.6) 3619, (5.2) 1931, (4.5) 507, (4.0) 136, (3.8) 5540, (34.3) History of hypertension, n, (%) 11331, (34.8) 23634, (34.1)13435, (31.0) 3621, (28.6) 1060, (29.6) History of atrial fibrillation, n, (%) 687, (4.3) 1181, (3.6) 214, (1.7)60, (1.7)1930, (2.8)845, (2.0) History of arrythmia, n, (%) 1178, (7.3) 2254, (6.9) 4143, (6.0) 528, (4.2) 133, (3.7)2054, (4.7)History of valvular heart disease, n, (%) 431, (2.7) 834, (2.6) 1505, (2.2) 798, (1.8) 246, (1.9)60, (1.7) History of congestive heart failure, n, (%) 251, (1.6)375, (1.2) 597, (0.9) 245, (0.6)80, (0.6) 15, (0.4)History of deep vein thrombosis, n, (%) 184, (1.1)323, (1.0)667, (1.0) 356, (0.8) 93, (0.8) 25, (0.7)History of cancer, n, (%) 1554, (9.6) 2916, (9.0) 5597, (8.0) 3348, (7.7) 912, (7.2) 281, (7.8) History of chronic obstructive pulmonary 1147, (7.1)1783, (5.5) 1666, (3.8) 474, (3.7) 146, (4.1) 3156, (4.5) disease, n, (%) History of chronic kidney disease, n. (%) 329, (2.0) 424, (1.3) 695, (1.0) 356, (0.8) 126, (1.0)42, (1.2)History of depression, n. (%) 1985. (12.3) 3981, (12.2) 8327, (12.0) 5214, (12.0) 1606.(12.7)440, (12.3) Systolic BP (mmHg), mean, median 128.7, 127 128.8, 128 129.0, 128 129.3, 128 129.8, 128 131.6, 130 Diastolic BP (mmHg), mean, median 77.8, 78 78.5, 80 79.0, 80 79.1,80 77.5, 78 79.8, 80 HDL cholesterol (mg/dL), mean, median 60.0, 57 58.1, 56 57.4, 55 56.9, 55 56.2, 54 55.4, 53 Total/HDL cholesterol, mean, median 2.8, 3 3.2, 3 3.6.3 4.2, 4 4.8, 5 5.7.5 Triglycerides (mg/dL), mean, median 112.8,90 109.0, 91 115.2, 100 125.0, 111 138.4, 125 166.6, 149 Hemoglobin (g/dL), mean, median 13.6, 14 13.8, 14 14.0, 14 14.1, 14 14.2, 14 14.1.14 98.1, 95 Glucose (mg/dL), mean, median 99.0, 94 97.6, 94 97.2, 94 96.9, 94 100.4, 96

593 Table 2. Baseline Characteristics of Study Population by Baseline LDL Cholesterol Value

Page **31** of **33**

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 44

2								
3		ACE Inhibitor, n, (%)	2060, (12.7)	3992, (12.3)	8024, (11.6)	4454, (10.3)	1205, (9.5)	328, (9.1)
4		Angiotensin receptor blocker, n, (%)	1028, (6.4)	2017, (6.2)	3927, (5.7)	2018, (4.7)	558, (4.4)	156, (4.4)
5		Beta blocker, n, (%)	2747, (17.0)	4827, (14.8)	8969, (12.9)	4709, (10.9)	1352, (10.7)	430, (12.0)
6		Calcium blocker, n, (%)	1931, (11.9)	3501, (10.8)	6612, (9.5)	3534, (8.2)	956, (7.5)	297, (8.3)
7		Diuretic, n, (%)	2662, (16.5)	4763, (14.6)	8814, (12.7)	4717, (10.9)	1257, (9.9)	390, (10.9)
8		Anti-depressant, n, (%)	3497, (21.6)	6504, (20.0)	13784, (19.9)	8624, (19.9)	2628, (20.8)	797, (22.2)
9		Opioids, n, (%)	3319, (20.5)	5400, (16.6)	9688, (14.0)	5711, (13.2)	1599, (12.6)	523, (14.2)
10		Anti-platelet agent, n, (%)	2209, (13.7)	4319, (13.3)	9006, (13.0)	5057, (11.7)	1267, (10.0)	402, (11.2)
11		Aspirin, n, (%)	3082, (19.1)	6087, (18.7)	12511, (18.0)	7117, (16.4)	1922, (15.2)	586, (16.3)
12		Direct oral anticoagulant, n, (%)	423, (2.6)	684, (2.1)	1086, (1.6)	479, (1.1)	133, (1.1)	33, (0.9)
13		ASCVD 10-year risk, mean, median	10.0, 6	10.0, 6	9.6, 6	9.6, 6	10.1, 7	12.0, 9
14		ASCVD 10-year risk, n, (%)						
15		Low	6204, (58.8)	12166, (58.3)	25457, (58.6)	15048, (57.3)	4144, (54.1)	900, (43.0)
16		Intermediate	2887, (27.4)	5804, (27.8)	12514, (28.8)	8161, (31.1)	2596, (33.9)	839, (40.0)
17		High	1459, (13.8)	2888, (13.8)	5472, (12.6)	3045, (11.6)	913, (11.9)	356, (17.0)
18		Started statin use >1 year after baseline	484, (3.0)	921, (2.8)	2948, (4.2)	3448, (8.0)	1600, (12.6)	644, (18.0)
19		measurement, n, (%)						
20	595							
20								
21								
22								
23								
24								
25								
20								
27								
20								
29								
30 21								
31								
3Z								
33								
34								
35								

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

596	Table 3. Risks and Hazard Ratios of Death by LDL C	holesterol Level at Baseline
-----	--	------------------------------

		Cumul	ative incide	ence (%)	Crude	Adj. HR	Adj. HR	95%
LDL cholesterol (mg/dL)	n	1-year	5-year	10-year	HR	Model 1	Model 2	C.I.
30 to 79	16162	2.7	11.3	19.8	1.41	1.23	1.23	1.17 - 1.30
80 to 99	32517	1.7	8.1	14.7	1.0	1.0	1.0	
100 to 129	69399	1.1	6.0	11.7	0.77	0.86	0.87	0.83 - 0.91
130 to 159	43333	1.0	5.2	10.7	0.69	0.85	0.88	0.84 - 0.93
160 to 189	12663	1.2	5.4	10.1	0.68	0.86	0.91	0.84 - 0.98
190 or higher	3586	1.8	7.9	14.0	0.96	1.09	1.19	1.06 - 1.34
Patients aged 50-69								
30 to 79	12853	1.8	8.1	14.2	1.52	1.30	1.20	1.20 - 1.39
80 to 99	26293	1.1	5.2	9.6	1.0	1.0	1.0	
100 to 129	57338	0.7	3.9	7.6	0.76	0.86	0.86	0.81 - 0.92
130 to 159	36608	0.7	3.4	6.9	0.69	0.82	0.85	0.79 - 0.91
160 to 189	10723	0.9	3.7	6.5	0.70	0.83	0.89	0.81 - 0.99
190 or higher	2927	1.2	5.7	9.4	1.01	1.10	1.24	1.06 - 1.44
Patients aged 70-89								
30 to 79	3309	6.3	24.3	42.7	• 1.25	1.15	1.15	1.06 - 1.25
80 to 99	6224	4.5	20.5	37.2	1.0	1.0	1.0	
100 to 129	12061	2.7	16.0	31.4	0.80	0.87	0.87	0.82 - 0.93
130 to 159	6725	2.8	15.3	30.8	0.76	0.89	0.91	0.84 - 0.98
160 to 189	1940	2.9	15.0	29.7	0.75	0.89	0.92	0.82 - 1.04
190 or higher	659	4.5	17.5	34.2	0.90	1.08	1.15	0.96 - 1.37

599 Model 1: Adjusted for age, race, sex, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial 600 fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and 601 diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP 602 lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids.

Model 2: Adjusted for Model 1 covariates + statin initiation >1 year after baseline cholesterol measurement.

Page **33** of **33**

Figure 2. Plot of mortality hazard ratios (HR, filled circles) and 95% confidence intervals (vertical lines) across categories of LDL cholesterol (top), total cholesterol to HDL cholesterol ratio (middle), and triglycerides to HDL cholesterol ratio (bottom). The left side of the graph is for patients aged 50-69 years; the right side is for patients aged 70-89 years. The dashed line reflects the referent group null value (1.0) for the HR. Q: quintile.

338x190mm (96 x 96 DPI)

 BMJ Open

		Life Insurance Under	writing Category	
Age Category	Elite Plus*	Preferred Plus*	Standard Plus	Standard
	(ages 18-75)	(ages 18-75)	(ages 18-75)	(all ages)
54 and younger	220/4.5	240/5.0	260/6.0 or 280/5.5	
			280/6.5 or 300/6.0	
55 to 69	230/4.5	260/5.5 or 280/5.0	150 to 300/7.0 or	
			150 to 310/6.5	
70 and older	150 to 240/5.0	150 to 280/5.5 or	Current medication	
		150 to 300/5.0	acceptable (all ages)	
0 to 44		<u> </u>		≤300/9.6 or
				>300/8.0
45 to 65		4		≤350/9.6 or
			0	351 to 400/8.0
66 and older			<u> </u>	150 to 350/10.5 c
				351 to 375/9.6

Supplement Table 1. Maximum/Range of Total Cholesterol (T-C) Values Along with T-C to HDL-C Cholesterol Ratios for Different Life Insurance Underwriting Categories

*Current medication OK if acceptable level maintained for at least 12 months (all ages)

Source: http://www.cassaniinsurance.com/wp-content/uploads/2018/02/Met-Life-condensed_uw_guide.pdf

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

11			·			·	
		Cum	ulative incide	nce (%)	Crude	Adj. HR	95%
LDL Cholesterol (mg/dL)	1-year	5-year	10-year	HR	Model	C.I.	
Female			-				
30 to 79	9027	2.3	9.4	17.1	1.42	1.23	1.14 - 1.33
80 to 99	18965	1.4	6.7	12.3	1.0	1.0	
100 to 129	42697	0.8	5.2	10.5	0.82	0.88	0.83 - 0.94
130 to 159	28034	0.9	4.8	10.2	0.78	0.89	0.83 - 0.95
160 to 189	8654	1.1	5.2	9.7	0.80	0.91	0.82 - 1.00
190 or higher	2562	1.8	7.8	14.6	1.20	1.24	1.08 - 1.42
Male							
30 to 79	7135	3.3	13.7	23.4	1.37	1.22	1.13 - 1.32
80 to 99	13552	2.2	10.0	18.4	1.0	1.0	
100 to 129	26702	1.5	7.2	13.8	0.73	0.86	0.80 - 0.91
130 to 159	15299	1.3	6.0	11.5	0.61	0.85	0.79 - 0.92
160 to 189	4009	1.4	5.6	10.8	0.58	0.90	0.79 - 1.02
190 or higher	1024	1.8	8.1	12.2	0.72	1.06	0.85 - 1.32

Supplement Table 2. Risks and Hazard Ratios of Death by LDL Cholesterol Levels at Baseline Stratified by Sex at Baseline

 Model: Adjusted for race, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

		Cum	ulative incide	nce (%)	Crude	Adj. HR	95%
LDL cholesterol (mg/dL)	n	1-year	5-year	10-year	HR	Model	C.I.
Low or Borderline Risk			-				
30 to 79	6204	1.5	6.7	12.2	1.66	1.51	1.34 - 1.70
80 to 99	12166	1.0	4.2	7.2	1.0	1.0	
100 to 129	25457	0.6	2.9	5.6	0.73	0.78	0.70 - 0.86
130 to 159	15048	0.5	2.5	5.2	0.66	0.75	0.66 - 0.84
160 to 189	4144	0.6	2.7	4.7	0.65	0.75	0.62 - 0.91
190 or higher	900	0.6	4.3	7.7	1.05	1.18	0.86 - 1.61
Intermediate Risk							
30 to 79	2887 🧹	3.5	15.6	27.1	1.38	1.25	1.11 - 1.40
80 to 99	5804	2.6	11.4	21.3	1.0	1.0	
100 to 129	12514	1.6	8.4	16.6	0.75	0.80	0.73 - 0.87
130 to 159	8161	1.4	7.0	13.8	0.61	0.69	0.62 - 0.77
160 to 189	2596	1.5	7.0	12.2	0.58	0.68	0.58 - 0.79
190 or higher	839	2.6	9.6	14.8	0.77	0.89	0.70 - 1.13
High Risk							
30 to 79	1459	7.9	28.0	49.9	1.25	1.17	1.04 - 1.32
80 to 99	2888	5.4	23.6	43.3	1.0	1.0	
100 to 129	5472	3.4	19.3	36.6	0.82	0.85	0.77 - 0.92
130 to 159	3045	3.8	17.6	33.5	0.73	0.78	0.70 - 0.87
160 to 189	913	3.9	17.9	32.3	0.75	0.82	0.70 - 0.97
190 or higher	356	4.1	15.7	34.2	0.71	0.81	0.63 - 1.04
ASCVD Risk Not Determined							
30 to 79	5612	2.3	10.1	18.0	1.45	1.34	1.22 - 1.48
80 to 99	11659	1.3	6.9	13.0	1.0	1.0	
100 to 129	25956	0.8	5.2	10.6	0.80	0.85	0.79 – 0.91
130 to 159	17079	0.8	4.6	10.1	0.74	0.85	0.78 - 0.92
160 to 189	5010	1.0	4.5	9.5	0.72	0.85	0.75 - 0.96
190 or higher	1491	1.5	7.3	12.6	0.98	1.17	0.97 – 1.41

Supplement Table 3. Risks and Hazard Ratios of Death by LDL Cholesterol Levels at Baseline Stratified by ASCVD Risk Classification

Model: Adjusted for BMI, history of the following in the past year: atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, glucose, and the following medications in the past year: aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

		Cum	ulative incide	nce (%)	Crude	Adj. HR	95%
Total/HDL Cholesterol Ratio	n	1-year	5-year	10-year	HR	Model	C.I.
3.0 or lower	52405	1.4	6.6	12.3	1.0	1.0	
> 3.0 to 4.0	63482	1.2	6.3	12.3	0.98	0.98	0.94 - 1.02
> 4.0 to 5.0	37907	1.4	6.7	12.8	1.04	1.04	0.99 – 1.09
> 5.0 to 6.0	16053	1.5	7.2	14.1	1.15	1.12	1.06 – 1.19
> 6.0	7813	2.1	9.2	15.2	1.32	1.28	1.18 - 1.38
Patients aged 50-69							
3.0 or lower	42650	0.9	4.3	7.8	1.0	1.0	
> 3.0 to 4.0	51918	0.8	4.0	7.8	0.99	0.95	0.89 - 1.00
> 4.0 to 5.0	31713	1.0	4.4	8.5	1.10	0.98	0.92 - 1.04
> 5.0 to 6.0	13706	1.1	5.4	10.3	1.34	1.14	1.05 - 1.23
> 6.0	6755	1.7	6.8	11.7	1.60	1.25	1.13 – 1.38
Patients aged 70-89							
3.0 or lower	9755	3.5	17.3	32.9	1.0	1.0	
> 3.0 to 4.0	11564	3.1	16.9	32.4	0.97	1.00	0.95 - 1.07
> 4.0 to 5.0	6194	3.7	18.5	35.2	1.08	1.11	1.03 - 1.19
> 5.0 to 6.0	2347	4.0	17.8	35.7	1.10	1.08	0.98 – 1.19
> 6.0	1058	4.8	24.4	38.4	1.30	1.27	1.12 - 1.45

Supplement Table 4. Risks and Hazard Ratios of Death by Total Cholesterol to HDL Cholesterol Ratio at Baseline

 Model: Adjusted for race, sex, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

BMJ Open

Triglycerides/		Cum	ulative incide	nce (%)	Crude	Adj. HR	95%	
HDL-C Ratio	n	1-year	5-year	10-year	HR	Model	C.I.	
Quintile 1	35533	0.9	5.1	9.7	0.63	0.76	0.72 - 0.81	
Quintile 2	35403	1.2	6.2	11.9	0.77	0.84	0.80 - 0.88	
Quintile 3	35523	1.4	6.9	13.1	0.86	0.89	0.85 - 0.94	
Quintile 4	35479	1.5	7.2	13.9	0.91	0.92	0.88 - 0.97	
Quintile 5	35513	1.7	7.9	15.1	1.0	1.0		
Patients aged 50-69								
Quintile 1	29314	0.6	3.1	5.9	0.53	0.73	0.68 - 0.79	
Quintile 2	29313	0.8	3.9	7.3	0.66	0.82	0.76 - 0.88	
Quintile 3	29213	0.9	4.4	8.5	0.76	0.89	0.84 - 0.96	
Quintile 4	29425	1.0	4.7	9.3	0.83	0.91	0.85 - 0.97	
Quintile 5	29302	1.3	5.8	10.8	1.0	1.0		
Patients aged 70-89								
Quintile 1	6169	2.8	15.9	30.7	0.80	0.84	0.77 - 0.91	
Quintile 2	6180	3.2	16.4	31.9	0.83	0.87	0.80 - 0.94	
Quintile 3	6176	3.7	17.9	33.6	0.91	0.93	0.87 - 1.01	
Quintile 4	6180	3.7	18.5	34.6	0.93	0.96	0.89 - 1.04	
Quintile 5	6179	4.1	19.4	37.0	1.0	1.0		

Supplement Table 5. Risks and Hazard Ratios of Death by Triglycerides to HDL-C Ratio at Baseline

Model: Adjusted for race, sex, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

APPENDIX – STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-7
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	8-10
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	8-10
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	8-10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9-10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	9-10
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9-10
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	10
		(c) Explain how missing data were addressed	8-9
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A
Results			

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	10-11
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	10-11
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Summarise follow-up time (eg, average and total amount)	11
Outcome data	15*	Report numbers of outcome events or summary measures over time	11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	11-12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11-12
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	13-17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	N/A
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Is LDL cholesterol associated with long-term mortality among primary prevention adults? A retrospective cohort study from a large healthcare system

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-077949.R1
Article Type:	Original research
Date Submitted by the Author:	07-Mar-2024
Complete List of Authors:	Kip, Kevin; University of Pittsburgh Medical Center Health System, Clinical Analytics Diamond, David; University of South Florida, Department of Psychology Mulukutla, Suresh; University of Pittsburgh, Heart and Vascular Institute Marroquin, Oscar; UPMC, Clinical Analytics
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	EPIDEMIOLOGY, Primary Prevention, Adult cardiology < CARDIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	1	Is I DL shalostaral associated with long term mortality among primary provention adults?
4 5	T	is LDL cholesterol associated with long-term mortanty among primary prevention adults:
6 7	2	A retrospective cohort study from a large healthcare system
8	3	
9 10 11	4	Kevin E. Kip, Ph.D.
12 13	5	Clinical Analytics, UPMC, Pittsburgh, PA, USA
14 15	6	kipke2@upmc.edu
16 17	7	
18 19 20	8	David M. Diamond, Ph.D.
21 22	9	University of South Florida, Tampa, FL, USA
23 24	10	<u>ddiamond@usf.edu</u>
25 26 27	11	
27 28 29	12	Suresh R. Mulukutla, MD
30 31	13	Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
32 33	14	mulukutlasr@upmc.edu
34 35 36	15	
37 38	16	Oscar C. Marroquin, MD
39 40	17	Clinical Analytics, UPMC, Pittsburgh, PA, USA
41 42	18	marroquinoc@upmc.edu
43 44	19	
45 46 47	20	Correspondence to:
47 48 49	21	Kevin E. Kip, PhD, Vice President of Clinical Analytics, UPMC Health Services Division, 3600
50 51	22	Forbes & Meyran, Forbes Tower, 9th Floor, Suite 9030, Pittsburgh, PA 15213, USA
52 53	23	E-mail: kipke2@upmc.edu
54 55 56	24	
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

2		
3 4	25	Abstract
5 6 7	26	Objectives: Among primary prevention-type adults not on lipid-lowering therapy, conflicting
7 8 9	27	results exist on the relationship between low density lipoprotein cholesterol (LDL-C) and long-
10 11	28	term mortality. We evaluated this relationship in a real-world evidence population of adults.
12 13	29	Design: Retrospective cohort study.
14 15 16	30	Setting: Electronic medical record data for adults, from January 4, 2000, through December 31,
17 18	31	2022, were extracted from the University of Pittsburgh Medical Center healthcare system.
19 20	32	Participants: Non-diabetic adults aged 50-89 years not on statin therapy at baseline or within 1-
21 22 23	33	year and classified as primary prevention-type patients. To mitigate potential reverse causation,
23 24 25	34	patients who died within 1-year or had baseline total cholesterol (T-C) \leq 120 mg/dL or LDL-C
26 27	35	<30 mg/dL were excluded.
28 29	36	Main exposure measure: Baseline LDL-C categories of 30-79, 80-99, 100-129, 130-159, 160-
30 31 32	37	189, or \geq 190 mg/dL.
33 34	38	Main outcome measure: All-cause mortality with follow-up starting 365 days after baseline
35 36 27	39	cholesterol measurement.
37 38 39	40	Results: 177,860 patients with mean (SD) age of 61.1 (8.8) years and mean (SD) LDL-C of 119
40 41	41	(31) mg/dL were evaluated over mean of 6.1 years of follow-up. A U-shaped relationship was
42 43	42	observed between the six LDL-C categories and mortality with crude 10-year mortality rates of
44 45 46	43	19.8%, 14.7%, 11.7%, 10.7%, 10.1%, and 14.0%, respectively. Adjusted mortality hazard ratios
47 48	44	(HRs) as compared with the referent group of LDL-C 80-99 mg/dL were: 30-79 mg/dL (HR
49 50	45	1.23, 95% CI 1.17-1.30), 100-129 mg/dL (0.87, 0.83-0.91), 130-159 mg/dL (0.88, 0.84-0.93),
51 52 53	46	160-189 mg/dL (0.91, 0.84-0.98), ≥190 mg/dL (1.19, 1.06-1.34), respectively. Unlike LDL-C,
54		
55 56		
50 57		
58		

both T-C/HDL cholesterol and triglycerides/HDL cholesterol ratios were independently
associated with long-term mortality.

Conclusions. Among non-diabetic primary prevention-type patients aged 50-89 years and not on

50 statin therapy, the lowest risk for long-term mortality appears to exist in the wide LDL-C range

of 100-189 mg/dL, which is much higher than current recommendations. For counseling these

52 patients, minimal consideration should be given to LDL-C concentration.

to beet teries only

2 3 4	54	
5 6		STRENGTHS AND LIMITATIONS OF THIS STUDY
7 8 9		• The cohort consisted of a large, "real-world" sample of adults across a large health
10 11		system with long-term follow-up and sufficient precision for subgroup analyses.
12 13 14		• The study design mitigated potential for reverse causation of mortality by excluding
15 16		patients who died within 1-year of baseline cholesterol measurement or had
17 18		exceptionally low total or LDL-C levels at baseline.
19 20		• The analysis was limited to all-cause mortality and thus was unable to assess cause-
21 22 23		specific mortality.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	55	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

56 INTRODUCTION

Heart disease (HD), which includes atherosclerotic cardiovascular disease (ASCVD) as its primary component, is the leading cause of death in the United States.[1-2] A near universal but not absolute belief[3] is that high total cholesterol (T-C), low density lipoprotein cholesterol (LDL-C) in particular (the so-called "bad" cholesterol), is a root cause of ASCVD,[4] and that "lower is better" with a suggested optimal LDL-C level at or below 100 mg/dL.[5-6] In this regard, the American College of Cardiology (ACC) unequivocally implicates elevated LDL-C as a *de-facto* cause of ASCVD (and hence mortality) by stating that lowering of LDL-C with moderate intensity generic statins allows for efficacious and cost-effective primary prevention for those patients with an estimated 10-year risk of ASCVD \geq 7.5%.[7] Risk of ASCVD is often estimated using the online ACC-ASCVD Risk Estimator,[8] and as seen in Supplement Table 1, all males ages 59 and older even in the presence of "normal" ASCVD risk factors (lipids included) may be classified at intermediate or high risk of ASCVD, and thus candidates for LDL-C lowering therapy.

The overall belief that "lower LDL-C is better" for primary prevention of ASCVD is supported by the 25.5% estimated prevalence of use of statins in this setting for adults aged 40 to 75 years.[9] Despite the generally accepted belief that "lower LDL-C is better," meta-analyses indicate that high LDL-C is associated with at most a small increased absolute risk of ASCVD or premature mortality. First, in brief, in an extensive recent meta-analysis published in 2023 of 60 randomized controlled trials that compared either placebo, usual care or less-intensive therapy to active or more potent lipid-lowering therapy, the number needed to treat (NNT) to reduce one death with active or more potent lipid-lowering therapy was exceptionally high at 754 persons. Moreover, there was no relationship between LDL-C percent lowering and risk of cardiovascular Page 7 of 48

BMJ Open

mortality.[10] Similarly, whereas an earlier meta-analysis published in 2010 indicated that both use and dose of statin therapy reduced the relative risk of major vascular events and all-cause mortality, absolute risk reductions were very small (e.g., 0.2% absolute risk reduction in all-cause mortality per 1.0 mmol/L reduction in LDL-C).[11] In the context of lipid-lowering therapy, these findings call into question the prevailing belief that "lower LDL-C is better" at least in terms of any appreciable clinical benefit. Second, acute coronary syndromes (ACS) routinely occur in patients with "normal" LDL-C. For example, in a large cohort of 136,905 patients hospitalized with CAD (79% attributed to ACS), of whom, 21% were on lipid-lowering therapy at admission, less than one-quarter had an admission LDL-C >130 mg/dL.[12] In addition, women are generally considered

to be at overall lower risk of CHD mortality than men (e.g.,[13]), yet tend to have higher T-C
and LDL-C,[14] which is counterintuitive to higher LDL-C being associated with ASCVD and
premature mortality.

Third, the field of life insurance medicine, which focuses principally on predicting mortality hazards, [15] arguably conducts the most robust actuarial analyses of life expectancy. Notably, in this field, the T-C/HDL-C ratio has been shown to be the best single measure of all-cause mortality risk among various lipid tests, including LDL-C.[16] This is further supported by examination of selected life insurance underwriting guidelines (obtained publicly and summarized) from a large US insurance company.[17] As seen in **Supplement Table 2**, T-C and HDL-C are used jointly in policy underwriting, whereas LDL-C is not used, and lipid-lowering therapy is not emphasized. Moreover, notwithstanding other important patient factors (e.g., blood pressure, smoking, etc.), Supplement Table 2 shows that a person 70 years of age or older can potentially qualify for a "preferred-plus" life insurance policy having a T-C value as high as 300

2		
3 4	102	mg/dL so long as the T-C/HDL-C ratio is 5.0 or lower (i.e., HDL-C \geq 60 mg/dL). This aligns
5 6	103	with meta-analyses/systematic reviews that report HDL-C to be inversely associated with all
7 8	104	cause and CVD mortality risks.[18-19]
9 10 11	105	The above-described examples of conflicting beliefs and findings, along with general
12 13	106	propensity for health professionals to prescribe LDL-C lowering therapies for primary
14 15	107	prevention based in part through routine risk assessment with the ACC-ASCVD Risk Estimator,
16 17 18	108	call for a critical appraisal and analysis of the relationship between LDL-C and long-term risk of
19 20	109	mortality in adults. Therefore, within a large, "real-world" healthcare system, we evaluated the
21 22	110	association between LDL-C and all-cause long-term mortality among non-diabetic primary
23 24 25	111	prevention-type adults aged 50 to 89 years. The analysis did not focus on the use of statin
26 27	112	therapy for primary prevention.
28 29	113	
30 31 22	114	METHODS
32 33 34	115	We conducted a retrospective cohort study of adults aged 50 to 89 years with hospital and/or
35 36	116	office visit data captured through the University of Pittsburgh Medical Center (UPMC)
37 38	117	electronic medical record (EMR) system. The date period for analysis was January 4, 2000,
39 40 41	118	through December 31, 2022. The Quality Improvement Review Committee and Institutional
42 43	119	Review Board provided ethical review and approval of the study as an exempt protocol (Project
44 45	120	ID: 4565), and all data remained deidentified for this analysis. Conduct and dissemination of
46 47 48	121	results from this observational study were performed in accordance with the STROBE
49 50	122	(STrengthening the Reporting of OBservational studies in Epidemiology) statement.
51 52	123	Data sources
53		
54 55		
55 56		
57		
58		
59		

Page 9 of 48

BMJ Open

Health-related data captured in the UPMC EMR and its ancillary clinical systems were aggregated and harmonized in a clinical data warehouse, as previously described. [20-21] For all patients, we accessed sociodemographic data, medical history, and billing charges for all outpatient and inpatient encounters with diagnoses and procedures coded based on the International Classification of Diseases, Ninth and 10th Revisions. [22-23] Deaths were identified using hospital discharge dispositions of "ceased to breathe" sourced from the inpatient medical record system; deaths after discharge were identified externally via the Death Master File from the Social Security Administration's National Technical Information Service.[24] Cause of death was unavailable for analysis. In secondary analyses, a composite outcome of ASCVD was ascertained from UPMC hospital admission/discharge records, defined as the occurrence of myocardial infarction, stroke, percutaneous coronary intervention, coronary artery bypass graft surgery, or peripheral vascular disease. **Eligibility criteria**

The index date for selection and analysis of patients aged 50 to 89 years was the first date of cholesterol measurement performed whether through hospitalization or in conjunction with an office visit (Supplement Figure 1). For analysis, we required non-missing laboratory values for T-C, LDL-C, and HDL-C. The patient population was restricted to "primary prevention" patients, defined as no prior history of diabetes, coronary artery disease (CAD), carotid artery disease, peripheral vascular disease, cardiac arrest, hemorrhagic or ischemic stroke, or transient ischemic attack (TIA). Other eligibility criteria included: self-reported race of either white or black (due to very low prevalence of other races), and not on statin therapy at baseline or within 1-year of follow-up. In addition, to help offset potential bias due to reverse causation (i.e., very low cholesterol being a marker for malnutrition and overall poor health), we excluded patients

who died within 1-year of the baseline cholesterol measurement, as well as those with baseline

149 Classification of lipid levels

150 From the baseline measurement, we classified patients into mutually exclusive lipid-level

T-C and/or LDL-C values of <120 or <30 mg/dL, respectively.

- 151 categories using common clinical thresholds[25] including LDL-C (30-79, 80-99, 100-129, 130-
- 152 159, 160-189, or 190 mg/dL or higher) and T-C (121-160, 161-200, 201-240, 241-280, or 281
- 153 mg/dL or higher). In supplemental analyses, we classified the T-C/HDL-C ratio as $\leq 3.0, >3.0$ -

4.0, >4.0-5.0, >5.0-6.0, or >6.0, and triglycerides/HDL-C ratio into quintiles. Again, to

- potentially mitigate potential bias due to reverse causation, we selected the LDL-C category of
- 156 80-99 mg/dL as the referent group, rather than the lowest LDL-C group (30-79 mg/dL).
- **Outcome measures**

The main outcome measure was all-cause mortality with the number of days and years of followup calculated starting 365 days after the baseline cholesterol measurement. For patients who did not die, their length of follow-up was calculated starting 365 days after the baseline cholesterol measurement and until their last record in the EMR system. In secondary analyses, the composite outcome of occurrence of ASCVD was evaluated.

⁾ 163 Statistical analysis

For patients within the respective study-defined baseline LDL-C categories, median and interquartile range (IQR) for continuous variables and counts and percentages for categorical variables are presented. For each LDL-C category, the Kaplan-Meier method was used to calculate cumulative mortality rates at 1-, 5-, and 10-year follow-up, with survival curves plotted at 6-month intervals out to 12 years. Patients who did not die were censored at last date of follow-up. Cox regression was used to estimate hazard ratios (and corresponding 95% Page 11 of 48

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
17	
10	
20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
38 20	
27 70	
-+0 ⊿1	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
bU	

170	confidence intervals) of mortality over the full follow-up period by baseline LDL-C. A crude
171	model was first fit followed by an adjusted model that included covariates selected by a forward
172	stepwise approach using an entry <i>p</i> -value of $< .01$ and initiation of statin use any time after 1-
173	year of follow-up. Separate estimates for the relationship between initiation of statin use and
174	mortality are not presented due to expected immortal time bias (i.e., requirement to be alive
175	during follow-up to initiate statin use). Secondary analyses of lipid parameters used the same
176	methods as for LDL-C and included categories of the T-C/HDL-C and triglycerides/HDL-C
177	ratios.
178	In addition to the clinical categories used to define and evaluate baseline lipid levels, in
179	secondary analyses, each lipid parameter was evaluated in relation to mortality risk by use of
180	non-parametric generalized additive models using smoothing splines adjusting for the same
181	covariates used in the Cox regression models. The smoothing parameters including the number
182	of degrees of freedom were optimized by use of generalized cross validation (GCV).
183	We used SAS, version 9.4 (SAS Institute) for all analyses.
184	Subgroup analyses
185	Subgroup analyses for estimation of the relationship between LDL-C category and mortality
186	included age (50-69, 70-89), sex (female, male), and baseline ASCVD risk classification
187	(low/borderline, intermediate, high, risk not determined).
188	Patient and public involvement
189	None.
190	
191	RESULTS

1	
2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
27	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
ر ب	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

192	The mean (SD) LDL-C was 119 (31) mg/dL, and the prevalence of patients within the six LDL-
193	C categories was as follows: 30-79 (9.1%), 80-99 (18.3%), 100-129 (39.1%), 130-159 (24.4%),
194	160-189 (7.1%), or 190 mg/dL or higher (2.0%) (Table 1). The median age of patients was 59
195	years and mean age ranged nominally across the six LDL-C categories from 60.7 to 61.7 years.
196	There was a general indication of overall higher baseline risk in the group of patients with LDL-
197	C from 30-79 mg/dL (Table 1) (consistent with the stated concern of potential reverse
198	causation). This included a numerically higher prevalence of current smokers and those with a
199	history of various comorbidities (e.g., atrial fibrillation, arrythmia, congestive heart failure,
200	chronic obstructive pulmonary disease), as well as nominally higher prevalence of selected
201	medication use (e.g., ACE inhibitors, beta-blockers, diuretics, opioids, direct oral
202	anticoagulants). History of cancer was slightly higher in the two lowest LDL-C categories,
203	whereas estimated 10-year ASCVD risk was highest in those with baseline LDL-C \geq 190 mg/dL.
204	Patient follow-up
205	The mean and median follow-up after excluding the study requirement to have survived at least
206	1-year after baseline cholesterol measurement was 6.1 and 5.9 years, respectively, and 17% of
207	patients had 10 or more years of follow-up. Across the six LDL-C categories, the mean years of
208	follow-up among patients who did not die ranged from 5.8 to 6.4 years. In total, 48.9% to 55.5%
209	of patients had their first LDL-C measurement in calendar year 2015 or earlier, and the
210	percentage of patients with their last follow-up extending into calendar year 2023 ranged from
211	57.8% to 63.4%, thereby suggesting non-informative censoring.
212	Overall assessment of mortality
213	In ascending order from lowest LDL-C category (30-79 mg/dL) to highest LDL-C category
214	(≥190 mg/dL), 10-year cumulative mortality rates were U-shaped at 19.8%, 14.7%, 11.7%,

Page 13 of 48

1 2		
2 3 4	215	10.7%, 10.1%, and 14.0% (Table 2, Figures 1 and 2). Adjusted mortality hazard ratios (HR)
5 6	216	and 95% confidence intervals (CI) (Table 2), as compared to the referent group of LDL-C 80-99
/ 8 9	217	mg/dL, were as follows: 30-79 mg/dL (1.23, CI:1.17-1.30), 100-129 mg/dL (0.87, CI:0.83-0.91),
10 11	218	130-159 mg/dL (0.88, CI:0.84-0.93), 160-189 mg/dL (0.91, CI:0.84-0.98), ≥190 mg/dL (1.19,
12 13	219	CI:1.06-1.34), respectively. Thus, the 3 LDL-C categories within the range of 100-189 mg/dL $$
14 15 16	220	showed similar, slightly lower mortality risk compared to the referent group of LDL-C 80-99
17 18	221	mg/dL. When evaluated as a continuous variable, the relationship between LDL-C and mortality
19 20	222	was mostly U-shaped, with the lowest risk of mortality in the range of approximately 110 to 190
21 22 22	223	mg/dL (Supplement Figure 2, upper left).
23 24 25	224	Assessment of ASCVD
26 27	225	In ascending order from lowest LDL-C category (30-79 mg/dL) to highest LDL-C category
28 29	226	(≥190 mg/dL), 10-year cumulative rates of ASCVD were U-shaped at 6.5%, 5.3%, 4.7%, 4.8%,
30 31 32	227	5.1%, and 7.6% (Table 3, top half.). Adjusted HRs of risk of ASCVD as compared to the
33 34	228	referent group of LDL-C 80-99 mg/dL, were as follows: 30-79 mg/dL (1.10, CI:1.00-1.20), 100-
35 36	229	129 mg/dL (0.94, CI:0.88-1.00), 130-159 mg/dL (0.96, CI:0.89-1.03), 160-189 mg/dL (0.98,
37 38 20	230	CI:0.88-1.08), \geq 190 mg/dL (1.23, CI:1.06-1.43), respectively. Thus, the 3 LDL-C categories
40 41	231	within the range of 100-189 mg/dL showed similar yet nominally lower risk of ASCVD
42 43	232	compared to the referent group of LDL-C 80-99 mg/dL. Similar results were observed for the
44 45	233	composite outcome of ASCVD/mortality (Table 3, bottom half.) Baseline ASCVD risk
46 47 48	234	categories of low, medium, and high risk were strongly associated with 10-year rates of ASCVD
49 50	235	(1.9%, 4.9%, 9.8%, respectively).
51 52	236	Subgroup analyses
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For the two different age groups, the 3 LDL-C categories within the range of 100-189 mg/dL showed relatively similar and slightly lower mortality risk compared to the referent group of LDL-C 80-99 mg/dL (Table 2, Figure 2). In a similar manner for both females and males, the 3 LDL-C categories within the range of 100-189 mg/dL showed relatively similar and slightly lower mortality risk compared to the referent group of LDL-C 80-99 mg/dL (Supplement Table **3**). Males with LDL-C \geq 190 mg/dL did not have a significantly higher risk of mortality than those with LDL-C 80-99 mg/dL (adjusted HR = 1.06, CI: 0.85-1.32). When stratified by 10-year ASCVD risk score, again, the 3 LDL-C categories within the range of 100-189 mg/dL showed relatively similar and statistically lower mortality risk compared to the referent group of LDL-C 80-99 mg/dL (Supplement Table 4).

247 Secondary lipid measures

Patients with a T-C/HDL-C ratio >6.0 had a significantly higher risk of mortality than those with a T-C/HDL-C ratio <3.0 (adjusted HR = 1.28, CI: 1.18-1.38, Supplement Table 5), with similar results by age (Figure 2). For the 3 T-C/HDL-C ratio categories <3.0, >3.0-4.0, and >4.0-5.0, risk of mortality was similar. The triglycerides/HDL-C ratio showed the most consistent evidence of a gradient relationship with mortality with lower values (quintiles) progressively conferring lower risk of mortality (Supplement Table 6) and similar results by age (Figure 2). Compared to patients in the highest quintile of triglycerides/HDL-C ratio (value of >3.44), those in the lowest quintile (value of <1.06) had an estimated 24% lower risk of mortality (adjusted HR = 0.76, CI: 0.72-0.81). Thus, in aggregate and irrespective of age, the secondary lipid measures of T-C/HDL-C ratio and triglycerides/HDL-C ratio appeared to be more predictive of mortality than LDL-C, and a triglycerides/HDL-C ratio of about 1 or lower appears to be optimal.

Page 15 of 48

BMJ Open

2		
3 4	260	When evaluated as continuous variables, the relationship between T-C and adjusted risk
5 6	261	of mortality was mostly U-shaped (similar to LDL-C), whereas other lipid/mortality relationships
7 8 9	262	presented in a mostly gradient manner (Supplement Figure 2). Specifically, lower HDL-C
10 11	263	generally indicated higher adjusted risk of mortality, whereas higher triglycerides, total to HDL-
12 13	264	C ratio, and triglycerides to HDL-C ratio indicated higher adjusted risk of mortality.
14 15 16	265	Evaluation of potential reverse causation
10 17 18	266	By study design, the 2,494 patient deaths that occurred from baseline LDL-C measurement to
19 20	267	365 days were excluded from the primary analysis. Among these excluded patients, the
21 22 22	268	percentage of deaths distributed by LDL-C (mg) category was: 30 to 79 (30.4%), 80 to 99
25 24 25	269	(20.1%), 100 to 129 (26.5%), 130 to 159 (14.6%), 160 to 189 (5.9%), 190 or higher (2.5%). The
26 27	270	30.4% of deaths in the 30 to 79 mg/dL category is much higher than the 9.1% prevalence of
28 29	271	patients in the 30 to 79 mg/dL category (see table 1) observed in the primary analysis. Similarly,
30 31 32	272	14.1% of deaths excluded in the first year had a total cholesterol value of 40 to 120 mg/dL
33 34	273	compared to 1.6% prevalence of patients in the primary analysis. These results validated the need
35 36	274	to remove the influence of potential reverse causality and early deaths and patients with very low
37 38 30	275	baseline cholesterol values from the analysis.
40 41	276	
42 43	277	DISCUSSION
44 45	278	In this analysis among non-diabetic primary prevention-type patients aged 50 to 89 years not on
46 47 48	279	statin therapy at baseline or within 1-year, we found no evidence of a gradient relationship
49 50	280	between LDL-C and long-term mortality risk. Instead, we observed that within the entire LDL-C
51 52	281	range of 100-189 mg/dL (about two-thirds of the total patient population), mortality risk was

similar and slightly lower than the referent LDL-C category of 80-99 mg/dL. These data conflict

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	283	with the prevailing belief that "lower LDL-C is better" [5-6] yet align with results from multiple
5 6	284	studies. A large general population study of adults from Denmark showed a U-shaped
7 8 0	285	relationship between LDL-C and long-term mortality, with lowest risk of all-cause mortality
9 10 11	286	(among individuals not receiving lipid lowering treatment) being an LDL-C value of 140
12 13	287	mg/dL.[26] Similarly, a large cohort study among Korean adults not on statin therapy showed a
14 15	288	U-shaped relationship between LDL-C and CVD mortality, with an optimal LDL-C range of 90
16 17 18	289	to 149 mg/dL.[27] Moreover, in a 20-year prospective cohort study of adults ages 18 and older
19 20	290	derived from the National Health and Nutrition Examination Survey III (NHANES III), the
21 22	291	lowest relative risk for all-cause mortality was for LDL-C in the range of 130 to <190
23 24 25	292	mg/dL.[28] Collectively, these results indicate that the "optimal" or "normal" range for LDL-C
25 26 27	293	for primary prevention of mortality among adults is likely wide and considerably higher than the
28 29	294	suggested optimal LDL-C level of $\leq 100 \text{ mg/dL}$.[5-6]
30 31 22	295	For multiple reasons, we chose to evaluate a population of non-diabetic primary
32 33 34	296	prevention type adults aged 50 to 89 years not on statin therapy. First, both the prevalence and
35 36	297	potential indication for initiating lipid-lowering therapy is relatively high in this
37 38	298	population.[9,29,30] Second, prevailing guidelines and philosophy for initiating lipid-lowering
39 40 41	299	therapy for secondary prevention of ASCVD and among persons with diabetes are well
42 43	300	entrenched.[31-33] Third, consideration of initiating lipid-lowering therapy for primary
44 45	301	prevention, particularly among older adults, should be carefully weighed based on empirical
46 47 48	302	data[34-35] and potential side effects, including but not limited to muscle pain or weakness[36]
49 50	303	and increased risk of developing diabetes.[37-39]
51 52	304	Beyond our principal finding of no indication that "lower LDL-C is better," other
53 54 55 56 57 58	305	prominent findings were that overall and independent of age, the T-C/HDL-C and
59		

Page 17 of 48

1	
2 3 4	
5	
7 8	
9 10	
11 12	
13 14	
15 16 17	
18 19	
20 21	
22 23	
24 25	1
26 27	
28 29	
30 31	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46 47	
47 48 49	-
50 51	
52 53	
54 55	
56 57	
58 59	
00	

306	triglycerides/HDL-C ratios were predictive of long-term mortality risk, the latter of which
307	presented in a gradient manner. A study derived from NHANES data showed a U-shaped
308	relationship between T-C/HDL-C ratio and risk of all-cause mortality,[40] whereas results from
309	our analysis were unidirectional with elevated risk of mortality evident among adults with a T-
310	C/HDL-C ratio more than 5.0. Similar to our results, a large study among Korean adults showed
311	a gradient relationship between triglycerides/HDL-C ratio and risk of ischemic heart disease.[41]
312	Importantly, the triglyceride/HDL-C ratio has recently been reported to be a stronger predictor of
313	10-year development of type 2 diabetes (strongly associated with mortality risk) than LDL-C,
314	HDL-C, or triglycerides alone.[42]
315	The importance of high HDL-C alone, or in conjunction with other lipids, has been
316	extensively recognized. In brief, oxidative stress and inflammation are integral in the
317	pathophysiology of atherosclerosis and cardiovascular disease.[43] Importantly, HDL-C exerts
318	several physiological roles, prevents oxidation of LDL, and inhibits expression of pro-
319	inflammatory cytokines by macrophages, as well as expression of adhesion molecules by
320	endothelial cells,[44-46] and it is inversely associated with both all cause and CVD mortality
321	risks.[18-19] Moreover, it is likely not coincidental nor trivial that the field of life insurance
322	medicine recognizes and prioritizes the importance of HDL-C over LDL-C in determining
323	underwriting classifications.[16,17,47] Unfortunately, from a public health perspective, a meta-
324	analysis of 31 randomized controlled trials on the use of HDL-C modifying treatments showed
325	little to no effect on cardiovascular and all-cause mortality.[48]
326	There is an overall lack of consensus on the magnitude and statistical and clinical
327	interpretation of the reduction in mortality risk potentially achieved with the use of LDL-C
328	lowering therapies. Multiple reviews suggest that absolute mortality risk reductions from

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>⊿</u> ∠	
ر ب ۸۸	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
57	
55	
22	
20	
57	
58	
59	
60	

1

treatment with stating are small as compared to the more frequent reporting and emphasis of 329 relative risk reductions.[49-52] Moreover, mortality reductions with recent use of PCSK-9 330 inhibitors to lower LDL-C have been mixed and of low absolute risk.[53,54] Our postulate from 331 both this review (e.g., [10]) and empirical analysis is that whatever small absolute reductions in 332 mortality risk may occur with use of LDL-C lowering therapies, they are most likely not causally 333 334 related to LDL-C lowering, but potentially to more broad pleiotropic effects. For example, statin use has been shown to reduce inflammatory markers, [55] reduce vascular endothelial growth 335 factor (VEGF) concentrations, [56] reduce platelet activity, [57] and increase nitric oxide 336 337 bioavailability and stabilize atherosclerotic plaques.[58] These potential mechanisms of statins, rather than concomitant lowering of LDL-C, per se, may be expected to result in some reduction 338 of ASCVD events. 339

Arguably, it is irrelevant to patients as to the exact mechanism(s) by which use of statins 340 and other lipid-lowering therapies may result in small absolute reductions in mortality risk. 341 Rather than focusing on LDL-C level, per se, we submit that health professionals should promote 342 established (causal) mechanisms that reduce future risk of major ASCVD events, including 343 weight, blood pressure, and blood sugar control, physical activity, avoidance of smoking, and 344 stress reduction. Similarly, our results suggest that adult non-diabetic patients counselled for 345 primary prevention of ASCVD be apprised of their estimated future risk of ASCVD with 346 minimal consideration of their LDL-C concentration and more consideration of the T-C/HDL 347 348 and triglyceride/HDL-C ratios along with other known causes of ASCVD (e.g., smoking, physical inactivity). Moreover, use of coronary artery calcium scoring in primary prevention is 349 350 supported by a wealth of data showing that it substantially improves risk prediction including 351 when combined with traditional risk factors and scores.[59-61]

Page 19 of 48

BMJ Open

352	Limitations
353	Our study has limitations. First, we were unable to assess cause-specific mortality which would
354	have provided additional insight into the relationship between LDL-C and CVD mortality.
355	Similarly, our assessment of risk of ASCVD in relation to baseline LDL-C levels is based on
356	ascertainment of events within UPMC hospitals and not external facilities - there is certainly
357	some unknown level of ascertainment of ASCVD events. Second, we chose the index date for
358	follow-up mortality assessment to begin 1-year after baseline cholesterol measurement to ideally
359	minimize potential bias due to reverse causation (i.e., low LDL-C being an overall marker of
360	malnutrition and poor health). However, low LDL-C has been frequently reported in cancer
361	patients (e.g., [25,62,63]) and many cancers have a viral etiologic component[64] and with
362	potentially long latency. Theoretically, some patients with the lowest LDL-C values in our
363	analysis may have been in the early stages of cancer development and hence at elevated long-
364	term mortality risk. This is why we chose LDL-C 80-99 mg/dL as the referent group (rather than
365	30-79 mg/dL), and the observation that mortality risk was similar across a wide range of LDL-C
366	values (100–189 mg/dL) argues against appreciable bias due to reverse causation. Third, absence
367	of statin use at baseline and within the first year of the study (inclusion criterion) was based on
368	patient reported data in the EMR and not from prescription data – this leaves open the possibility
369	for some misclassification. In addition, the study requirement for absence of statin at baseline or
370	within one year may have resulted in a patient population generally less likely to initiate lipid-
371	lowering therapy in the long-term. Lastly, we cannot rule out potential residual confounding
372	despite statistical adjustment for a large set of covariates associated with mortality.
373	
374	CONCLUSIONS

2 3	375	Our analysis indicates that among non-diabetic primary prevention-type patients aged 50 to 89
4 5	276	e an analyse search and an another search sink for here there are taken and the solids in the solids LDL C
6 7	376	years and not on statin therapy, the lowest risk for long-term mortality exists in the wide LDL-C
, 8 9	377	range of 100-189 mg/dL which is much higher than current recommendations. Our analysis also
10 11	378	shows that lower T-C/HDL-C and triglycerides/HDL-C ratios are independently associated with
12 13	379	lower mortality risk, whereas LDL-C appears to be of limited to no predictive value.
14 15	380	Collectively, these observations suggest that adult non-diabetic patients counselled for primary
16 17 18	381	prevention of ASCVD be apprised of their estimated future risk of ASCVD with minimal
19 20	382	consideration of their LDL-C concentration and more consideration of the T-C/HDL and
21 22	383	triglycerides/HDL-C ratios along with other established causes of ASCVD (e.g., high blood
23 24	384	pressure, smoking, physical inactivity) and potentially coronary artery calcium scoring.
25 26 27	385	
28 29	386	
30		
31 32	387	Contributors
33 34	388	Kevin E Kip: conception, statistical analysis, writing, and editing. David M Diamond:
35 36 27	389	conception, critical review, and editing. Suresh R Mulukutla: critical review and editing. Oscar C
37 38 39	390	Marroquin: conception, critical review, and editing.
40 41	391	
42 43	392	Funding
44		
45 46	393	This research received no specific grant from any funding agency in the public, commercial, or
47 48	394	not-for-profit sectors.
49 50	395	
51 52	396	Competing interests
53 54 55	397	None.
56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3 4	398	
5 6 7 8 9	399	Patient consent for publication
	400	Not applicable.
10 11	401	
12 13 14 15 16 17 18 19 20	402	Ethics approval
	403	The Quality Improvement Review Committee and Institutional Review Board at the University
	404	of Pittsburgh Medical Center provided ethical review and approval of the study as an exempt
	405	protocol (Project ID: 4565), and all data remained deidentified for this analysis.
21 22	406	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	407	Provenance and peer review
	408	Not commissioned, externally peer reviewed.
	409	
	410	Data availability statement
	411	Study protocol: No separate study protocol was required a priori, as this retrospective analysis
	412	was deemed a quality improvement initiative with ethical review and approval granted by the
	413	UPMC Quality Improvement Review Committee and Institutional Review Board. Statistical
39 40 41	414	code: Selected statistical code may be requested from Dr. Kevin Kip (e-mail,
42 43	415	kipke2@upmc.edu). Dataset: The dataset contains protected health information and will not be
44 45	416	available.
46 47 48	417	
49		
50 51		
52		
53 54		
55		
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

60

2 3 4	418	References		
5 6	419	1.	Heron M. Deaths: Leading Causes for 2019. Centers for Disease Control and Prevention,	
7 8 0	420		National Vital Statistics Reports, Vol. 70, No. 9, July 26, 2021. Available at:	
9 10 11	421		https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-09-508.pdf. Accessed June 9, 2023.	
12 13	422	2.	US Centers for Disease Control and Prevention. Leading causes of death and injury.	
14 15 16	423		Available at https://www.cdc.gov/injury/wisqars/LeadingCauses.html. Accessed June 9,	
16 17 18	424		2023.	
19 20	425	3.	Ravnskov U, de Lorgeril M, Diamond DM, et al. LDL-C does not cause cardiovascular	
21 22	426		disease: a comprehensive review of the current literature. Expert Rev Clin Pharmacol	
23 24 25	427		2018; 10:959-70.	
26 27	428	4.	Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause	
28 29	429		atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and	
30 31 32	430		clinical studies. A consensus statement from the European Atherosclerosis Society	
33 34	431		Consensus Panel. Eur Heart J 2017; 38:2459-72.	
35 36	432	5.	American Heart Association. What is cholesterol? Available at: <u>https://www.heart.org/-</u>	
37 38 30	433		/media/Files/Health-Topics/Cholesterol/What-is-Cholesterol.pdf. Accessed June 9, 2023.	
40 41	434	6.	O'Keefe JH Jr, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density	
42 43	435		lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J Am Coll	
44 45 46	436		<i>Cardiol</i> 2004; 43:2142-6.	
40 47 48	437	7.	Grundy SM, Stone NJ, Bailey AL, et al. Guideline on the management of blood	
49 50	438		cholesterol: A report of the American College of Cardiology/American Heart Association	
51 52	439		Task Force on Clinical Practice Guidelines. Circulation 2019; 139:e1082-e1143. Epub	
53 54 55 56 57 58 59	440		2018 Nov 10. Erratum in: Circulation 2019; 18:e1182-e1186.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	441	8.	American College of Cardiology. ASCVD Risk Estimate Plus. Available at:
	442		https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/. Accessed June 9,
	443		2023.
	444	9.	Jacobs JA, Addo DK, Zheutlin AR, et al. Prevalence of statin use for primary prevention
	445		of atherosclerotic cardiovascular disease by race, ethnicity, and 10-year disease risk in the
	446		US: National Health and Nutrition Examination Surveys, 2013 to March 2020. JAMA
	447		Cardiol 2023; 8:443–52.
18 19 20	448	10.	Ennezat PV, Guerbaai RA, Maréchaux S, Le Jemtel TH, François P. Extent of low-
20 21 22	449		density lipoprotein cholesterol reduction and all-cause and cardiovascular mortality
23 24	450		benefit: A systematic review and meta-analysis. J Cardiovasc Pharmacol 2023; 81:35-
25 26	451		44.
27 28 29 30 31 32 33 34 35	452	11.	Cholesterol Treatment Trialists' (CTT) Collaboration; Baigent C, Blackwell L, Emberson
	453		J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-
	454		analysis of data from 170 000 participants in 26 randomised trials <i>Lancet</i> 2010: 376:
	455		1670-81
36 37	455	12	Sachdava A. Compan CD. Deadwaris DC. et al. Linid lavels in notionts hermitalized with
38 39	456	12.	Sachdeva A, Cannon CP, Deedwania PC, et al. Lipid levels in patients hospitalized with
40 41	457		coronary artery disease: an analysis of 136,905 hospitalizations in Get With The
42 43	458		Guidelines. Am Heart J 2009; 157:111-17.
44 45	459	13.	Bots SH, Peters SAE, Woodward M. Sex differences in coronary heart disease and stroke
46 47 48	460		mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob
40 49 50	461		Health 2017; 27;2(2):e000298.
51 52			
53 54			
55			
50 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	462	14.	Shohaimi S, Boekholdt MS, Luben R, Wareham NJ, Khaw KT. Distribution of lipid
5 6	463		parameters according to different socio-economic indicators- the EPIC-Norfolk
7 8 0	464		prospective population study. BMC Public Health 2014; 14:782.
9 10 11	465	15.	Kneepkens RF, Lindeboom R. Age dependent decline of relative risks in life insurance
12 13	466		medical underwriting. J Insur Med 2014; 44:170-83.
14 15	467	16.	Fulks M, Stout RL, Dolan VF. Association of cholesterol, LDL, HDL, cholesterol/HDL
16 17 18	468		and triglyceride with all-cause mortality in life insurance applicants. J Insur Med 2009;
19 20	469		41:244-53. Erratum in: <i>J Insur Med</i> 2011; 42:108.
21 22	470	17.	MetLife. The Condensed Underwriting Guide. May 2013. Available at:
23 24 25	471		http://www.cassaniinsurance.com/wp-content/uploads/2018/02/Met-Life-
25 26 27	472		condensed_uw_guide.pdf. Accessed June 4, 2023.
28 29	473	18.	Liu L, Han M, Qie R, et al. A dose-response meta-analysis to evaluate the relationship
30 31 32	474		between high-density lipoprotein cholesterol and all-cause and cardiovascular disease
32 33 34	475		mortality. J Endocrinol Invest 2022; 45:551-62.
35 36	476	19.	Ravnskov U, Diamond DM, Hama R, et al. Lack of an association or an inverse
37 38	477		association between low-density-lipoprotein cholesterol and mortality in the elderly: a
39 40 41	478		systematic review. BMJ Open 2016; 6:e010401.
42 43	479	20.	Kip KE, McCreary EK, Collins K, et al. Evolving real-world effectiveness of monoclonal
44 45	480		antibodies for treatment of COVID-19: A cohort study. Ann Intern Med 2023; 176:496-
46 47 48	481		504.
49 50	482	21.	Reitz KM, Seymour CW, Vates J, et al. Strategies to Promote ResiliencY (SPRY): a
51 52 53 54	483		randomised embedded multifactorial adaptative platform (REMAP) clinical trial protocol
55 56 57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 48

1 2			
2 3 4	484		to study interventions to improve recovery after surgery in high-risk patients. BMJ Open.
5 6 7 8 9	485		2020; 10:e037690.
	486	22.	Centers for Disease Control and Prevention. International Classification of Diseases,
9 10 11	487		Ninth Revision, Clinical Modification (ICD-9-CM). Accessed at
12 13	488		www.cdc.gov/nchs/icd/icd9cm.htm on 13 April 2022.
14 15	489	23.	Centers for Disease Control and Prevention. International Classification of Diseases,
16 17 18	490		Tenth Revision, Clinical Modification (ICD-10-CM). Accessed at
19 20	491		www.cdc.gov/nchs/icd/icd-10-cm.htm on 13 April 2022.
21 22	492	24.	Social Security Administration. Requesting SSA's Death Information. Accessed at
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	493		www.ssa.gov/dataexchange/request_dmf.html on 13 April 2022.
	494	25.	MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US). LDL: The
	495		"Bad" Cholesterol. Available at: <u>https://medlineplus.gov/ldlthebadcholesterol.html</u> .
	496		Accessed June 16, 2023.
	497	26.	Johannesen CDL, Langsted A, Mortensen MB, Nordestgaard BG. Association between
	498		low density lipoprotein and all cause and cause specific mortality in Denmark:
	499		prospective cohort study. BMJ 2020; 371:m4266: Erratum in: BMJ 2021; 12;372.
39 40 41	500	27.	Yi SW, An SJ, Park HB, Yi JJ, Ohrr H. Association between low-density lipoprotein
42 43	501		cholesterol and cardiovascular mortality in statin non-users: a prospective cohort study in
44 45	502		14.9 million Korean adults. Int J Epidemiol 2022; 51:1178-1189.
46 47 48	503	28.	Rong S, Li B, Chen L, Sun Y, Du Y, Liu B, Robinson JG, Bao W. Association of low-
48 49 50	504		density lipoprotein cholesterol levels with more than 20-year risk of cardiovascular and
51 52	505		all-cause mortality in the general population. J Am Heart Assoc 2022; 11:e023690.
53 54			
55 56 57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	506	29.	Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary
5 6	507		prevention of cardiovascular disease: A report of the American College of
7 8	508		Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
9 10 11	509		Circulation 2019; 140:e596-e646. Erratum in: Circulation 2019; 140:e649-e650. Erratum
12 13	510		in: Circulation 2020; 141:e60. Erratum in: Circulation 2020; 141:e774.
14 15	511	30.	Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide
16 17 18	512		decision-making in the primary prevention of atherosclerotic cardiovascular disease: A
19 20	513		special report from the American Heart Association and American College of
21 22	514		Cardiology. Circulation 2019; 139:e1162-e1177. Erratum in: Circulation 2019;
23 24 25	515		139:e1188.
25 26 27	516	31.	Banach M, Penson PE. Statins and LDL-C in secondary prevention-so much progress, so
28 29	517		far to go. JAMA Netw Open 2020; 3:e2025675.
30 31 22	518	32.	Tecson KM, Kluger AY, Cassidy-Bushrow AE, et al. Usefulness of statins as secondary
32 33 34	519		prevention against recurrent and terminal major adverse cardiovascular events. Am J
35 36	520		<i>Cardiol</i> 2022; 176:37-42.
37 38	521	33.	Stone NJ, Robinson JG, Lichtenstein AH, et al; American College of
39 40 41	522		Cardiology/American Heart Association Task Force on Practice Guidelines. 2013
42 43	523		ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic
44 45	524		cardiovascular risk in adults: a report of the American College of Cardiology/American
46 47 48	525		Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63(25 Pt
49 50	526		B):2889-34. Erratum in: J Am Coll Cardiol 2014; 63(25 Pt B):3024-25. Erratum in: J Am
51 52	527		<i>Coll Cardiol</i> 2015; 66:2812.
53 54 55			
56			
57 58			

59 60
Page 27 of 48

1 2			
2 3 4	528	34.	Gurwitz JH, Go AS, Fortmann SP. Statins for primary prevention in older adults:
5 6	529		uncertainty and the need for more evidence. JAMA 2016; 316:1971-72.
7 8 9	530	35.	Han BH, Sutin D, Williamson JD, et al. ALLHAT Collaborative Research Group. Effect
10 11	531		of statin treatment vs. usual care on primary cardiovascular prevention among older
12 13	532		adults: The ALLHAT-LLT Randomized Clinical Trial. JAMA Intern Med 2017; 177:955-
14 15 16	533		65.
16 17 18	534	36.	Cholesterol Treatment Trialists' Collaboration. Effect of statin therapy on muscle
19 20	535		symptoms: an individual participant data meta-analysis of large-scale, randomised,
21 22	536		double-blind trials. Lancet 2022; 400:832-45. Erratum in: Lancet 2022; 400:1194.
23 24 25	537	37.	Mansi IA, Chansard M, Lingvay I, Zhang S, Halm EA, Alvarez CA. Association of statin
26 27	538		therapy initiation with diabetes progression: A retrospective matched-cohort study. JAMA
28 29	539		Intern Med 2021; 181:1562-74.
30 31 32	540	38.	Crandall JP, Mather K, Rajpathak SN, et al. Statin use and risk of developing diabetes:
33 34	541		results from the Diabetes Prevention Program. BMJ Open Diabetes Res Care 2017;
35 36	542		5:e000438. Erratum in: BMJ Open Diabetes Res Care 2017; 5: e000438corr1.
37 38	543	39.	Abbasi F, Lamendola C, Harris CS, et al. Statins are associated with increased insulin
39 40 41	544		resistance and secretion. Arterioscler Thromb Vasc Biol 2021; 41:2786-97.
42 43	545	40.	Zhou D, Liu X, Lo K, Huang Y, Feng Y. The effect of total cholesterol/high-density
44 45	546		lipoprotein cholesterol ratio on mortality risk in the general population. Front Endocrinol
46 47 48	547		(Lausanne) 2022; 13:1012383.
49 50	548	41.	Park B, Jung DH, Lee HS, Lee YJ. Triglyceride to HDL-cholesterol ratio and the incident
51 52	549		risk of ischemic heart disease among Koreans without diabetes: A longitudinal study
53 54 55	550		using national health insurance data. Front Cardiovasc Med 2021; 8:716698.
56 57			
58 59			For neer review only - http://bmionen.hmi.com/site/about/guidelines.yhtml
00			······································

1 2			
3 4	551	42.	Yuge H, Okada H, Hamaguchi M, Kurogi K, Murata H, Ito M, Fukui M.
5 6	552		Triglycerides/HDL cholesterol ratio and type 2 diabetes incidence: Panasonic Cohort
7 8 9 10 11 12 13	553		Study 10. Cardiovasc Diabetol 2023; 22:308.
	554	43.	Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of
	555		oxidative stress: applications to cardiovascular research and practice. Redox Biol 2013;1:
14 15	556		483–91.
16 17 18	557	44.	Mackness B, Mackness M. The antioxidant properties of high-density lipoproteins in
19 20	558		atherosclerosis. Panminerva Med 2010; 54:83–90.
21 22	559	45.	Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins
23 24	560		inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler
25 26 27	561		Thromb Vasc Biol 1995; 15:1987–94.
28 29	562	46.	Nicholls SJ, Rye KA, Barter PJ. High-density lipoproteins as therapeutic targets. Curr
30 31	563		<i>Opin Lipidol</i> 2005; 16:345–9.
32 33 34 35 36	564	47.	Gleeson R. Atherogenic dyslipidemia a medical underwriter's iceberg. J Insur Med
	565		2009; 41:264-9.
37 38	566	48.	Riaz H, Khan SU, Rahman H, et al. Effects of high-density lipoprotein targeting
39 40	567		treatments on cardiovascular outcomes: A systematic review and meta-analysis. Eur J
41 42 43	568		Prev Cardiol 2019; 26:533-43.
44 45	569	49.	Byrne P, Demasi M, Jones M, Smith SM, O'Brien KK, DuBroff R. Evaluating the
46 47	570		association between low-density lipoprotein cholesterol reduction and relative and
48 49 50	571		absolute effects of statin treatment: A systematic review and meta-analysis. JAMA Intern
51 52	572		Med 2022; 182:474-81. Erratum in: JAMA Intern Med 2022; 182:579.
53 54			
55 56 57			
57 58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 48

1 2			
3 4	573	50.	Diamond DM, Leaverton PE. Historical review of the use of relative risk statistics in the
5 6 7 8 9 10 11 12 13	574		portrayal of the purported hazards of high LDL cholesterol and the benefits of lipid-
	575		lowering therapy. Cureus 2023; 15:e38391. Erratum in: Cureus 2023; 15:c116.
	576	51.	Ravnskov U, Alabdulgader A, de Lorgeril M, et al. The new European guidelines for
	577		prevention of cardiovascular disease are misleading. Expert Rev Clin Pharmacol 2020;
14 15	578		13:1289-94.
16 17 18	579	52.	Diamond DM, Ravnskov U. How statistical deception created the appearance that statins
19 20	580		are safe and effective in primary and secondary prevention of cardiovascular disease.
21 22	581		Expert Rev Clin Pharmacol 2015; 8:201-10.
23 24 25	582	53.	Dicembrini I, Giannini S, Ragghianti B, Mannucci E, Monami M. Effects of PCSK9
25 26 27 28 29 30 31 32 33 34 35 36	583		inhibitors on LDL cholesterol, cardiovascular morbidity and all-cause mortality: a
	584		systematic review and meta-analysis of randomized controlled trials. J Endocrinol Invest
	585		2019; 42:1029-39.
	586	54.	Steg PG, Szarek M, Bhatt DL, et al. Effect of alirocumab on mortality after acute
	587		coronary syndromes. Circulation 2019; 140:103-112.
37 38	588	55.	Tabrizi R, Tamtaji OR, Mirhosseini N, et al. The effects of statin use on inflammatory
39 40	589		markers among patients with metabolic syndrome and related disorders: A systematic
41 42 43	590		review and meta-analysis of randomized controlled trials. <i>Pharmacol Res</i> 2019; 141:85-
44 45	591		103.
46 47	592	56.	Sahebkar A, Ponziani MC, Goitre I, Bo S. Does statin therapy reduce plasma VEGF
48 49 50	593		levels in humans? A systematic review and meta-analysis of randomized controlled trials.
50 51 52	594		Metabolism 2015; 64:1466-76.
53 54			
55 56 57			
57 58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2			
3 4	595	57.	Puccetti L, Pasqui AL, Pastorelli M, et al. Time-dependent effect of statins on platelet
5 6 7	596		function in hypercholesterolaemia. Eur J Clin Invest 2002; 32:901-8.
7 8 9	597	58.	Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004;
10 11	598		109(23 Suppl 1):III39-43.
12 13	599	59.	Blumenthal RS, Cainzos-Achirica M. The Ever-Growing Role of Coronary Artery
14 15 16	600		Calcium in Primary Prevention. Available at: https://www.acc.org/Latest-in-
16 17 18	601		Cardiology/Articles/2021/06/21/13/05/The-Ever-Growing-Role-of-CAC-in-Primary-
19 20	602		Prevention. Accessed June 20, 2023.
21 22	603	60.	Nasir K, Cainzos-Achirica M. Role of coronary artery calcium score in the primary
23 24 25	604		prevention of cardiovascular disease. BMJ 2021; 373:n776.
26 27	605	61.	Bittencourt MS, Nasir K, Santos RD, Al-Mallah MH. Very high LDL cholesterol: The
28 29	606		power of zero passes another test. Atherosclerosis 2020; 292:207-8.
30 31 32	607	62.	Tanne JH. Meta-analysis says low LDL cholesterol may be associated with greater risk of
33 34	608		cancer. <i>BMJ</i> 2007; 335:177.
35 36	609	63.	Benn M, Tybjærg-Hansen A, Stender S, Frikke-Schmidt R, Nordestgaard BG. Low-
37 38	610		density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J
39 40 41	611		Natl Cancer Inst 2011; 103:508-19.
42 43	612	64.	Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of
44 45	613		cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 2016;
46 47 48	614		4:e609-16.
49 50 51 52 53 54 55 56 57	615		
58 59			For peer review only - http://bmiopen.hmi.com/site/about/guidelines.yhtml
00			. e. peer terten enty inteps/senjopensenjeens/jeens/jeensenjeens/

1 2	
3	6
4 5	c
6 7	C
8 0	6
10	6
11	6
13 14	Ū
15 16	6
17 18	6
19	6
20	6
22 23	0
24 25	6
26 27	6
28 20	6
30	~
31 32	6
33 34	6
35 36	6
37 38	6
39 40	
40 41	6
42 43	6
44 45	6
46 47	6
48	U
49 50	6
51 52	6
53 54	6
55 56	-
57	
58 59	
60	

FIGURE LEGENDS 516

5	617	Figure 1.	Plot of cumula	ative mortality rates in 6-month intervals over 12 years of follow-up			
3	618		by baseline Ll	DL-C category. Dashed lines depict the 3 lowest LDL-C categories			
, 0 1	619		(30-79, 80-99	, 100-129 mg/dL) and solid lines depict the highest LDL-C			
2	620		categories (13	00-159, 160-189, ≥190 mg/dL).			
4	621	Figure 2.	Plot of mortal	ity hazard ratios (HR, filled circles) and 95% confidence intervals			
6 7 8	622		(vertical lines)) across categories of LDL cholesterol (top), total cholesterol to			
9 20	623		HDL choleste	rol ratio (middle), and triglycerides to HDL cholesterol ratio			
21 22	624		(bottom). The	left side of the graph is for patients aged 50-69 years; the right side			
23 24	625		is for patients	aged 70-89 years. The dashed line reflects the referent group null			
26 27	626		value (1.0) for	r the HR. Q: quintile. Each model is adjusted for: age, race, sex,			
28 29	627		BMI, current	smoker, former smoker, history of the following in the past year:			
30 31 22	628		hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer,				
82 83 84	629		chronic obstru	active pulmonary disease, chronic kidney disease, baseline systolic			
85 86	630		and diastolic b	blood pressure, glucose, and the following medications in the past			
87 88	631		year: ACE Inf	hibitors, beta-blockers, calcium blockers, any SBP lowering			
10 11	632		medication, di	iuretics, aspirin, DOACS, anti-depressants, opioids, and statin			
12 13	633		initiation >1 y	vear after baseline cholesterol measurement.			
14 15	634						
16 17 18	635	Supplement	Figure 1.	Flow diagram of selection of patients for the study cohort.			
19 50	636	Supplement	Figure 2.	Continuous spline plots of the relationship between different lipid			
51 52	637			parameters and adjusted risk of long-term mortality. The spline			
53 54 55	638			includes 95% confidence bands, with narrower bands indicating a			
56 57							

1 2		
2 3 4	639	higher prevalence of patients with the given lipid value. X-axis
5 6	640	values below the horizontal line with 0.0 value indicate lower risk
7 8 9	641	of mortality; X-axis values above the line indicate higher risk of
10 11	642	mortality.
12 13	643	
$\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\end{array}$	644	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

BMJ Open

Table 1. Baseline characteristics of study population by baseline LDL cholesterol va	alue
--	------

	30 to 79	80 to 99	100 to 129	130 to 159	160 to 189	190 or higher
Characteristic	(n=16,162)	(n=32,517)	(n=69,399)	(n=43,333)	(n=12,663)	(n=3,586)
Age, median, (IQR)	59, (54,67)	59, (54,67)	59, (54,66)	59, (54,65)	59, (54,65)	60, (54,67)
Age, n, (%)						
50 to 59	8167, (50.5)	16551, (50.9)	35706, (51.5)	22811, (52.6)	6694, (52.9)	1765, (49.2)
60 to 69	4686, (29.0)	9742, (30.0)	21632, (31.2)	13797, (31.8)	4029, (31.8)	1162, (32.4)
70 to 79	2221, (13.7)	4399, (13.5)	8808, (12.7)	5103, (11.8)	1439, (11.4)	514, (13.3)
80 and older	1088, (6.7)	1825, (5.6)	3253, (4.7)	1622, (3.7)	501, (4.0)	145, (4.0)
Sex						
Female	9027, (55.9)	18965, (58.3)	42697, (61.5)	28034, (64.7)	8654, (68.3)	2562, (71.4)
Male	7135, (44.1)	13552, (41.7)	26702, (38.5)	15299, (35.3)	4009, (31.7)	1024, (28.6)
Race						
Black	1700, (10.5)	2350, (7.2)	3855, (5.6)	2076, (4.8)	607, (4.8)	208, (5.8)
White	14462, (89.5)	30167, (92.8)	65544, (94.4)	41257, (95.2)	12056, (95.2)	3378, (94.2)
Former smoker, n, (%)	4172, (27.3)	8270, (26.9)	16871, (25.7)	10354, (25.3)	2933, (24.5)	858, (25.5)
Current smoker, n, (%)	3287, (21.5)	5430, (17.6)	9822, (15.0)	6274, (15.3)	1998, (16.7)	668, (19.8)
Body mass index, median, (IQR)	25.8, (25.2,33.2)	26.3, (25.2,33.8)	26.6, (25.2,34.0)	26.9, (25.2,33.9)	26.9, (25.2,33.6)	26.7, (25.2,33.1)
History of obesity, n, (%)	6011, (37.2)	12438, (38.3)	26946, (38.8)	16949, (39.1)	4899, (38.7)	1326, (37.0)
History of obstructive sleep apnea, n, (%)	932, (5.8)	1831, (5.6)	3619, (5.2)	1931, (4.5)	507, (4.0)	136, (3.8)
History of hypertension, n, (%)	5540, (34.3)	11331, (34.8)	23634, (34.1)	13435, (31.0)	3621, (28.6)	1060, (29.6)
History of atrial fibrillation, n, (%)	687, (4.3)	1181, (3.6)	1930, (2.8)	845, (2.0)	214, (1.7)	60, (1.7)
History of arrythmia, n, (%)	1178, (7.3)	2254, (6.9)	4143, (6.0)	2054, (4.7)	528, (4.2)	133, (3.7)
History of valvular heart disease, n, (%)	431, (2.7)	834, (2.6)	1505, (2.2)	798, (1.8)	246, (1.9)	60, (1.7)
History of congestive heart failure, n, (%)	251, (1.6)	375, (1.2)	597, (0.9)	245, (0.6)	80, (0.6)	15, (0.4)
History of deep vein thrombosis, n, (%)	184, (1.1)	323, (1.0)	667, (1.0)	356, (0.8)	93, (0.8)	25, (0.7)
History of cancer, n, (%)	1554, (9.6)	2916, (9.0)	5597, (8.0)	3348, (7.7)	912, (7.2)	281, (7.8)
History of chronic obstructive pulmonary	1147, (7.1)	1783, (5.5)	3156, (4.5)	1666, (3.8)	474, (3.7)	146, (4.1)
disease, n, (%)						
History of chronic kidney disease, n, (%)	329, (2.0)	424, (1.3)	695, (1.0)	356, (0.8)	126, (1.0)	42, (1.2)
History of depression, n, (%)	1985, (12.3)	3981, (12.2)	8327, (12.0)	5214, (12.0)	1606, (12.7)	440, (12.3)
Systolic BP (mmHg), median, (IQR)	128, (118,140)	127, (118,138)	128, (118,139)	128, (120,140)	128, (120,140)	130, (120,140)
Diastolic BP (mmHg), median, (IQR)	78, (70,84)	78, (70,84)	80, (71,84)	80, (72,84)	80, (72,84)	80, (72,86)
HDL cholesterol (mg/dL), median, (IQR)	57 (45,73)	56 (44,70)	55 (45,68)	55 (45,66)	54 (45,65)	53 (45,64)
Total/HDL cholesterol, median, (IQR)	2.5, (2.2,3.0)	3.0, (2.5,3.6)	3.5, (3.0,4.2)	4.0, (3.4,4.8)	4.6, (4.0,5.5)	5.5, (4.6,6.5)
Triglycerides (mg/dL), median, (IQR)	90, (63,137)	91, (67,131)	100, (74,140)	111, (83,151)	125, (94.167)	149, (110,201)
Hemoglobin (g/dL), median, (IQR)	13.7, (12.6,14.7)	13.9, (12.9,14.8)	14.0, (13.1,14.9)	14.1, (13.3,15.0)	14.2, (13.4,15.0)	14.1, (13.3,15.0)
Glucose (mg/dL), median, (IQR)	94, (87,104)	94, (87,103)	94, (88,102)	94, (88,102)	95, (89,103)	96, (89,105)

Page **32** of **35**

Page 34 of 4	8
--------------	---

ACE Inhibitor, n, (%)						
	2060, (12.7)	3992, (12.3)	8024, (11.6)	4454, (10.3)	1205, (9.5)	328, (9.1)
Angiotensin receptor blocker, n, (%)	1028, (6.4)	2017, (6.2)	3927, (5.7)	2018, (4.7)	558, (4.4)	156, (4.4)
Beta blocker, n, (%)	2747, (17.0)	4827, (14.8)	8969, (12.9)	4709, (10.9)	1352, (10.7)	430, (12.0)
Calcium blocker, n, (%)	1931, (11.9)	3501, (10.8)	6612, (9.5)	3534, (8.2)	956, (7.5)	297, (8.3)
Diuretic, n, (%)	2662, (16.5)	4763, (14.6)	8814, (12.7)	4717, (10.9)	1257, (9.9)	390, (10.9)
Anti-depressant, n, (%)	3497, (21.6)	6504, (20.0)	13784, (19.9)	8624, (19.9)	2628, (20.8)	797, (22.2)
Opioids, n, (%)	3319, (20.5)	5400, (16.6)	9688, (14.0)	5711, (13.2)	1599, (12.6)	523, (14.2)
Anti-platelet agent, n, (%)	2209, (13.7)	4319, (13.3)	9006, (13.0)	5057, (11.7)	1267, (10.0)	402, (11.2)
Aspirin, n, (%)	3082, (19.1)	6087, (18.7)	12511, (18.0)	7117, (16.4)	1922, (15.2)	586, (16.3)
Direct oral anticoagulant, n, (%)	423, (2.6)	684, (2.1)	1086, (1.6)	479, (1.1)	133, (1.1)	33, (0.9)
ASCVD 10-year risk, median, (IOR)	5.8, (2,3,12.6)	5.8, (2,5,12.7)	5.9, (2,8,12.3)	6.3, (3.1,12.2)	6.8, (3.6,13.0)	8.7, (4,6,15.7)
ASCVD 10-year risk, n, (%)						, , , , , ,
Low	6204, (58.8)	12166, (58.3)	25457, (58.6)	15048, (57.3)	4144, (54.1)	900, (43.0)
Intermediate	2887, (27.4)	5804, (27.8)	12514, (28.8)	8161, (31.1)	2596, (33.9)	839, (40.0)
High	1459, (13.8)	2888, (13.8)	5472, (12.6)	3045, (11.6)	913, (11.9)	356, (17.0)
Started statin use >1 year after baseline	484, (3.0)	921, (2.8)	2948, (4.2)	3448, (8.0)	1600, (12.6)	644, (18.0)
measurement, n, (%)						· · · · ·

Page 33 of 35

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
י ר	
2	
2	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
-	

Table 2. Risks and hazard ratios for death by LDL	cholesterol level at baseline
---	-------------------------------

		Cumu	lative incid	ence (%)	Total	Crude	Adjusted	95%
LDL cholesterol (mg/dL)	n	1-year	5-year	10-year	# deaths	HR	HR	C.I.
30 to 79	16162	2.7	11.3	19.8	2159	1.41	1.23	1.17 - 1.30
80 to 99	32517	1.7	8.1	14.7	3232	1.0	1.0	
100 to 129	69399	1.1	6.0	11.7	5415	0.77	0.87	0.83 - 0.91
130 to 159	43333	1.0	5.2	10.7	2971	0.69	0.88	0.84 - 0.93
160 to 189	12663	1.2	5.4	10.1	821	0.68	0.91	0.84 - 0.98
190 or higher	3586	1.8	7.9	14.0	317	0.96	1.19	1.06 - 1.34
Patients aged 50-69								
30 to 79	12853	1.8	8.1	14.2	1241	1.52	1.20	1.20 - 1.39
80 to 99	26293	1.1	5.2	9.6	1745	1.0	1.0	
100 to 129	57338	0.7	3.9	7.6	2924	0.76	0.86	0.81 - 0.92
130 to 159	36608	0.7	3.4	6.9	1653	0.69	0.85	0.79 - 0.91
160 to 189	10723	0.9	3.7	6.5	472	0.70	0.89	0.81 - 0.99
190 or higher	2927	1.2	5.7	9.4	181	1.01	1.24	1.06 - 1.44
Patients aged 70-89								
30 to 79	3309	6.3	24.3	42.7	918	1.25	1.15	1.06 - 1.25
80 to 99	6224	4.5	20.5	37.2	1487	1.0	1.0	
100 to 129	12061	2.7	16.0	31.4	2491	0.80	0.87	0.82 - 0.93
130 to 159	6725	2.8	15.3	30.8	1318	0.76	0.91	0.84 - 0.98
160 to 189	1940	2.9	15.0	29.7	349	0.75	0.92	0.82 - 1.04
190 or higher	659	4.5	17.5	34.2	136	0.90	1.15	0.96 - 1.37

* Model adjusted for age, race, sex, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

			ĩ	e de la companya de la				
		Cum	ulative incide	nce (%)	Total	Crude	Adj. HR	95%
LDL Cholesterol (mg/dL)	n	1-year	5-year	10-year	# events	HR	Model	C.I.
ASCVD								
30 to 79	16162	0.8	3.9	6.5	816	1.25	1.10	1.00 - 1.20
80 to 99	32517	0.5	2.8	5.3	1341	1.0	1.0	
100 to 129	69399	0.6	2.5	4.7	2509	0.87	0.94	0.88 - 1.00
130 to 159	43333	0.5	2.4	4.8	1586	0.89	0.96	0.89 - 1.03
160 to 189	12663	0.5	2.7	5.1	490	0.98	0.98	0.88 - 1.08
190 or higher	3586	0.9	4.7	7.6	205	1.50	1.23	1.06 - 1.43
ASCVD/Mortality								
30 to 79	16162	1.0	11.8	21.4	2590	1.36	1.19	1.14 - 1.26
80 to 99	32517	0.8	8.4	16.5	4014	1.0	1.0	
100 to 129	69399	0.6	6.4	13.5	6952	0.79	0.89	0.85 - 0.92
130 to 159	43333	0.5	5.8	12.8	4005	0.74	0.90	0.86 - 0.94
160 to 189	12663	0.5	6.5	12.6	1160	0.77	0.93	0.87 - 0.99
190 or higher	3586	0.9	9.9	18.5	452	1.12	1.20	1.08 - 1.32

Table 3. Risks and hazard ratios for ASCVD and ASCVD/mortality by LDL cholesterol levels at baseline

Model: Adjusted for age, race, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

Page 35 of 35

Plot of mortality hazard ratios (HR, filled circles) and 95% confidence intervals (vertical lines) across categories of LDL cholesterol (top), total cholesterol to HDL cholesterol ratio (middle), and triglycerides to HDL cholesterol ratio (bottom). The left side of the graph is for patients aged 50-69 years; the right side is for patients aged 70-89 years. The dashed line reflects the referent group null value (1.0) for the HR. Q: quintile. Each model is adjusted for: age, race, sex, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

338x190mm (96 x 96 DPI)

	Wh	ite Male	Black	(AA) Male	Whi	ite Female	Black	(AA) Female
	10-yr	Risk	10-yr	Risk	10-yr	Risk	10-yr	Risk
Age	risk	Category	risk	Category	risk	Category	risk	Category
50	3.5%	Low	5.2%	Borderline	1.4%	Low	2.2%	Low
51	3.8%	Low	5.4%	Borderline	1.5%	Low	2.4%	Low
52	4.2%	Low	5.7%	Borderline	1.7%	Low	2.6%	Low
53	4.6%	Low	6.0%	Borderline	1.8%	Low	2.9%	Low
54	5.1%	Borderline	6.2%	Borderline	2.0%	Low	3.1%	Low
55	5.6%	Borderline	6.5%	Borderline	2.2%	Low	3.4%	Low
56	6.1%	Borderline	6.8%	Borderline	2.4%	Low	3.7%	Low
57	6.6%	Borderline	7.1%	Borderline	2.6%	Low	4.0%	Low
58	7.2%	Borderline	7.4%	Borderline	2.9%	Low	4.4%	Low
59	7.9%	Intermediate	7.7%	Intermediate	3.1%	Low	4.7%	Low
60	8.5%	Intermediate	8.0%	Intermediate	3.5%	Low	5.1%	Borderline
61	9.2%	Intermediate	8.3%	Intermediate	3.8%	Low	5.5%	Borderline
62	10.0%	Intermediate	8.7%	Intermediate	4.2%	Low	6.0%	Borderline
63	10.8%	Intermediate	9.0%	Intermediate	4.6%	Low	6.4%	Borderline
64	11.7%	Intermediate	9.3%	Intermediate	5.1%	Borderline	6.9%	Borderline
65	12.5%	Intermediate	9.7%	Intermediate	5.6%	Borderline	7.4%	Borderline
66	13.5%	Intermediate	10.0%	Intermediate	6.2%	Borderline	8.0%	Intermediate
67	14.5%	Intermediate	10.4%	Intermediate	6.9%	Borderline	8.5%	Intermediate
68	15.5%	Intermediate	10.7%	Intermediate	7.6%	Intermediate	9.1%	Intermediate
69	16.6%	Intermediate	11.1%	Intermediate	8.4%	Intermediate	9.7%	Intermediate
70	17.8%	Intermediate	11.5%	Intermediate	9.3%	Intermediate	10.4%	Intermediate
71	19.0%	Intermediate	11.9%	Intermediate	10.3%	Intermediate	11.1%	Intermediate
72	20.2%	High	12.3%	Intermediate	11.3%	Intermediate	11.8%	Intermediate
73	21.5%	High	12.7%	Intermediate	12.5%	Intermediate	12.5%	Intermediate
74	22.9%	High	13.1%	Intermediate	13.8%	Intermediate	13.3%	Intermediate
75	24.3%	High	13.5%	Intermediate	15.3%	Intermediate	14.1%	Intermediate
76	25.7%	High	13.9%	Intermediate	16.8%	Intermediate	15.0%	Intermediate
77	27.3%	High	14.3%	Intermediate	18.5%	Intermediate	15.9%	Intermediate
78	28.8%	High	14.7%	Intermediate	20.4%	High	16.8%	Intermediate
79	30.4%	High	15.2%	Intermediate	22.5%	High	17.7%	Intermediate

Supplement Table 1.	. ASCVD 10-Year R	isk Calculations f	or Primary Pre	evention* by Age	, Race, and Sex
					,,

*Defined as non-diabetic persons with approximate guideline-driven "normal" values for total cholesterol (190 mg/dL), LDL cholesterol (125 mg/dL), HDL cholesterol (45 mg/dL for males, 55 mg/dL for females), systolic blood pressure (125 mmHg), diastolic blood pressure (75 mmHg), no history of smoking, not on anti-hypertensive medications, not on statin therapy, not on aspirin therapy.

https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/

2
3
1
- -
2
6
7
8
9
10
10
11
12
13
14
15
16
17
10
18
19
20
21
22
23
20
24
25
26
27
28
29
30
21
51
32
33
34
35
36
37
20
30
39
40
41
42
43
11
44
45
46
47

Supplement Table 2. Maximum/Range of Total Cholesterol (T-C) Values Along with T-C to HDL-C Cholesterol Ratios for Different Life Insurance Underwriting Categories

		Life Insurance Under	writing Category	
Age Category	Elite Plus*	Preferred Plus*	Standard Plus	Standard
	(ages 18-75)	(ages 18-75)	(ages 18-75)	(all ages)
54 and younger	220/4.5	240/5.0	260/6.0 or 280/5.5	
	0r		280/6.5 or 300/6.0	
55 to 69	230/4.5	260/5.5 or 280/5.0	150 to 300/7.0 or	
	0		150 to 310/6.5	
70 and older	150 to 240/5.0	150 to 280/5.5 or	Current medication	
		150 to 300/5.0	acceptable (all ages)	
0 to 44				<u>≤</u> 300/9.6 or
		0		>300/8.0
45 to 65		V		<u><</u> 350/9.6 or
			06	351 to 400/8.0
66 and older				150 to 350/10.5 or
			J.	351 to 375/9.6

*Current medication OK if acceptable level maintained for at least 12 months (all ages)

Source: http://www.cassaniinsurance.com/wp-content/uploads/2018/02/Met-Life-condensed_uw_guide.pdf

BMJ Open

		Cum	ulative incide	nce (%)	Total	Crude	Adj. HR	95%
LDL Cholesterol (mg/dL)	n	1-year	5-year	10-year	# deaths	HR	Model	C.I.
Female								
30 to 79	9027	2.3	9.4	17.1	1043	1.42	1.23	1.14 - 1.33
80 to 99	18965	1.4	6.7	12.3	1597	1.0	1.0	
100 to 129	42697	0.8	5.2	10.5	2985	0.82	0.88	0.83 - 0.94
130 to 159	28034	0.9	4.8	10.2	1802	0.78	0.89	0.83 - 0.95
160 to 189	8654	1.1	5.2	9.7	542	0.80	0.91	0.82 - 1.00
190 or higher	2562	1.8	7.8	14.6	233	1.20	1.24	1.08 - 1.42
Male								
30 to 79	7135	3.3	13.7	23.4	1116	1.37	1.22	1.13 - 1.32
80 to 99	13552	2.2	10.0	18.4	1635	1.0	1.0	
100 to 129	26702	1.5	7.2	13.8	2430	0.73	0.86	0.80 - 0.91
130 to 159	15299	1.3	6.0	11.5	1169	0.61	0.85	0.79 - 0.92
160 to 189	4009	1.4	5.6	10.8	279	0.58	0.90	0.79 - 1.02
190 or higher	1024	1.8	8.1	12.2	84	0.72	1.06	0.85 - 1.32

Model: Adjusted for age, race, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

		Cum	ulative incide	nce (%)	Total	Crude	Adj. HR	95%
LDL cholesterol (mg/dL)	n	1-year	5-year	10-year	# deaths	HR	Model	C.I.
Low or Borderline Risk								
30 to 79	6204	1.5	6.7	12.2	505	1.66	1.51	1.34 - 1.70
80 to 99	12166	1.0	4.2	7.2	607	1.0	1.0	
100 to 129	25457	0.6	2.9	5.6	927	0.73	0.78	0.70 - 0.86
130 to 159	15048	0.5	2.5	5.2	483	0.66	0.75	0.66 - 0.84
160 to 189	4144	0.6	2.7	4.7	126	0.65	0.75	0.62 - 0.91
190 or higher	900	0.6	4.3	7.7	43	1.05	1.18	0.86 - 1.61
Intermediate Risk								
30 to 79	2887 🧹	3.5	15.6	27.1	491	1.38	1.25	1.11 - 1.40
80 to 99	5804	2.6	11.4	21.3	758	1.0	1.0	
100 to 129	12514	1.6	8.4	16.6	1267	0.75	0.80	0.73 - 0.87
130 to 159	8161	1.4	7.0	13.8	670	0.61	0.69	0.62 - 0.77
160 to 189	2596	1.5	7.0	12.2	193	0.58	0.68	0.58 - 0.79
190 or higher	839	2.6	9.6	14.8	77	0.77	0.89	0.70 - 1.13
High Risk								
30 to 79	1459	7.9	28.0	49.9	447	1.25	1.17	1.04 - 1.32
80 to 99	2888	5.4	23.6	43.3	772	1.0	1.0	
100 to 129	5472	3.4	19.3	36.6	1242	0.82	0.85	0.77 - 0.92
130 to 159	3045	3.8	17.6	33.5	610	0.73	0.78	0.70 - 0.87
160 to 189	913	3.9	17.9	32.3	177	0.75	0.82	0.70 - 0.97
190 or higher	356	4.1	15.7	34.2	69	0.71	0.81	0.63 - 1.04
ASCVD Risk Not Determined								
30 to 79	5612	2.3	10.1	18.0	716	1.45	1.34	1.22 - 1.48
80 to 99	11659	1.3	6.9	13.0	1095	1.0	1.0	
100 to 129	25956	0.8	5.2	10.6	1979	0.80	0.85	0.79 - 0.91
130 to 159	17079	0.8	4.6	10.1	1208	0.74	0.85	0.78 - 0.92
160 to 189	5010	1.0	4.5	9.5	325	0.72	0.85	0.75 - 0.96
190 or higher	1491	1.5	7.3	12.6	128	0.98	1.17	0.97 - 1.41

Supplement Table 4. Risks and Hazard Ratios of Death by LDL Cholesterol Levels at Baseline Stratified by ASCVD Risk Classification

 Model: Adjusted for age, BMI, history of the following in the past year: atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, glucose, and the following medications in the past year: aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

BMJ Open

		Cum	ulative incide	nce (%)	Total	Crude	Adj. HR	95%
Total/HDL Cholesterol Ratio	n	1-year	5-year	10-year	# deaths	HR	Model	C.I.
3.0 or lower	52405	1.4	6.6	12.3	4403	1.0	1.0	
> 3.0 to 4.0	63482	1.2	6.3	12.3	5078	0.98	0.98	0.94 - 1.02
> 4.0 to 5.0	37907	1.4	6.7	12.8	3153	1.04	1.04	0.99 - 1.09
> 5.0 to 6.0	16053	1.5	7.2	14.1	1466	1.15	1.12	1.06 - 1.19
> 6.0	7813	2.1	9.2	15.2	815	1.32	1.28	1.18 - 1.38
Patients aged 50-69								
3.0 or lower	42650	0.9	4.3	7.8	2297	1.0	1.0	
> 3.0 to 4.0	51918	0.8	4.0	7.8	2673	0.99	0.95	0.89 - 1.00
> 4.0 to 5.0	31713	1.0	4.4	8.5	1771	1.10	0.98	0.92 - 1.04
> 5.0 to 6.0	13706	1.1	5.4	10.3	928	1.34	1.14	1.05 - 1.23
> 6.0	6755	1.7	6.8	11.7	547	1.60	1.25	1.13 - 1.38
Patients aged 70-89								
3.0 or lower	9755	3.5	17.3	32.9	2106	1.0	1.0	
> 3.0 to 4.0	11564	3.1	16.9	32.4	2405	0.97	1.00	0.95 - 1.07
> 4.0 to 5.0	6194	3.7	18.5	35.2	1382	1.08	1.11	1.03 - 1.19
> 5.0 to 6.0	2347	4.0	17.8	35.7	538	1.10	1.08	0.98 - 1.19
> 6.0	1058	4.8	24.4	38.4	268	1.30	1.27	1.12 - 1.45

Supplement Table 5. Risks and Hazard Ratios of Death by Total Cholesterol to HDL Cholesterol Ratio at Baseline

Model: Adjusted for age, race, sex, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

Triglycerides/		Cum	ulative incide	nce (%)	Total	Crude	Adj. HR	95%
HDL-C Ratio	n	1-year	5-year	10-year	# deaths	HR	Model	C.I.
Quintile 1	35533	0.9	5.1	9.7	2370	0.63	0.76	0.72 - 0.81
Quintile 2	35403	1.2	6.2	11.9	2771	0.77	0.84	0.80 - 0.88
Quintile 3	35523	1.4	6.9	13.1	3056	0.86	0.89	0.85 - 0.94
Quintile 4	35479	1.5	7.2	13.9	3183	0.91	0.92	0.88 - 0.97
Quintile 5	35513	1.7	7.9	15.1	3518	1.0	1.0	
Patients aged 50-69								
Quintile 1	29314	0.6	3.1	5.9	1213	0.53	0.73	0.68 - 0.79
Quintile 2	29313	0.8	3.9	7.3	1458	0.66	0.82	0.76 - 0.88
Quintile 3	29213	0.9	4.4	8.5	1634	0.76	0.89	0.84 - 0.96
Quintile 4	29425	1.0	4.7	9.3	1775	0.83	0.91	0.85 - 0.97
Quintile 5	29302	1.3	5.8	10.8	2131	1.0	1.0	
Patients aged 70-89								
Quintile 1	6169	2.8	15.9	30.7	1232	0.80	0.84	0.77 - 0.91
Quintile 2	6180	3.2	16.4	31.9	1256	0.83	0.87	0.80 - 0.94
Quintile 3	6176	3.7	17.9	33.6	1357	0.91	0.93	0.87 - 1.01
Quintile 4	6180	3.7	18.5	34.6	1375	0.93	0.96	0.89 - 1.04
Quintile 5	6179	4.1	19.4	37.0	1467	1.0	1.0	

Supplement Table 6	. Risks and Hazard Ratios	s of Death by Triglyce	rides to HDL-C Ratio at Baseline
Supprement rusit o			

 Model: Adjusted for age, race, sex, BMI, current smoker, former smoker, history of the following in the past year: hypertension, atrial fibrillation, arrythmia, congestive heart failure, cancer, chronic obstructive pulmonary disease, chronic kidney disease, baseline systolic and diastolic blood pressure, glucose, and the following medications in the past year: ACE Inhibitors, beta-blockers, calcium blockers, any SBP lowering medication, diuretics, aspirin, DOACS, anti-depressants, opioids, and statin initiation >1 year after baseline cholesterol measurement.

Supplement Figure 2.

Continuous spline plots of the relationship between different lipid parameters and adjusted risk of long-term mortality. The spline includes 95% confidence bands, with narrower bands indicating a higher prevalence of patients with the given lipid value. X-axis values below the horizontal line with 0.0 value indicate lower risk of mortality; X-axis values above the line indicate higher risk of mortality.

338x190mm (96 x 96 DPI)

Section/Topic	Item #	Recommendation	Section
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Title page
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Abstract
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Introduction,
			Paragraphs 1-4
Objectives	3	State specific objectives, including any prespecified hypotheses	Introduction,
			Paragraph 5
Methods			
Study design	4	Present key elements of study design early in the paper	Methods,
			Paragraphs 1,
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data	Methods,
		collection	Paragraphs 1-4
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Methods,
			Paragraphs 3,5
			Suppl. Figure 2
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if	Methods,
		applicable	Paragraphs 2-
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	Methods,
measurement		comparability of assessment methods if there is more than one group	Paragraphs 2-
Bias	9	Describe any efforts to address potential sources of bias	Methods,
			Paragraph 3
Study size	10	Explain how the study size was arrived at	Methods,
			Paragraph 1,
			Suppl. Figure
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and	Methods,
		why	Paragraphs 4-

Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Methods,
			Paragraphs 6,7
		(b) Describe any methods used to examine subgroups and interactions	Methods,
			Paragraph 8
		(c) Explain how missing data were addressed	Methods,
			Paragraph 3
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Suppl. Figure 1
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	Suppl. Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and	Results
		potential confounders	Paragraph 1
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Summarise follow-up time (e.g., average and total amount)	Results
			Paragraph 2
Outcome data	15*	Report numbers of outcome events or summary measures over time	Results
			Paragraphs 3,4
			Tables 2,3
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence	Results
		interval). Make clear which confounders were adjusted for and why they were included	Tables 2,3
			Suppl. Tables 3-
		(b) Report category boundaries when continuous variables were categorized	Results
			Tables 1-3,
			Suppl. Tables 3-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	Results
			Paragraphs 5-8
Discussion			

Key results	18	Summarise key results with reference to study objectives	Discussion
			Paragraphs 1,3
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	Discussion
		similar studies, and other relevant evidence	Paragraphs 1,5,6,7
Generalisability	21	Discuss the generalisability (external validity) of the study results	Discussion
			Paragraph 6
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	N/A
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.