2 Supplementary Fig. 1. The behavioral changes in isolated AD mice and group

3 housed AD mice at different ages.

(A-C) The open field test was used to detect the anxious-like behavior in different groups. The total distance (A), velocity (B) and time in the center (C) were evaluated. (D, E) The elevated plus maze task was used to detect the anxious-like behavior in different groups. The time in the open arms (D) and the total entries to the open arm (E) were evaluated. (F, G) The latencies to reach the hidden platform in the learning stage (day1-day 7) of Morris Water Maze in group-housed and socially isolated WT (F) and AD (G) mice. (H-J) Latency to the platform region at day 9 (H) the total crossing numbers in the platform region at day 9 (I) and the total time spent in the target quadrant at day 9 (J) of Morris water maze in different groups. (K-M) The percent of freezing time at day 3 (acquisition stage, K) and day 5 (generalization stage, L and M) of pattern separation task. (N, O) The percent of freezing time in context C at day 3 (N) and the percent of freezing time in context C and D at day 5 (O) in one-month group-housing mice. All results are mean \pm SEM. Supplementary Fig. 2. The alterations of adult neurogenesis in the DG region of different groups (A) The representative images of doublecortin (DCX, white) and nucleus (DAPI, blue) in different groups. (B) The quantitative analysis for the DCX positive cells in the DG of different groups. ** p < 0.01, versus group-housed AD mice. All results are mean \pm SEM.

- 41
- 42

43 Supplementary Fig. 3. The alterations of DG-CA3 circuit in the different groups

(A) Experimental protocol for MFBs analysis. Mice were injected with human
Synapsin I promoter-driven AAV2/8- EGFP viruses. After 4 weeks, mice were
housed in isolation (1 day, 7 days or 14 days) or in group of 4 mice.

(B, C) The normalized density of the surface area (B) and volume (C) of MFBs
(surface area or volume of single MFB/thickness of ROI) in the different groups. The
values of the surface area and the volume were list in the bottom of curve by different
colors as indicated.

51 (D, E) The quantitative analysis for normalized surface area (D) and volume (E) of
52 MFBs in the different groups.

(F, G) The cumulative curves for normalized surface area (F) and volume (G) of
MFBs after arranging the surface area or volume from large to small in the different
groups. The dash lines in different colors indicated the percentage of the number of
MFBs when the cumulative surface area or volume reaches to 80% of total surface
area or volume.

58 (H, I) The quantitative analysis for the percentage of the number of MFBs indicated 59 in (F) and (G). ** p < 0.01, *** p < 0.001, **** p < 0.0001.

60 (J) The average amplitude of Mf mEPSCs in different groups.

61 (**K**, **L**) The average frequency (K) and amplitude (L) of mEPSCs (<45 pA) in 62 different groups. * p<0.05.

- 63 (M, N) The Golgi staining for the dendritic spines in the CA3 pyramidal neurons. (M)
 64 The representative images for spines. (N) The quantification of mushroom spine
- 65 density. **** *p*<0.0001.
- 66 All results are mean \pm SEM.
- 67
- 68
- 69

70 Supplementary Fig. 4. Overexpressing of miR-218 and miR-124 can rescues

71 mEPSC frequencies impaired by social isolation

(A) The RNA quality was validated by the PCR for 28S and 18S RNA. M, RNAmarker.

74 (**B**, **C**) The relative expression levels of miR-218 (B) and miR-124 (C) in 75 group-housed or isolated WT and AD mice. p < 0.05, ***p < 0.001.

- 76 (**D**)The relative expression levels of miR-218 and miR-124 in group-housed or 77 isolated AD mice co-treated by miR-218 agomirs and miR-124 agomirs. ****p<
- 78 0.0001.
- 79 (E) The representative mEPSC traces in the different groups.
- 80 (F) The amplitude of mEPSC in different groups. ****p < 0.0001.
- 81 (G) The frequency of mEPSC in different groups. ****p < 0.0001.

82 (H) The representative mEPSC traces and the illustration for the MF based synaptic 83 current. ****p< 0.0001.

- 84 (I, J) The representative images of doublecortin (DCX, green) and nucleus (DAPI, 85 blue) in different groups (I) and the quantitative analysis (J) for the DCX positive 86 cells in the DG of isolated AD mice co-treated by miR-dDiAs agomirs. ** p<0.01, 87 versus caremble treated isolated AD mice
- 87 versus scramble treated isolated AD mice.
- 88 (**K**)The expression profiles of precursors for the miR-dDiAs in the DG of in 7-day 89 socially isolated (SI) and group-housed (GH) WT and AD mice. **p < 0.01, ***p <
- socially isolated (SI) and group-1
 0.001, ****p<0.0001.
- 91 (L, M) The enhancer regions of miR-dDiAs as indicated by the H3K27ac, H3K4me1
 92 and H3K4me3 peaks.
- 93
- 94
- 95

96 Supplementary Fig. 5. miR-dDiAs regulate the expression of Rtn3

- 97 (A) The protein level of RTN3 was analyzed by western blot. The representative blots 98 (upper) and the quantitative analysis. p < 0.05, p < 0.001.
- (B) The potential miRNAs binding sites in 3'UTR of *Rtn3* (upper) and the detailed
 sequence of wild type and mutant 3'UTR of *Rtn3* containing the binding sites of
 miR-218 and miR-124.
- 102 (C) The luciferase experiments were used to evaluate the direct binding of miR-218 103 and miR-124 with the 3'UTR of *Rtn3*. *p<0.05, vs scramble treated.
- 104 (**D**, **E**) The protein level of RTN3 for Figure 4I in the cells treated with miR-218 and 105 miR-124 antagomirs (D) or with miR-218 and miR-124 mimics (E). p < 0.05, p < 0.05,
- 107 (F) The relative expression levels of miR-218, miR-124 and *Rtn3* mRNA upon the 108 treatment of miR-218 antagomirs, miR-124 antagomirs and scrambled control. ***p< 109 0.001, concentration of treatment of antagomir: miR-218, 200 nM; miR-124, 100nM.
- 110 *****p*< 0.0001.
- 111 (G) The relative expression levels of miR-218, miR-124 and *Rtn3* mRNA upon the 112 treatment of miR-218 mimics, miR-124 mimics and scrambled control. concentration 113 of treatment of mimics: miR-218, 200 nM; miR-124, 100nM. ****p < 0.0001.
- 114
- 115 All results are mean \pm SEM.
- 116
- 117
- 118

119 Supplementary Fig. 6. Knockdown of RTN3 in isolated *Rtn3*^{flox/+} -AD mice

120 rescues impaired mEPSCs

121 (A) Upper: Schematic diagram of the $Rtn3^{flox/flox}$ allele and the allele cut by 122 Cre-mediated recombination. Lower: The representative genotyping blots for

- 123 $Rtn3^{\text{flox/flox}}$ mice. WT: wild type mice; f/f: $Rtn3^{\text{flox/flox}}$ mice; f/+: $Rtn3^{\text{flox/+}}$ mice; Neg: 124 negative control; M: marker.
- (B, C) The images of body size in different mouse strains (B) and quantificationanalysis of body weight (C).
- (D, E) The representative images of the whole brain in different mouse strains (D) and
 quantification analysis of brain weight (E).
- 129 (F-H) The mRNA (F) and protein (G, H) level of the RTN3 in the hippocampus of
- 130 different mouse strains. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
- 131 (I) The representative mEPSC traces in the different groups.
- 132 (J) The frequency of mEPSC in different groups. ****p < 0.0001.
- 133 (**K**) The amplitude of mEPSC in different groups. ****p < 0.0001.
- 134 (L) The representative mEPSC traces and the illustration for the MF based synaptic 135 current. ****p < 0.0001.
- 136 (M) The representative images of doublecortin (DCX, green) and nucleus (DAPI,
- blue) and the quantitative analysis for the DCX positive cells in the DG of isolatedRtn3 cKO AD mice.
- 139
- 140 All results are mean \pm SEM.
- 141
- 142

143 Supplementary Fig. 7. Upregulation of RTN3 induced by miR-dDiAs decoy was

144 rescues by *Rtn3* shRNA.

(A) Schematic representation of the miR decoy. Ten miR-218 and five miR-124 target
sequences were inserted into the 3' UTR of a GFP reporter gene driven by human
synapsin 1 promoter. Poly(A), polyadenylation tail. Dashes indicate that there is no
nucleotide at that position in the sequence.

- (B) The diagram for the virus injection in WT mice and the representative fluorescentimage.
- 151 (C-E) The level of miRNAs and *Rtn3* mRNA (C) and protein (D, E) level of the 152 RTN3 in the hippocampus. * p<0.05, *** p<0.001, **** p<0.0001.
- (F, G) The percent of freezing time at day 3 (acquisition stage, F) and day 5
 (generalization stage, G) of pattern separation task.
- 155
- 156
- 157

158 Supplementary Fig. 8. RTN3 binds with mitochondria associated proteins,

159 vesicle associated proteins and PP2A B subunits.

- (A) The DG region of hippocampus from 7-day socially isolated and group-housed
 AD mice was co-immunoprecipitated by RTN3 antibody and subjected to SDS-PAGE
- 162 gels followed by Coomassie blue staining analysis. Three bands were selected for

163 further analysis by mass spectrometry.

164 (B-E) Identification of RTN3 binding protein RAB3B (B), SLC25A46 (C), DNM1L

165 (D) and SYNGR1 (E) by mass spectrometry. aa: amino acid.

166 (F) The GO analysis for the proteins that enriched in RTN3 interactome of social 167 isolated mice (fold change ≥ 1.5) by mass spectrum. The color of dots indicates the 168 different adjust *p* value and the size of dots indicates the different numbers of 169 identified proteins.

170 (G) The gene set enrichment analysis for the proteins that enriched in RTN3 171 interactome of social isolated mice (fold change ≥ 1.5) by Cytoscape. The size of dots 172 indicates the number of gene size.

173

174

175 Supplementary Fig. 9. RTN3 induced hyperphosphorylation of Tau through

176 binding with PP2A B subunits, but did not affect the phosphorylation of

177 **GSK-3β**.

178 (A) PPP2R5A co-immunoprecipitated with PPP2CA and Tau5 in hippocampus.

179 (B) PPP2R2C co-immunoprecipitated with PPP2CA and Tau5 in hippocampus.

180 (C) PPP2R5E co-immunoprecipitated with PPP2CA and Tau5 in hippocampus.

181 (**D**) PP2A activity assay. **** *p*<0.0001.

182 (E) Quantification analysis of the phosphorylation of tau at Ser396 (pSer396) for 183 Figure 5N. *p < 0.05.

(F) Analysis of the phosphorylation of tau at Thr231 (pT231), Ser262 (pS262),
Ser202 and Thr205 (AT8) in cells transfected with P301L-GFP and *Rtn3*.

(G, H) The protein level of GSK3β and the phosphorylation of GSK3β at Ser9 was
analyzed by western blot. The representative blots (g) and the quantitative analysis
(h).

- 189 (I) Quantification analysis of His for Figure 5P. **p < 0.01.
- 190

191 All results are mean \pm SEM.

192

193

- 194
- 195

196 Supplementary Fig. 10. Senktide disrupts the binding between RTN3 and its

197 partners.

(A) The wide-type and mutated *Rtn3* mRNA and protein sequence used to analyze the
key amino acids that is required for binding to RTN3 partners. *Rtn3* WT: *Rtn3* wild
type, *Rtn3* Mut: the indicated amino acids of RTN3 were mutated to alanine (A) or
leucine (L).

(B-E) The HEK293 cells were transfected with pcDNA3.1(+)-Rtn3-WT-His or 202 pcDNA3.1(+)-Rtn3-Mut-His pcDNA3.1(+)-*Rab3b*-Flag 203 plus (B), pcDNA3.1(+)-*Syngr1*-Flag pcDNA3.1(+)-*Dnm11*-Flag 204 (C), (D), pcDNA3.1(+)-Slc25a46-Flag (E) plasmids, separately. After 48 hours, the cell lysis 205 206 was collected and 5% volume of cell lysates were used for input, half volume of the 207 remaining cell lysis was coimmunoprecipitated with anti-IgG or anti-His separately and then subjected to the western blot by using anti-Flag. 208 (F-I) Hydrogen bond donor/acceptor of binding site in RTN3 with Carbetocin (blue, 209 F), Glycerol Phenylbutyrate (blue, G), Saralasin (blue, H), Aripiprazole Lauroxil (blue, 210 I). RTN3 is labeled with green while the amino acids interacting with indicated drugs 211 were labeled with magenta. The green dotted lines indicated hydrogen bond between 212 213 the compound and RTN3. 214 (J-M) The HEK293 cells were transfected with pcDNA3.1(+)-Rtn3-His plus the pcDNA3.1(+)-*Rab3b*-Flag pcDNA3.1(+)-*Dnm11*-Flag 215 (J), (K). pcDNA3.1(+)-Slc25a46-Flag (L) and pcDNA3.1(+)-Syngr1-Flag (M)plasmids and 216 then treated with the indicated drugs for 48 hours. Then, the cell lysis was collected 217 218 and immunoprecipitated with anti-His and then subjected to the western blot by using 219 anti-Flag. (N) Scheme for treatment of social isolated AD mice with senktide. Senktide was 220 administrated to the 2 months isolated AD mice during the 7 days isolation with the 221 222 dose of 0.4mg/kg by s.c. injection every day. 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 Supplementary Fig. 11. Senktide inhibits the binding between Rtn3 and its 239 partners in vivo. 240 241 (A, B) Rtn3 co-immunoprecipitated with PPP2R2C, PPP2R5A and PPP2R5E in 242 hippocampus.

243 (C, D) PPP2R5A co-immunoprecipitated with PPP2CA and Tau5 in hippocampus.

- 244 (E, F) PPP2R2C co-immunoprecipitated with PPP2CA and Tau5 in hippocampus.
- 245 (G, H) PPP2R5E co-immunoprecipitated with PPP2CA and Tau5 in hippocampus.

246 (I, J) RTN3 co-immunoprecipitated with DNM1L, RAB3B, SLC25A46 and
247 SYNGR1 in hippocampus.

- 248 (K) The immunofluorescence of pS396 in the stratum lucidum of CA3 region.
- 249
- 250
- 251
- 252

253 254

255 Supplementary Table 1 patient information

Number	Age	Sex	Final diagnosis
1	85	М	Multiple organ failure
2	90	М	Liver cancer
3	84	Μ	Respiratory failure
4	84	Μ	Multiple organ failure
5	87	Μ	Multiple organ failure
6	85	Μ	AD
7	88	Μ	AD
8	95	Μ	AD
9	81	Μ	AD

256

257

258 Supplementary Table 2 list of top 40 DG enriched miRNAs

miRNA name	Ct value
mmu-miR-194	26.90
mmu-miR-187	27.74
mmu-miR-27a	27.28
mmu-miR-27b	27.39
mmu-let-7a	21.80
mmu-let-7d	26.43
mmu-miR-128	29.13
mmu-let-7c	22.96
mmu-miR-99b	18.22
mmu-miR-361	24.52
mmu-miR-151	24.92
mmu-miR-181a	19.83
mmu-miR-132	25.93
mmu-miR-127	26.97
mmu-miR-26a	23.94
mmu-miR-191	17.48
mmu-miR-125a	26.18
mmu-miR-125b	23.29

mmu-miR-24	23.70
mmu-let-7b	16.54
mmu-miR-342	22.47
mmu-let-7e	25.93
mmu-miR-103	23.38
mmu-miR-221	21.92
mmu-miR-222	19.64
mmu-miR-107	30.92
mmu-miR-139	21.82
mmu-miR-23a	25.01
mmu-miR-23b	29.41
mmu-miR-16	25.11
mmu-miR-138	21.89
mmu-miR-15b	26.76
mmu-miR-29a	19.13
mmu-miR-335	24.01
mmu-miR-539	28.44
mmu-miR-15a	28.52
mmu-miR-185	26.34
mmu-miR-210	26.25
mmu-miR-124	30.46
mmu-miR-218	18.78

Supplementary Table 7. The predicted compounds that docked to the Rtn3 pocket

Supplementary Table 7. The predicted compounds that docked to the Kins pocket				
zinc_id	Libdock score	Molecule Names	Cat NO.	
ZINC000150340074	236.347			
ZINC000095615286	222.768	Senktide	HY-P0187	
ZINC000195761836	219.775			
ZINC000169289386	216.689	Saralasin	HY-P0205	
ZINC000169368439	214.577			
ZINC000150340074	212.726			
ZINC000261106254	210.867			
ZINC000169368439	209.293			
ZINC000095617677	208.834			
ZINC000169368439	208.506			
ZINC000072131413	208.409	hydroxy ritonavir		
ZINC000261106252	206.951			
ZINC000095615286	206.59	Senktide	HY-P0187	
ZINC000095615286	204.971			
ZINC000410428644	204.527			
ZINC000169368439	203.397			
ZINC000150338506	201.065	inositol niacinate		
ZINC000169289386	200.677	Saralasin	HY-P0205	

ZD 1C0001 (020020)	100 407	G 1 ¹	1111 00005
ZINC000169289386	199.427	Saralasın	HY-P0205
ZINC000085427689	199.095		
ZINC000410428644	198.891		
ZINC000085537068	198.243	pralmorelin	
ZINC000169368439	197.945		
ZINC000150340074	197.562		
ZINC000150338703	197.404	Carbetocin	HY-17573
ZINC000085537068	197.31	pralmorelin	
ZINC000169368439	197.224		
ZINC000085537068	196.842	pralmorelin	
ZINC000150338506	196.629	inositol niacinate	
ZINC000008214644	196.339	pentagastrin	
ZINC000095564895	195.52	Aripiprazole lauroxil	HY-108751
ZINC000169289386	195.15	Saralasin	HY-P0205
ZINC000195761836	194.839		
ZINC000095617677	194.077		
ZINC000169289386	193.911	Saralasin	HY-P0205
ZINC000085574641	193.719		
ZINC000169289386	193.706	Saralasin	HY-P0205
ZINC000085537068	192.612	pralmorelin	
ZINC000169368439	192.465		
ZINC000169368439	191.83		
ZINC000169289386	191.386	Saralasin	HY-P0205
ZINC000085537068	191.103	pralmorelin	
ZINC000261106252	190.497		
ZINC000195761836	190.315		
ZINC000085537068	190.165	pralmorelin	
ZINC000169289386	190.057	Saralasin	HY-P0205
ZINC000072131413	189.393	hydroxy ritonavir	
ZINC000049918329	189.129		
ZINC000008214644	188.903	pentagastrin	
ZINC000169289386	188.35	Saralasin	HY-P0205
		Glycerol	HY-B2087
ZINC000038945666	189.353	phenylbutyrate	

Supplementary Table 8. Antibodies, probes and drugs. Antibodies

	source, proses une un			
Antibody name	Dilution	Cat NO.	Manufacturer	
RTN3 Polyclonal antibody	1:200 for IF	12055-2-AP	Proteintech	
	1:1000 for WB			
Anti-TIMM44 antibody	1:200 for IF	HPA043052	Sigma-Aldrich	
anti-FLAG antibody	1:1000 for WB	20543-1-AP	Proteintech	
His-Tag Monoclonal antibody	1:1000 for WB	66005-1-Ig	Proteintech	
Synaptogyrin-3 antibody	1:200 for IF	sc-271046	Santa cruz	

Beta Actin Polyclor Doublecortin	nal antibody	1:1000 for WB 1:200 for IF	20536-1-AP 4604s	Proteintech Cell Signaling
Anti-Histone H3 (a antibody	cetyl K27)	1:100 for CUT&Tag	ab4729	Abcam
PPP2CA Polyclona	l antibody	1:1000 for WB	13482-1-AP	Proteintech
PPP2R2C Polyclon	al antibody	1 : 1000 for WB	12747-1-AP	Proteintech
PPP2R5A Polyclon	al antibody	1 : 1000 for WB	12675-2-AP	Proteintech
PPP2R5E Polyclon	al antibody	1 : 1000 for WB	23885-1-AP	Proteintech
Dnm11 Polyclonal a	antibody	1 : 1000 for WB	12957-1-AP	Proteintech
Anti-Synaptogyrin	1 antibody	1:1000 for WB	ab113886	Abcam
SLC25A46 antibod	у	1 : 1000 for WB	sc-515810	Santa cruz
RAB3B Monoclona	al Antibody	1:1000 for WB	bsm-51316M	Bioss
Tau5 Monoclonal A	Antibody	1 : 1000 for WB	AHB0042	Invitrogen
Phospho-Tau (Ser2 Monoclonal Antibo	02, Thr205)	1:1000 for WB	MN1020	Invitrogen
Tau (Phospho-Ser3	96) Antibody	1:1000 for WB	#11102	Signalway
Solar Fluor 488	Solar Fluor 488		#S1063	Solarbio
IF, immunofluoresc	ence; WB, Wester	m Blot.		
Probes				
miRNA		Sequenc	e 5'-3'	
miR-124		GGCAT	ICACCGCGTGC	CTTA
miR-218		ACAIG	GITAGATCAAG	CACAA
Druge				
Drug name	Concentration	Cat NO	<u> </u>	Manufacturar
Senktide	5 um in vitro		187	MedChemFynress
Selikude	0.4 mg/kg s c		107	meachemilapress
Saralasin	$5 \ \mu m$ in vitro	HY-P02	205	MedChemExpress
Carbetocin	10 µm in vitro) HY-17:	573	MedChemExpress

Glycerol	10 µm in vitro	HY-B2087	MedChemExpress
phenylbutyrate			
Aripiprazole lauroxil	10 µm in vitro	HY-108751	MedChemExpress
YF-2	20 mg/kg <i>i.p</i> .	HY-16531	MedChemExpress
SAHA	50 mg/kg <i>i.p</i> .	HY-10221	MedChemExpress
miR-218-5p agomir	$0.5~\mu L~200~\mu M$ in vivo	miR40000663-4-5	RIBOBIO
miR-218-5p mimic	200 nM in vitro	miR10000663-1-5	RIBOBIO
miR-218-5p	200 nM in vitro	miD212010151026 4 5	
antagomir		IIIIK312919131930-4-3	RIBOBIO
miR-124-3p mimic	100 nM in vitro	miR10000134-1-5	RIBOBIO
miR-124-3p agomir	$0.5 \ \mu L \ 100 \ \mu M$ in vivo	miR40000134-4-5	RIBOBIO
miR-124-3p	100 nM in vitro	miD20000124 4 5	
antagomir		IIIK30000134-4-3	RIBOBIO

Plasmids and viruses

pEGFP-C1	Clontech	6084-1
pEGFP-C1- P301L	This lab	NA
pCDNA3.1(+)-Rtn3-6×His	This paper	NA
pCDNA3.1(+)-Dnm1l-3×FLAG	This paper	NA
pCDNA3.1(+)-Syngr1-3×FLAG	This paper	NA
pCDNA3.1(+)-Rab3b-3×FLAG	This paper	NA
pCDNA3.1(+)-Slc25a46-3×FLAG	This paper	NA
pCDNA3.1(+)-Rtn3-3*A/L-6×His	This paper	NA
pCDNA3.1(+)- <i>Rtn3</i> -5*A -6×His	This paper	NA
pCDNA3.1(+)- <i>Rtn3</i> -6*A -6×His	This paper	NA
pCDNA3.1(+)- <i>Rtn3</i> -7*A -6×His	This paper	NA
pCDNA3.1(+)- <i>Rtn3</i> -17*A -6×His	This paper	NA
psiCheck2.0-Rtn3 3'UTR	This paper	NA
psiCheck2.0-Rtn3 Mut1	This paper	NA
psiCheck2.0-Rtn3 Mut2	This paper	NA
psiCheck2.0-Rtn3 Mut3	This paper	NA
AAV-hSYN-miR-218 & 124 decoys	Obio	Custom made
AAV-Hsyn- <i>Rtn3</i> shRNA	Obio	Custom made

Supplementary Table 9. primers used for qPCR and plasmid construction

5'-3'
CTGGCAGCCTTCAGTGTTATC
ATCGCAGCATTCATGTAGTTG
CCTGATATCGTGTTTTTCGG
CTTGTTAATGAGCAGCCGTG
GCACCAAGAGGAAAGTCTGT
TATTATCTGGGCGAATAGAA

Hdac7 F	CAGGATCGGCTCAAACCTCA
Hdac7 R	GGCCATCATTCGCCATAGGT
Hdac8 F	ACGGGAAGTGTAAAGTAGCC
Hdac8 R	TCGATGTAAAACTGAAGGCA
Sirt6 F	GAATGCTCGGCCCTCGAAGA
Sirt6 R	GGTGCCCACAACCGTGTCTC
<i>Hdac3</i> F	AGAGAGTGGCCGCTACTATT
Hdac3 R	TTCCCCATGTCCTCGAATGC
Hdac6 F	CCAGCCTCGCATACAAACAA
Hdac6 R	AAGTCAGACACACCCAGTTC
Sirt1 F	ACACCTCTTCATATTTCGGA
Sirt1 R	TTCTTGTGGTTTTTTCTTCCA
Hdac10 F	GTCAGATAAGGAAGGAAAAC
Hdac10 R	ATGTAGATGAGGCAAAGGTT
Hdac4 F	AGTTCTCACTGCCCTTGGAA
Hdac4 R	GGGAGCTGTGCTGTGTCTTC
<i>Sirt3</i> F	GGCACTACAGGCCCAATGTC
Sirt3 R	GCTGCTCCCCAAAGAACACA
<i>Sirt5</i> F	CCAGTTGTGTGTTGTAGACGAA
Sirt5 R	AGTTTTAAATAAGGTTCCGT
<i>Hdac11</i> F	CCGGTCATCTTTCTTCCCAA
Hdac11 R	AGTCTCGCTCATGCCCATTG
<i>Hdac5</i> F	CGCTACGACAACGGGAACTT
Hdac5 R	CTGGGCTTTTGCTGCAAGAC
Hdac9 F	AGCCCATCTCACCTTTAGAC
Hdac9 R	GCTTGCCACTGCCCTTTCTC
Sirt7 F	CTTTGGGGGAGAGGGGGGACAT
Sirt7 R	GTTGGTGGGAGCGGTTGTAG
<i>EP300</i> F	AATGGGGAAGTGAGGCAGTG
<i>EP300</i> R	TGGGGTTGTGGTGGAATCTG
Crebbp F	AACCAAAACGACTACAGGAG
Crebbp R	TGAATCACAAAGAATACCTC
Sirt4 F	ACTCCTCGTGATGACAGGCG
Sirt4 R	CCCACAAAGTTTCGGGGCCCA
Hdac2 F	CAGTTGCCCTTGATTGTGAA
Hdac2 R	CTCCTTTGGGGGTCTGTTTTC
Hat1 F	ATCTTGAGAATGACATTAGA
Hatl R	GAACAGTGTTGACAGGCTAC
miR-218-5p	TTGTGCTTGATCTAACCATGT
miR-124-3p	TAAGGCACGCGGTGAATGCC
miR-210-3p	CTGTGCGTGTGACAGCGGCTGA
miR-185-5p	TGGAGAGAAAGGCAGTTCCTGA
miR-15a-5p	TAGCAGCACATAATGGTTTGTG
miR-539-5p	GGAGAAATTATCCTTGGTGTGT

miR-335-3p	TTTTTCATTATTGCTCCTGACC
miR-29a-3p	TAGCACCATCTGAAATCGGTTA
miR-15b-5p	TAGCAGCACATCATGGTTTACA
miR-138-5p	AGCTGGTGTTGTGAATCAGGCCG
miR-16-5p	TAGCAGCACGTAAATATTGGCG
miR-23b-3p	ATCACATTGCCAGGGATTACC
miR-23a-3p	ATCACATTGCCAGGGATTTCC
miR-139-5p	TCTACAGTGCACGTGTCTCCAG
miR-107-3p	AGCAGCATTGTACAGGGCTATCA
miR-222-3p	AGCTACATCTGGCTACTGGGTCT
miR-221-3p	AGCTACATTGTCTGCTGGGTTTC
miR-103-3p	AGCAGCATTGTACAGGGCTATGA
let-7e-5p	TGAGGTAGGAGGTTGTATAGTT
miR-342-3p	TCTCACACAGAAATCGCACCCGT
let-7b-5p	TGAGGTAGTAGGTTGTGTGGTT
miR-24-3p	TGGCTCAGTTCAGCAGGAACAG
miR-125b-5p	TCCCTGAGACCCTAACTTGTGA
miR-125a-5p	TCCCTGAGACCCTTTAACCTGTGA
miR-191-5p	CAACGGAATCCCAAAAGCAGCTG
miR-26a-5p	TTCAAGTAATCCAGGATAGGCT
miR-127-3p	TCGGATCCGTCTGAGCTTGGCT
miR-132-5p	AACCGTGGCTTTCGATTGTTAC
miR-181a-5p	AACATTCAACGCTGTCGGTGAGT
miR-151-3p	CTAGACTGAGGCTCCTTGAGG
miR-361-3p	TCCCCCAGGTGTGATTCTGATTTGT
miR-99b-5p	CACCCGTAGAACCGACCTTGCG
let-7c-5p	TGAGGTAGTAGGTTGTATGGTT
miR-128-3p	TCACAGTGAACCGGTCTCTTT
let-7d-5p	AGAGGTAGTAGGTTGCATAGTT
let-7a-5p	TGAGGTAGTAGGTTGTATAGTT
miR-27a-3p	TTCACAGTGGCTAAGTTCCGC
miR-187-3p	TCGTGTCTTGTGTTGCAGCCGG
miR-194-5p	TGTAACAGCAACTCCATGTGGA
pre-miR-218 F	TGCTTGCGAGGTATGAGAAA
pre-miR-218 R	TAGAAAGCTGCGTGACGTTC
pre-miR-124 F	CTCTCTCCCGTGTTCACAG
pre-miR-124 R	GCCTTAATTGTATGGACATT
<i>Slit2</i> F	CTTCGGGTAGATGCTTTTCA
Slit2 R	AATCCGCTAGCCACTTGAGA
<i>Slit3</i> F	AATAGGATCAAGGAAGTGCG
<i>Slit3</i> R	TTGTCATAGAGAGACAGCAG
miR124-2hg F	ACAAACCGAAGGACCTGACCA
miR124-2hg R	GGCTCTTTTCACAGCATCCCTT
Mir124a-1hg F	GATTGGAGAGATCAACGCTG

Mir124a-1hg R	GACAATGAGATAACAGCCACGT
Universal R Primer	GCTGTCAACGATACGCTACG
U6 for	GATGACACGCAAATTCGTGAA
<i>Gapdh</i> for	TGTTTCCTCGTCCCGTAG
Gapdh rev	CAATCTCCACTTTGCCACT
hsa-miR-124	TAAGGCACGCGGTGAATGCC
hsa-miR-218	TTGTGCTTGATCTAACCATGT

primer for plasmid	5'-3'
construction	
<i>Rtn3</i> F	TGAGTCAGTCAGTCTGTCGGA
<i>Rtn3</i> R	TCCTTCATAGTACAAGTGATGATG
<i>Slc25a46</i> F	GTGACTTCCGGTTGTCAGTCT
<i>Slc25a46</i> R	AACACAGTGACCTGAATCCAAG
<i>Rab3b</i> F	CTGCCTCTCACCCACTATCG
<i>Rab3b</i> R	GGGAATGGACAGTAATGGAGA
Syngr1 F	ACGATGGAAGGGGGGGGGGGGGA
Syngr1 R	GTGGCAGAGCAGCAGAGGAAG
Dnm1l F	CGGAGGAGAAGAGGAAGCAAG
Dnm1l R	AGGCAGCAGGAGGTTCAAGTC
Rtn3 F for miR-218	GCATCAGTTACTAAAACACCATT
Rtn3 R for miR-218	GATTCAATCTTTATTCTTTACGG
Rtn3 F for miR-124	AAATAGTATGGGGCAAGAGTG
Rtn3 R for miR-124	GCATTCTGGGAGTTCTGTAAG
<i>Rtn3</i> F-1 for miR-124	TTTCAAGGTATTTGATGGTCAC
<i>Rtn3</i> R-1 for miR-124	TGTTAGGAGACCCCATAGACC
<i>Rtn3-</i> 3*A/L R	AGCGCATAGTGCAGCAGCCCGCCGCCGCCGCCGAGAGCT
<i>Rtn3-</i> 3*A/L F	TGCTGCACTATGCGCTGCCCTGGGGGGGGAAGAGCTGC
<i>Rtn3</i> 5*A R-1	GAGCCGCATGCCTTCGCCCCAGGGCGGGGGGGGGGGGG
<i>Rtn3</i> 5*A F-1	GAAGGCATGCGGCTCCTCGTGTGCGGTGCACGATCT
<i>Rtn3</i> 5*A R-2	TGCCACATCTCGAGCGAAAATCAGATCGTGCACCGCA
<i>Rtn3</i> 5*A F-2	GCTCGAGATGTGGCAAAGACTGGGTTTGTCTTTGGCA
<i>Rtn3</i> 6*A R-1	TGCGGCAAAGACAGCCCCAGTCTTCTTCACATCTC
<i>Rtn3</i> 6*A F-1	GCTGTCTTTGCCGCAACACTGATCATGCTGCTCTC
<i>Rtn3</i> 6*A R-2	CAGCATTGCCAGTGTGGTGCCAAAGACA
<i>Rtn3</i> 6*A F-2	ACACTGGCAATGCTGCTCTCTCTGGCAGC
<i>Rtn3</i> 7*A R	AGCGGCTGCCAGAGCAGCCAGCATGATCAGTGTGGTGC
<i>Rtn3</i> 7*A F	GCTGCTCTGGCAGCCGCTAGTGTTATCAGTGTGGTCTC
<i>Rtn3</i> 17*A R	TCAGAGCCATAGCGACAGCCAGCTTCAAGGAGT
<i>Rtn3</i> 17*A F	TCGCTATGGCTCTGATGACCTATGTTGGTGC

