SUPPLEMENTARY MATERIAL

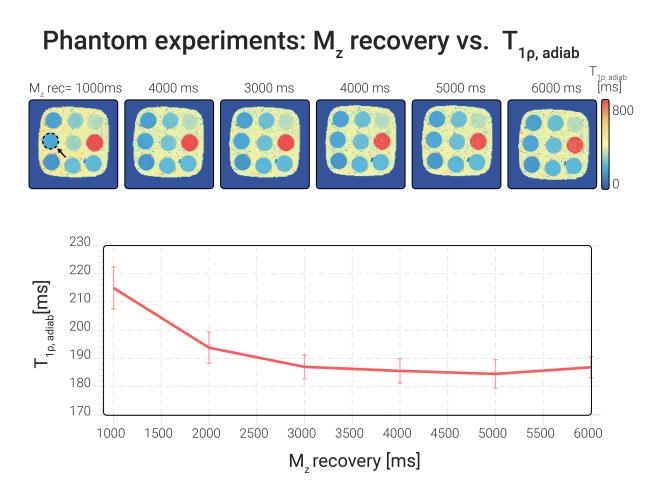
Robust cardiac $T_{1\rho}$ mapping at 3T using adiabatic spin-lock preparations

Chiara Coletti 1 , Anastasia Fotaki 2 , Joao Tourais 1 , Yidong Zhao 1 , Christal van de Steeg-Henzen 3 , Mehmet Akçakaya 4 , Qian Tao 1 , Claudia Prieto 2,5,6 , Sebastian Weingärtner 1

INDEX OF SUPPLEMENTARY FIGURES

S1:	Rest period for longitudinal magnetization recovery	2
S2:	Phantom $T_{1\rho, \text{ adiab}}$ and $T_{1\rho}$ maps, average values and repeatability	3
S3:	Patients $T_{1\rho, \text{ adiab}}$ maps: aSL preparations comparison	4
INDE	EX OF SUPPLEMENTARY TABLES	
S1:	Results healthy subjects cohort 1: $T_{1\rho, \text{ adiab}}$	5
S2:	Results healthy subjects cohort 1: precision, reproducibility and inter-subject variability	5
S3:	Results healthy subjects cohort 2: $T_{1\rho, \text{ adiab}}$ and $T_{1\rho}$	5
S4:	Results healthy subjects cohort 2: precision, reproducibility and inter-subject variability	5

¹Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands


²Department of Biomedical Engineering, King's College London, London, United Kingdom

³HollandPTC, Delft, The Netherlands

⁴Department of Electrical and Computer Engineering and Center for Magnetic Resonance Research, University of Minnesota, Minnesota, USA

⁵School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile

⁶Milleniun Institute for Intelligent Healthcare Engineering, Santiago, Chile

FIGURE S1: Phantom $T_{1\rho, \text{ adiab}}$ maps acquired with different rest periods for longitudinal magnetization recovery delays. $T_{1\rho, \text{ adiab}}$ values (\pm standard deviation) reported in the plot are measured from the normal myocardium-mimicking vial (left column, middle row). For longitudinal magnetization recovery delays ≥ 3000 ms, the measured $T_{1\rho, \text{ adiab}}$ values deviate less than 5% from the asymptotic value.

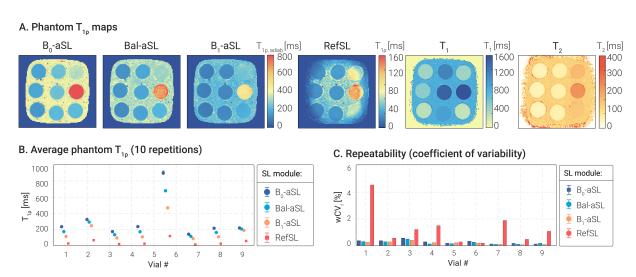
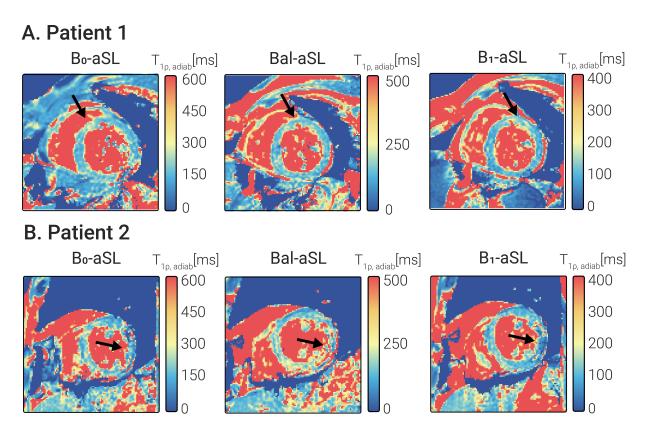



FIGURE S2: (A) Example of $T_{1\rho, \text{ adiab}}$ and $T_{1\rho}$ maps of the tissue-mimicking T1MES phantom. Good map quality was achieved with aSL preparations, whereas visible artifacts are apparent in most vials in the maps obtained with RefSL preparation. Approximate T_1 and T_2 maps are displayed for reference. (B) $T_{1\rho, \text{ adiab}}$ and $T_{1\rho}$ values with standard deviation bars for each vial, averaged over 10 repetitions. $T_{1\rho, \text{ adiab}}$ values are consistently higher than $T_{1\rho}$ values measured with RefSL preparations. $T_{1\rho, \text{ adiab}}$ dispersion is observed across B_0 , Bal and B_1 optimized pulses, due to a progressively lower β value. (C) Repeatability measured as the coefficient of variability $(\overline{wCV_i})$ for each vial. Averaging across all the vials, aSL preparations yielded significantly improved repeatability $(\overline{wCV_i}) = 0.29 \pm 0.15$ for B_0 -aSL, p < 0.01; $\overline{wCV_i} = 0.23 \pm 0.13$ for Bal-aSL, p < 0.01; $\overline{wCV_i} = 0.21 \pm 0.11$ for B_1 -aSL, p < 0.001 vs. $\overline{wCV_i} = 1.30 \pm 1.34$ for RefSL).

FIGURE S3: $T_{1\rho, \text{ adiab}}$ maps obtained with B_0 -aSL, Bal-aSL and B_1 -aSL preparations. Image quality is compromised due to artifacts visible in the maps for B_0 -aSL in (A) and for Bal-aSL in (B). Furthermore Bal-aSL prepared baseline images were subject to substantial residual motion in both patients, lowering the image quality.

TABLE S1: In-vivo myocardial $T_{1\rho, \text{ adiab}}$ values [ms], averaged over all repetitions and segments for 6 healthy volunteers of cohort 1.

Subject #	$ m B_0 ext{-}aSL$	Bal-aSL	$\mathrm{B}_{1} ext{-}\mathrm{aSL}$
1	196.41 ± 25.04	160.93 ± 15.50	93.76 ± 7.99
2	201.99 ± 25.30	162.66 ± 18.56	92.82 ± 11.00
3	197.61 ± 23.06	158.34 ± 17.04	92.70 ± 10.78
4	181.04 ± 24.73	139.07 ± 19.58	73.51 ± 14.42
5	190.37 ± 22.93	161.74 ± 15.86	92.83 ± 9.25
6	197.89 ± 26.17	150.82 ± 21.99	79.25 ± 15.89

TABLE S2: In-vivo myocardial $T_{1\rho, \text{ adiab}}$ precision, reproducibility and inter-subject variability (ISV), averaged over segments and repetitions for 6 healthy volunteers of cohort 1.

S. #	B ₀ -aSL		Bal-aSL		B ₁ -aSL	
	Prec. [%]	Reprod [%]	Prec.[%]	Reprod [%]	Prec. [%]	Reprod [%]
1	12.84 ± 4.55	2.79 ± 2.37	9.72 ± 2.43	1.95 ± 1.40	8.70±3.91	2.52 ± 1.77
2	$12.86{\pm}5.72$	1.74 ± 1.80	11.94 ± 7.27	2.70 ± 2.35	12.60 ± 10.26	4.17 ± 4.69
3	11.83 ± 3.64	$2.67{\pm}2.32$	11.16 ± 5.92	2.80 ± 3.18	12.26 ± 9.92	2.77 ± 2.83
4	13.87 ± 3.18	$2.54{\pm}1.57$	14.32 ± 3.24	5.21 ± 3.33	22.53 ± 17.02	9.94 ± 14.85
5	12.19 ± 3.91	8.09 ± 7.17	$9.94 {\pm} 3.34$	$2.35{\pm}2.46$	10.51 ± 7.22	5.28 ± 4.03
6	$13.55{\pm}5.48$	$4.60{\pm}2.88$	$15.27{\pm}7.53$	$7.52 {\pm} 3.66$	$22.29{\pm}13.69$	7.04 ± 5.20
ISV[%]	5.32 ± 3.01		6.40 ± 2.66		9.25±	6.10

TABLE S3: In-vivo myocardial $T_{1\rho, \text{ adiab}}$ and $T_{1\rho}$ values [ms], averaged over all repetitions and segments for 7 healthy volunteers of cohort 2.

Subject #	$ m B_0 ext{-}aSL$	RefSL	
1	196.41 ± 25.04	23.27 ± 25.05	
2	201.99 ± 25.30	43.88 ± 46.04	
3	197.61 ± 23.06	26.45 ± 13.50	
4	181.04 ± 24.73	21.22 ± 29.12	
5	190.37 ± 22.93	33.84 ± 23.42	
6	197.89 ± 26.17	58.91 ± 32.78	
7	181.25 ± 21.18	39.65 ± 29.42	

TABLE S4: In-vivo myocardial $T_{1\rho, \text{ adiab}}$ and $T_{1\rho}$ precision, reproducibility and inter-subject variability (ISV), averaged over segments and repetitions for 7 healthy volunteers of cohort 2.

S. #	B_0 -	aSL	RefSI	SL
	Prec. [%]	Reprod [%]	Prec.[%]	Reprod [%]
1	12.84 ± 4.55	2.79±2.37	38.72 ± 25.56	29.15±23.26
2	$18.86{\pm}5.72$	1.74 ± 1.80	69.46 ± 38.78	59.35 ± 24.41
3	11.83 ± 3.64	$2.67{\pm}2.32$	54.81 ± 28.70	28.31 ± 24.14
4	15.87 ± 3.18	$2.54{\pm}1.57$	26.13 ± 39.69	57.65 ± 25.94
5	12.19 ± 3.91	8.09 ± 7.17	34.92 ± 20.38	27.85 ± 16.20
6	$13.55{\pm}5.48$	$4.60{\pm}2.88$	28.40 ± 26.49	40.20 ± 23.70
7	11.19 ± 3.28	$2.96{\pm}3.05$	43.81 ± 19.70	24.76 ± 24.14
ISV[%]	5.32±3.01		51.92=	Ŀ6.10