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MOTIVATION Several systems vaccinology studies have generated large datasets on the immune states of
individuals before and after vaccination and have identified factors that drive differences in individual vac-
cine responses. However, it has been challenging to test how well conclusions from one study generalize
across others given the differences in design. We aim to address this lack of reproducibility by establishing
a community resource and engaging the research community through open prediction challenges that allow
development and comparison of models that predict the immune response of human booster vaccinations
for Bordetella pertussis.
SUMMARY
Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing
these findings is challenging due to varying study designs. To address this lack of reproducibility, we estab-
lished a community resource for comparing Bordetella pertussis booster responses and to host annual con-
tests for predicting patients’ vaccination outcomes. We report here on our experiences with the ‘‘dry-run’’
prediction contest.We found that, among 20+models adopted from the literature, themost successful model
predicting vaccination outcome was based on age alone. This confirms our concerns about the reproduc-
ibility of conclusions between different vaccinology studies. Further, we found that, for newly trainedmodels,
handling of baseline information on the target variables was crucial. Overall, multiple co-inertia analysis gave
the best results of the tested modeling approaches. Our goal is to engage community in these prediction
challenges by making data and models available and opening a public contest in August 2024.
INTRODUCTION

The overall goal of our study is to provide a resource to develop

and test computational models of vaccine-induced immunity.

Our specific focus is on whooping cough, a vaccine-preventable,

highly contagious respiratory infection caused by Bordetella

pertussis that mainly affects infants.1 The development of the first
Cell Re
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pertussis vaccine was initiated in 1914 and became widely avail-

able in the 1940s when the whole-cell pertussis compounds (wP)

vaccinewas combinedwith diphtheria and tetanus toxins tomake

the DTwP vaccine.2–4 With the introduction of this vaccine, the

number of reported whooping cough cases in the United States

declined from approximately 200,000 a year in the pre-vaccine

era to a low of 1,010 cases in 1976.5 Due to side effects reported
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Table 1. Past and future CMI-PB annual prediction challenges

Annual prediction challenge title Contestants

Number of subjects

Current statusTraining dataset Test dataset

1 First challenge: Internal dry run CMI-PB consortium 60 (28 aP + 32 wP) 36 (19 aP + 17 wP) concluded in May 2022

2 Second challenge: Invited challenge invited contestants 96 (47 aP + 49 wP) 23 (13 aP + 10 wP) concluded in January 2024

3 Third challenge: Open Challenge public 119 (60 aP + 59 wP) 54a (27 aP + 27 wP) will be announced in August 2024

Our commitment involves conducting three annual challenges. The first challenge was completed in May 2022 with participation from the CMI-PB

consortium. The second challenge concluded in January 2024 and featured the CMI-PB consortium along with a limited number of invited contestants

from outside the consortium. We will involve members of the public in the third challenge. The first challenge included training data from a previously

published study7 and newly generated test data. Similarly, we will use both the training and test data from previous challenges as the training data for

future challenges and generate new data for testing purposes.
aGoal
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with the use of wP vaccine, wP compounds in the DTwP vaccine

were replacedwith acellular pertussis (aP) antigens, leading to the

development of a new and less reactogenic vaccine (DTaP) in

1991.6 Booster vaccines were similarly updated to include the

acellular pertussis antigens (Tdap), which are routinely scheduled

to be administered to teens and adults every 10 years.7

While the aP vaccines provided protection from whooping

cough equivalent to that of wP vaccines in clinical trials covering

the initial period after vaccination, questions have been raised

about their long-termdurability8,9 andprotectionagainst transmis-

sion.10,11 Specifically, an increase in pertussis outbreaks has been

reported in various countries that have switched from wP to aP

vaccines,12,13 including the United States (data available from

PertussisCasesbyYear,14 accessed15May2023).Manyof these

outbreaks occurred among children who only received aP vac-

cines. As a result, multiple studies about waning immunity post

aP vaccination were conducted,15–19 including the characteriza-

tionof differences in the immune responseagainst aPandwPvac-

cines.7,20–26 Some studies, including our own,7,23,24 showed that

there are long-lasting effects and differences in polarization and

proliferation of T cell responses in adults originally vaccinated

(primed) with aP vs. wP, despite subsequent Tdap booster vacci-

nation.20,21 However, it remains unclear how this difference in im-

mune responses is maintained over time between individuals

primed with an aP vs. a wP vaccine.

To address these questions, our near-term goal is to determine

how an individual responds to pertussis antigen re-encounter by

characterizing the resulting cascade of events (i.e., recall memory

response) and relating it to the pre-vaccination immune state. To

achieve this, we apply a systems vaccinology approach that inte-

grates different biological readouts such as transcriptomic, prote-

omic, andcytometricdata tobroadly define the immunestateofan

individualand todefinechanges inapre-andpost-vaccinesetting.

Subsequently, we create computational models connecting the

pre-vaccination state of an individual to the final vaccination

outcome after pertussis boost. Previous studies have identified

pre-vaccination immune signatures that are associated with high

antibody titers post vaccination in different vaccine settings,

most prominently for influenza A vaccination, but none had been

applied to pertussis booster vaccines before.27–31 Our long-term

goal is to use a predictive understanding of pertussis booster re-

sponses to identify what differentiates aP fromwP primed individ-

uals and to determine the desirable characteristics of an elicited

vaccine response.
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A common challenge in developing computational models for

biological applications is to objectively test their generalizability

and predictive performance.32–34 This is especially challenging

for systems vaccinology studies, as the design varies among

studies. The multidimensional and heterogeneous nature of sys-

tems vaccinology data poses significant challenges for model

development and validation. The presence of numerous features

and a limited sample size further exacerbates the difficulties to

conventional machine-learning (ML) and deep-learning methods.

Overfitting is a crucial issue in a setting such as this, which is

why testing any algorithm generated from the training data on a

completely independent dataset (and new cohort) is so important.

Integrating diverse data types, accounting for inter-individual vari-

ability, and capturing temporal dynamics are crucial aspects that

need to be addressed to ensure the robustness and accuracy of

computational models in system vaccinology. To address this,

we measure the systems’ response to Tdap booster vaccination

over 4 years by creating four independent datasets with different

cohorts for which computational models are created and tested

(Table 1).We established the ComputationalModels of Immunity -

Pertussis Boost (CMI-PB) resource to develop and test computa-

tional models that predict the outcome of Tdap booster vaccina-

tion that is designed to be used by the broader community. Here,

we report on the outcome of the first challenge: an ‘‘internal dry

run’’ where all teams involved in making predictions were part of

the grant. We report on the challenges encountered for data

sharing, formulating prediction questions, and the interpretation

of the results fromdifferent predictionmodels, including the deter-

mination of which factors contributed to such predictions. These

results will inform the design of the next prediction contest, which

will open to community participation in August 2024.

RESULTS

This section covers two components: first, we describe the

experience in setting up and running the internal prediction

contest. Second, we describe specific models that were devel-

oped and discuss their performance on the prediction tasks.

Running the prediction contest
Providing access to experimental data in a uniform

fashion

Our experimental study is designed for a systems-level under-

standing of the immune responses induced by Tdap booster
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Figure 1. Outline for establishing the CMI-PB resource

(A) Recruitment of human subjects and longitudinal specimen collection.

(B) Generation of multi-omics data to obtain a comprehensive understanding of the collected specimens.

(C) Implementation of a data standardization approach to ensure consistency and comparability of the generated data.

(D) The resulting dataset is provided in training and test formats to enable contestants to develop their predictive models.

(E) The CMI-PB resource website serves as a platform for hosting an annual prediction challenge, offering data visualization tools for generated data, and

providing access to teaching materials and datasets.
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vaccination and closely mimics the design of previous studies

from our group.7 Briefly, individuals primed with aP or wP in in-

fancy were boosted with Tdap and blood was collected pre-

booster and post booster at days 1, 3, 7, and 14 (Figure 1A). Mul-

tiple assays, including (1) gene expression analysis (RNA

sequencing [RNA-seq]) of bulk peripheral blood mononuclear

cells (PBMCs), (2) plasma cytokine concentration analysis, and

(3) cell frequency analysis of PBMC subsets were performed

before and after booster vaccination until day 14. In addition,

(4) plasma antibodies against Tdap were measured at all time

points. We do not include T cell response assay data in the cur-

rent challenge but plan to incorporate T cell data in future public

CMI-PB challenge. Our overall goal is to make data from these

studies available for analysis and utilize it to build computational

models that predict the vaccination outcomes of newly tested in-

dividuals. For the first CMI-PB challenge, we collected data from

a total of 60 subjects (28 aP + 32wP; Table 1), which can be used

as a training dataset to develop predictive models. Additionally,

we obtained data from a separate group of 36 newly tested sub-

jects (19 aP + 17 wP), which can be utilized as test data for

running predictions.

To integrate experimental data generated at different time

points into the centralized CMI-PB database, we created unique

subject and sample (specimen) identifiers and provided consis-
tent nomenclatures for the different readouts between training

and test datasets. The data collected post vaccination from

the test dataset were withheld and utilized for the purpose of

challenge evaluation. We used a relational database manage-

ment system with tables corresponding to entity categories,

including subject and specimen information, experimental

data, and ontology tables (database schema is provided in Fig-

ure S1). We established different access modalities, including

an application programming interface (API; https://www.

cmi-pb.org/docs/api/) and bulk file downloads, and shared

these different access modalities with our internal userbase of

contestants.

The total feature count for the training dataset was 58,659,

whereas the feature count for the test dataset was 58,462 (Fig-

ure 2A). These large numbers of features were primarily derived

from the PBMC gene expression assay dataset, which has

58,343 features with complete feature overlap between the

training and test datasets. PBMC frequency assay has 27 fea-

tures in training and 44 features in the test dataset with 23 over-

lapping features. Plasma cytokine concentrations assay has 258

features in the training dataset and 47 features in the test dataset

with 28 overlapping features. Plasma antibody titers assay has

25 features in training and 22 features in the test dataset with

20 overlapping features.
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Figure 2. Data processing, computable matrices, and prediction model generation

(A) Generation of a harmonized dataset involved identifying shared features between the training and test datasets and filtering out low-information features.

Literature-based models (team 1) used raw data from the database and applied data-formatting methods specified by existing models. JIVE and MCIA ap-

proaches (teams 2 and 3) utilized harmonized datasets for constructing their models.

(B) Flowchart illustrates the steps involved in identifying baseline prediction models from the literature, creating a derived model based on the original models’

specifications, and performing predictions as described by the authors.

(C) The JIVE approach involved creating a subset of the harmonized dataset by including only subjects with data for all four assays. The JIVE algorithm was then

applied to calculate 10 factors, which were subsequently used for making predictions. JIVE employed five different regression models for prediction purposes.

(D) MCIA approach applied MICE imputation on the harmonized dataset and used these data for model construction. MCIA method was applied to the training

dataset to construct 10 factors. Then, these 10 factors and feature scores from the test dataset were utilized to construct global scores for the test dataset. Lasso

regression was applied to make predictions. MCIAplus model was constructed by including additional features (demographic, clinical features, and 14 task

values) as factor scores, and it also utilized lasso regression to make predictions. The MCIA approach utilized MICE imputation on the harmonized dataset for

model construction. The MCIA method employed the imputed training dataset to construct 10 factors. These 10 factors, along with feature scores from the test

dataset, were used to construct global scores for the test dataset. Lasso regression was applied to make predictions. Additionally, the MCIAplus model

incorporated additional features such as demographic, clinical features, and 14 task values as factor scores. Finally, lasso regression was employed for making

predictions.
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Formulating the prediction tasks

We formulated multiple prediction tasks in order to quantitatively

compare different approaches to model immune responses to

Tdap booster vaccination. For each prediction task, pre-booster
4 Cell Reports Methods 4, 100731, March 25, 2024
data (except from aP vs. wP status) of each subject were used to

predict post-vaccination variables and rank individuals subse-

quently. We selected biological readouts known to be changed

by booster vaccination under the premise that they are likely to
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capture meaningful heterogeneity across study participants

based on our previous work.7 For instance, we have shown

that the percentage of monocytes was significantly elevated on

day 1 post booster vaccination compared to baseline (i.e., before

booster vaccination), highlighting the role of monocytes in Tdap

vaccine response.7 We created a first task in which the overall

frequency of monocytes among PBMCs on day 1 post booster

vaccination has to be predicted. Similarly, we have shown that

plasma immunoglobulin (Ig) G1–4 levels significantly increased

at day 7 post booster vaccination compared to baseline.7 The

second task consists of predicting plasma IgG levels against

the pertussis toxin (PT) on day 14 post booster vaccination.

The third task is based on our previous finding that a subset of

aP-primed individuals showed an increased expression of

proinflammatory genes, including CCL3, on day 3 post booster

vaccination.7 This task consists of predicting the gene expres-

sion of CCL3 on day 3 post booster vaccination. Overall, the first

challenge comprised 14 prediction tasks that we describe in

Table S1, including 13 prediction tasks of readouts identified

from previous work and a ‘‘sanity-check’’ task to predict the

expression of the sex-specific XIST gene post booster vaccina-

tion per individual.35

Choosing a metric to evaluate prediction performance

We set out to choose a metric to evaluate how different predic-

tion methods performed. Specifically, we wanted to have three

considerations: (1) we needed ametric that would produce a sin-

gle numeric value as an output. This would allow us to compare

and rank the performance of the prediction methods effectively.

(2) The chosen metric needed to be non-parametric because the

different experimental assays utilized in the study produce ana-

lyte measurement outputs with non-normal distributions. (3) We

wanted to avoid incorporating arbitrary cutoffs or thresholds that

could introduce subjectivity or bias into the assessment process.

Based on these considerations, we chose the Spearman rank

correlation coefficient as our primary metric. The prediction

tasks in our first challenge thus constituted predicting the rank

of individuals in specific immune response readouts from high

to low after B. pertussis booster vaccination based on their

pre-vaccination status.

Feedback from participants prior to data submission

We shared the prediction tasks, metrics, and data access instruc-

tionswithour internal contest participants inorder to testour antic-

ipated approach. Twomain points of feedbackweremadeprior to

receivingprediction results: (1) all userspreferredusing thebulkfile

downloads over utilizing the custom API we had created. Upon

questioning, most preferred to work with data hands-on rather

than having to learn a new interface. Given that creating reliable

APIs is resource intensive, thiswas identifiedasanareawewanted

to down-prioritize going forward. (2)When inspecting the antibody

titer data across years, contestants noticed significant variation in

the averages of the baseline values for donors (subjects) between

the test and training datasets. Those variations were due to a

switch in the sitewhere the assayswere performed.We thus stan-

dardized the antibody data in each year by applying the baseline

median as a normalization factor (https://github.com/CMI-PB/

2021-Ab-titer-data-normalisation; Figures S2 and S3), and

provided both the raw data and normalized data to the

contestants.
Gathering and evaluating prediction results

A total of 34 computational models were developed by three in-

dependent teams in accordance with the theme of the challenge.

Each team worked separately on their own set of models. The

first team focused on identifying and constructing baseline pre-

diction models based on the systems vaccinology literature (Fig-

ure 2B). The second and third teams, on the other hand, focused

on constructing prediction models derived from multi-omics

dimension-reduction techniques (Figures 2C and 2D). We estab-

lished a deadline of 3 months for each team to submit their

models, and, subsequently, the corresponding predictions

were received for evaluation. A complete submission file con-

tained 14 columns, one column per prediction task. We found

that most prediction models focused on a subset of tasks.

Furthermore, we found that, in some cases, predictions for indi-

vidual donors were omitted. In those cases, we used the median

rank calculated from the ranked list submitted by the contestant

to fill in missing ranks. An overview of the prediction results is

summarized in Figure 3.

Model development and evaluation
Establishing baseline prediction models from the

systems vaccinology literature

With the first team, we set out to identify existing models devel-

oped within the systems vaccinology field that aim to predict

vaccination outcomes. With systematic keyword queries using

PubMed and Google Scholar and following citations, we identi-

fied 40 studies of potential interest. A detailed review of these pa-

pers identified 10 studies with 24 models that are suitable for our

purpose as they (1) used pre-vaccination measurements that we

have available in our CMI-PB study, and (2) established biolog-

ical differences in vaccine responses that we could transfer to

our study, either by predicting antibody titers levels or classifying

subjects into high or low vaccine-induced antibody re-

sponders.28,29,31,36–42 None of these models were developed

for B. pertussis but rather they cover a wide range of vaccines,

including those against influenza, hepatitis B, and the yellow fe-

ver virus. They employed a variety of methodologies, including

classification-based (diagonal linear discriminant analysis, logis-

tic regression, naive Bayes, random forest), regression-based

(elastic net), and other approaches (gene signature and module

scores). A summary of the literature review is depicted in

Figures 2B andS4 for the 24 predictionmethods that were imple-

mented (Table S2). For each literature model, we adapted the

output scores to our prediction tasks, as described in the

STAR Methods. It has to be emphasized that these models

were repurposed for our specific prediction tasks, and our

work was not an evaluation of their performance in the areas

for which they were intended. Rather, evaluating these adapted

models sets a baseline of prediction performance and deter-

mines whether universal vaccine response predictors are readily

available.

Establishing a harmonized dataset to train ML models

Many of the features evaluated by our assays have low-informa-

tion content, specifically the transcriptomic assay, meaning that

they have low analyte levels or analytes absent across speci-

mens. Incorporating less informative features introduces various

challenges in data analysis. Low analyte levels could be difficult
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Figure 3. Evaluation of the prediction models submitted for the first CMI-PB challenge

Model evaluation was performed using Spearman’s rank correlation coefficient between predicted ranks by a contestant and actual rank for each of (A) antibody

titers, (B) immune cell frequencies, and (C) transcriptomics tasks. The number denotes Spearman rank correlation coefficient, while crosses represent any

correlations that are not significant using p R 0.05. The baseline and MCIAplus models outperformed other models for most tasks.
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to distinguish from background noise, missing data could skew

statistical analyses, and these features tend to make it more

challenging to identify a robust and accurate prediction model.

To address these issues, we applied feature filtering on each

assay in the training dataset, which is a widely adopted data

pre-processing strategy.7 For gene expression, we filtered zero

variance andmitochondrial genes and removed lowly expressed

genes (genes with transcript per million [TPM] <1 in at least 30%

of specimens). Similarly, we filtered features with zero variance

from cytokine concentrations, cell frequency, and antibody as-

says. Subsequently, we removed features not measured for

the test dataset and retained only those that overlapped be-

tween the training and test datasets. As a result, we were left

with a total of 11,661 features in the harmonized dataset out of

the original 58,420 overlapping features between training and

test dataset (Figure 2A).

Multi-omics data typically have many thousands of features

and direct model training from such data runs the risk of overfit-

ting, where the model learns the noise in the training data rather

than the underlying pattern. For this reason, feature selection

techniques and/or domain knowledge are commonly employed

to identify and focus on the most informative features, effectively

reducing the problem’s dimensionality. We have developed two

ML approaches based on the integration of multi-omics data.

The harmonized datasets were utilized for training these ML ap-

proaches, as described below.
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Establishing purpose-built models using JIVE

With the second team, we set out to build predictionmodels using

the available CMI-PB training data. Given that this included data

from different modalities, we wanted to utilize approaches that

could leverage the CMI-PB dataset in an integrative fashion. We

thus applied joint dimensionality reduction methods that discover

patterns within a single modality and across modalities to reduce

the number of dimensions. In particular, we applied the joint and

individual variation explained (JIVE) method to reduce the dimen-

sionality of our datasets before applying regression-basedmodels

tomakepredictions.43,44JIVEdecomposesamulti-sourcedataset

into three terms: a low-rankapproximation capturing joint variation

across sources, low-rank approximations for structured variation

individual to each source, and residual noise.44 This decomposi-

tion can be considered a generalization of principal-component

analysis (PCA) formulti-sourcedata.44 For JIVE, harmonized data-

sets for transcriptomics, cell frequency, and cytokines concentra-

tions were first intersected on subjects, which resulted in 13 indi-

viduals with complete data, and, finally, the decomposition was

applied,generating10 factorsper omics (Figure2C). These factors

were then used as input for five different regression-based

methods to turn the JIVE results into predictive models for each

specific task. These regression methods included linear regres-

sion, lasso, and elastic net with default parameters and two

more variants of lasso and elastic net that involved an automatic

hyperparameter search via cross-validation (CV; see Figure 2C).
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Establishing purpose-built models using multiple co-

inertia analysis

The third teamworked on three different approaches to build pre-

dictionmodels (Figure 2D). The first approach (baseline approach)

utilized clinical features (age, infancy vaccination, biological sex)

andbaseline task valuesaspredictors of individual tasks. The sec-

ondapproach (theMCIAbasic) utilized 10multi-omics factors con-

structed using multiple co-inertia analysis (MCIA) as predictors of

individual tasks. Prior to implementing MCIA, the harmonized da-

tasets were further processed to imputemissing data in the base-

line training set using themultiple imputationbychained equations

(MICE) algorithm (Figure 2).45 The objective function inMCIAmax-

imizes the covariance between each individual omic and a global

data matrix consisting of the concatenated omic data blocks.46,47

Finally, the third approach (MCIAplus) combined the first two ap-

proaches and utilized clinical features, baseline task values, the

baseline approach, and 10 MCIA factors identified through the

MCIAbasic approach as predictors of individual tasks. Further,

for all three approaches, we built a general linear model with lasso

regularization for each task. We used the feature scores as input

data and the prediction task values as response variables, gener-

ating separate predictive models for each task.

Comparing model prediction performance

In total, 32 different model predictions were submitted across

the tasks, including 24 models identified from the literature to

address antibody-related tasks, as well as eight models derived

from multi-omics dimension reduction techniques, such as JIVE

and MCIA. A heatmap visualization of Spearman’s correlations

for tasks versus models is presented in Figure 3. At least one

of the prediction models showed significant correlations for 10

out of 12 prediction tasks, whereas no model showed significant

correlations for the remaining two tasks.

The 24 literature-based models were specifically designed to

address antibody-related tasks and gave insignificant correla-

tions for 22 out of 24 models. Exceptions were two models (fur-

man_2013_age and kotliarov_2020_TGSig), showing significant

correlations for six out of the seven antibody-related tasks by

at least one model. The most successful model (furman_2013_-

age) was derived from a previous study by Furman et al.,38 where

chronological age of an individual was used as the sole predictor

for antibody response levels to influenza vaccination. Signature-

based analyses, such as pathway and clustering analysis, are

effective in capturing patterns within omics datasets that have

a large number of variables, including transcriptomic data. How-

ever, when it comes to age-based signatures, a primary limita-

tion arises from datasets where the range of ages of individuals

is very limited. In our specific case, both our training and test co-

horts have a median age of 23 years, with a range of 18–51 and

19–47 years old, respectively. Despite this limitation, the fur-

man_2013_age model successfully predicted tasks associated

with PT-specific IgG and its subtypes, IgG1 and IgG4 (Figure 2).

Many models described that biological age, measured through

an individual’s physiological state and overall health, is more ac-

curate than chronological age for predicting the onset of disease

and death.37,48 We examined a derived model incorporating bio-

logical age from Fourati et al.37 to compare whether this model

had similar performance to chronological age, which did not

demonstrate significant correlations. These results suggest
that chronological age has a strong predictive potential to be

universally utilized as a biomarker to predict antibody responses

against different pathogens in addition to influenza and

B. pertussis. The second-best-performing implied model (kot-

liarov_2020_TGSig) employed signature analysis using blood

transcription modules (BTMs) and established sets of transcrip-

tional modules designed to describe the changes in gene

expression in blood in response to different vaccines.49 In the

case of the kotliarov_2020_TGSig model, a specific BTM

comprising B cell gene signatures was utilized as the predictor

of antibody response levels to influenza vaccination in the

original studies, and it successfully predicted tasks related

to filamentous hemagglutinin (FHA)-specific IgG and IgG1 re-

sponses. Overall, the majority of literature-based impliedmodels

exhibited insignificant performance, while the simplest model

that solely relied on chronological age demonstrated promising

results.

JIVE-based submissions attempted 10 tasks, excluding the

four antibody-related tasks that had missing samples within

the harmonized dataset. Diving into the cell-frequency tasks,

we saw a modest performance for predicting plasmablast levels

on day 7, and, surprisingly, the simple linear regression per-

formed best. However, for other cell-frequency tasks, there

was no clear pattern of model performance.Within gene-expres-

sion tasks, JIVE-based models performed best when predicting

CCL3 levels on day 3 and, once again, models without hyper-

parameter tuning performed the best. Hyperparameter tuning

is a procedure that requires a set of candidate values for each hy-

perparameter; for lasso and elastic net, this means optimizing

alpha and/or L1 ratio. In ideal situations, models derived from hy-

perparameter tuning should perform the best; however, given

our low number of samples, this process may become unstable

and lead to overfitting. Turning to IL6 at day 3, all JIVE-based

models performed modestly, which suggests that this task

may be harder than others. As for NFKBIA on day 7, predictions

were poor for all JIVE-based models. The poor performance of

JIVE-based models on some predictive tasks may be due to

the limited number of subjects used (n = 13). A recent benchmark

paper showed that JIVE performs reasonably well with a dataset

of approximately 170 samples.50 Another issue may be that the

latent factors learned by JIVE are not necessarily capturing cor-

relates of predictive tasks framed in this challenge without inclu-

sion of any clinical information and explicit use of baseline values

for each task. Going forward, we will continue utilizing JIVE-

based models but will try to improve them by utilizing more

samples, more latent factors, and clinical information for the

future iterations of this challenge.

The baseline, MCIAbasic, andMCIAplus approaches were the

only methods that submitted predictions for all 14 tasks. These

three approaches outperformed other teams’ approaches.

Specifically, both the MCIAplus and baseline approaches

demonstrated significant correlations for 10 out of the 14 tasks,

as illustrated in Figure 3. On the other hand, the MCIAbasic

approach exhibited significant positive correlations for five out

of the 14 tasks. When examining the antibody tasks, both

MCIAplus and the baseline approaches showed robust

performance, ranking first in five out of the seven tasks. The

baseline approach showed significant correlations for all three
Cell Reports Methods 4, 100731, March 25, 2024 7



Resource
ll

OPEN ACCESS
cell-frequency tasks, whereas MCIAplus has similar perfor-

mance to the baseline model for two tasks except for predicting

plasmablast on day 7. The MCIAplus model showed significant

correlations for three out of four gene-expression tasks, while

the baseline model showed significant correlations for two out

of four tasks. The MCIAbasic approach worked very well with

three antibody levels and two cell-frequency tasks; however,

it performed poorly for all four gene-expression tasks. When

examining what factors led to improved performance of the

baseline and MCIAplus approach as compared to the

MCIAbasic approach, it was straightforward to deduce that clin-

ical information and the baseline values of the prediction tasks

were strong contributors in predicting most tasks. However,

there was one notable exception observed in the analysis. Spe-

cifically, when considering the task related to NFKBIA on day 7,

the MCIAplus approach exhibited a significant correlation, out-

performing both the baseline and MCIAbasic models. This

improvement in performance was attributed to a combination

of MCIA factors and baseline features, highlighting their collec-

tive contribution to the predictive capabilities of the MCIAplus

approach in this particular task. We noted that, while most

contributing features were shared between the baseline and

MCIAplus approaches for most tasks, there were certain in-

stances where theMCIA factors exhibited a greater contribution.

For example, in the prediction of IgG responses on day 14, com-

mon features were baseline levels of IgG and IgG1 responses

against PT; however, apart from these two features, two MCIA

factors were significant contributors to the MCIAplus model,

whereas baseline levels of IgG1 responses against FHA antigen

were a significant contributor in the case baseline model. Over-

all, it is worth noting that clinical information and baseline values

of known immune signatures significantly affected the prediction

performance of underlying models.

DISCUSSION

Here, we report on the first rigorous evaluation of multi-omics

prediction tools on vaccine immune responses. This inaugural

dry run constitutes an important step for the development and

refinement of our future community prediction contest. Further-

more, all source code for the imputation, models, and assess-

ment metrics is publicly available as part of our CMI-PB GitHub

repository (https://github.com/CMI-PB). This will serve as an

important resource and benchmark for future contestants.

Major lessons learned from our inaugural prediction contest

include the importance of providing contestants with both orig-

inal (raw) data and standardized computable matrices. Through

this approach, we can simplify the process of data access and

help avoid contestants having to standardize their model inputs

independently. Also highlighted was the importance of testing

the compatibility across all data sources before announcing

the challenge, as we realized that additional normalization was

required for the antibody titer data. Critically, we also learned

that clinical variables, such as age, can play a role in making suc-

cessful predictions, and thus we have included all collected clin-

ical information, including health-span-related characteristics

such as chronic diseases and immune exposures, in all future

challenge datasets. We are expanding the CMI-PB challenge
8 Cell Reports Methods 4, 100731, March 25, 2024
to over 30 invited contestants to validate our approach for a sec-

ond time before opening the next round to the public. This sec-

ond CMI-PB challenge has been designed to address some of

the shortcomings identified during the first challenge. We expect

to make additional adjustments informed by the second chal-

lenge to help ensure success in the initial public challenge.

This iterative process aims to provide contestants with a rich

user experience, allowing for smoother data access and a

much less tedious prediction submission process.

The major goal of the first challenge was to develop and refine

a pipeline that can access methods for predicting the immune

response to Tdap booster vaccination. The pipeline developed

to run the first challenge provided a benchmark for models

developed in future contests and code to evaluate the perfor-

mance and significance of the results. In order to identify bio-

markers that are generally important for a successful vaccination

response, a large number of samples is needed, divided across

multiple cohorts. In the coming years, additional datasets will

become available within the CMI-PB resource. This will undoubt-

edly assist the development and tailoring of models specifically

aimed at predicting the immune response outcomes of

the Tdap vaccination. With several Tdap vaccination cohorts, it

should be possible to determine the components of the immune

response that are consistently important for a good vaccine

response.

The presented results based on literature models demon-

strated that the majority of vaccine prediction methods found

in the literature are inadequate in capturing the fundamental

immunological features required for effective vaccination against

B. pertussis. Several plausible explanations exist for the lack of

generalizability and insufficient capture of underlying mecha-

nisms in these prediction methods. One possibility is that vacci-

nations for distinct pathogens possess fundamentally unique

characteristics. Another potential explanation is that these pre-

diction methods may be overfitting the datasets used for their

development, which is a well-known problem in ML models

that require training data for prediction.29 In the present study,

the ability of transcriptional, clinical, and cell population-based

signatures to predict vaccine responses was independently

examined across multiple studies from the literature. The results

showed that only occasionally were the immune signatures sig-

nificant in a study from which they were not derived. This indi-

cates that prediction methods that are developed on a single

or a few vaccination studies usually do not generalize well. It is

noteworthy that amodel based on age inferred from the literature

exhibited strong performance in predicting antibody-related

tasks. Aging is characterized by a progressive loss of physiolog-

ical integrity and an increased susceptibility to immunosenes-

cence.51 Age has been reported to be an important determinant

of vaccine effectiveness in older adults.52 Furthermore, we plan

to incorporate more clinical factors, including immune expo-

sures, time of vaccination, and health history attributes, into all

future contests. This will aid contestants in constructing more

refined prediction models.

The presented results, based on the JIVE and MCIA ML ap-

proaches, provide valuable insights into the importance of data

imputation, model quality check, and the significant impact of

incorporating clinical and pre-vaccination signatures on model

https://github.com/CMI-PB
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performance. The baseline approach was the simplest modeling

approach among all and attained notable performance for most

tasks. This finding aligns with recent demonstrations that inte-

grating prior immunological knowledge serves as an effective

approach for reducing model complexity and improving robust-

ness.53 Further, it is worth noting that MCIA and JIVE are distinct

extensions of PCA, each employing different algorithms to

decompose information extracted from multi-omics datasets.

It is important to clarify that our intention was not to compare

these two models directly but rather to share our learnings

from the two separate prediction approaches. With the JIVE

approach, we opted to use complete assay information for

model development with minimal data pre-processing. Howev-

er, this approach yielded limited success, likely due to the limited

sample size after requiring complete data for each subject,

except for moderate performance in predicting two specific

tasks. We are keen to refine further the JIVE approach in align-

ment with the MCIAplus approach in future challenges. Similarly,

MCIAbasic model implementation closely resembled JIVE,

except for the utilization of imputed data. With the imputed

data, this model achieved significant success as compared to

JIVE. Unsupervised approaches such as MCIA hold a lot of po-

tential in uncovering hidden patterns and relationships within

complex immune profiles. Further, the MCIAplus approach per-

formed significantly well in predicting most tasks where we inte-

gratedmodeling, immunological insights, and clinical knowledge

together. We intend to reapply this model for future challenges

and look forward to improving the MCIAplus approach with

pre-vaccination immune signatures available within existing

studies, such as utilizing BloodGen3 modules to identify

pertussis booster pre-vaccination signatures.49 Overall, our ML

approaches pointed out that, beyond age, the inclusion of

baseline responses also was a key determining factor to get pre-

dictions right. In the next challenge cycle, we expect every

contestant to recognize this and integrate it into their approach

for improved results.

With the first challenge, we focused on a limited set of predic-

tion approaches, including the existing baseline models from the

literature and two ML-based models. There are plenty of other

approaches that have been utilized to elucidate the kinetics of

vaccine-induced immune responses and the durability of vac-

cine effects. For instance, network-based and longitudinal

modeling approaches utilized dynamic patterns and temporal

relationships between omics to predict vaccine responses.54,55

Our cohort size will be growing with the recruitment of study sub-

jects for each future challenge, and we believe this would help

prediction models perform better as larger datasets provide a

richer and more diverse pool of information, allowing models to

capture more complex patterns and relationships, leading to

improved predictive performance and generalization capabil-

ities. This expanded data volume will also help mitigate issues

such as overfitting and enhance themodels’ robustness and reli-

ability. In addition, we are considering to include T cell assay

data, which will become available for future challenges. In the

first challenge, our emphasis was primarily on the execution

and evaluation of the contest pipeline, rather than delving into

the biological rationale underlying the top-performing models.

We intend to study top-performing models from upcoming con-
tests closely, and we believe this will greatly aid in comprehend-

ing the influence of various factors that contributed to the accu-

rate prediction of existing Tdap booster vaccination signatures.

In the first challenge, we incorporated a total of 14 tasks, out

of which contestants successfully generated significant

predictions for 12 tasks. However, two tasks pertaining to IgG

response to pertactin (PRN) antigen on day 14 and IL6 expres-

sion on day 3 did not yield significant predictions. We will

continue to evaluate which prediction tasks are the most mean-

ingful; what are the right data to evaluate them; and how ques-

tions should be asked, such as asking for an absolute ranking

of responses or a fold change compared to baseline.

We are committed to performing comparable experiments on

a yearly basis that can be used to build a large set of consistent

experimental data. The CMI-PB resource (1) provides access to

systems vaccinology data from prior experiments by our group

and others relevant to Tdap booster vaccination, (2) explains

the nature of the experiments performed and the data generated

and how to interpret them (which can be a hurdle for more

computationally oriented scientists), and (3) invites visitors to

participate in the prediction challenge that asks to utilize baseline

data from individuals prior to vaccination in order to predict how

they rank in different vaccine response measurements. We

believe that the open access to data and the ability to compare

model performances will increase the quality and acceptance

of computational models in systems vaccinology.

We believe that this collaborative and innovative approach will

create a hub for immunologists to push for novel models of im-

munity against Tdap boost. We expect the resultant models

will also be relevant for other vaccinology studies. Contestants

from the research community that are interested in participating

are encouraged to contact us via cmi-pb-contest@lji.org and

check the website (www.cmi-pb.org) for the upcoming contest

information.

Limitations of the study
The primary limitation of our study is that we may have missed

published models that perform better than what we have re-

ported. Given the open nature of our performance evaluation,

we welcome all developers of published models to submit their

predictions for this study or the planned upcoming prediction

contests.
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Antibodies

IgG mouse anti-human (PE, clone JDC-10) SouthernBiotech 9040–09; RRID:AB_2796601

IgG1 mouse anti-human (PE, clone HP6001) SouthernBiotech 9054–09; RRID:AB_2796628

IgG2 mouse anti-human (PE, clone HP6025) SouthernBiotech 9070–09; RRID:AB_2796639

IgG3 mouse anti-human (PE, clone HP6050) SouthernBiotech 9210–09; RRID:AB_2796701

IgG4 mouse anti-human (PE, clone HP6025) SouthernBiotech 9200–09; RRID:AB_2796693

IgE mouse anti-human (PE, BE5) Thermo Fisher MA1-10375; RRID:AB_2536764

Anti-Human CD45 (CyTOF, 89Y, clone HI30) Fluidigm 3089003B; RRID: AB_2661851

Anti-Human CD3 (CyTOF, 115In, clone UCHT1) Biolegend 300443; RRID:AB_2562808

Anti-Human CD19 (CyTOF, 142ND, clone HIB19) Fluidigm 3142001B; RRID: AB_2651155

Anti-Human CD38 (CyTOF, 144ND, clone HIT2) Fluidigm 3144014B; RRID: AB_2687640

Anti-Human CD4 (CyTOF, 145ND, clone RPA-T4) Fluidigm 3145001B; RRID: AB_2661789

Anti-Human CD20 (CyTOF, clone 2H7) Biolegend 302302; RRID:AB_314250

Anti-Human CD123 (CyTOF, 151Eu, clone 6H6) Fluidigm 3151001B; RRID: AB_2661794

Anti-Human CD45RA (CyTOF, 155Gd, clone HI100) Fluidigm 3155011B; RRID: AB_2810246

Anti-Human CD1c (CyTOF, 160Gd, clone L161) Biolegend 331502;RRID:AB_1088996

Anti-Human CD33 (CyTOF, 163Dy, clone WM53) Fluidigm 3163023B; RRID: AB_2687857

Anti-Human CCR7 (CyTOF, 167Er, clone G043H7) Fluidigm 3167009A; RRID: AB_2858236

Anti-Human CD25 (CyTOF, 169Tm, clone M-A251) Fluidigm 3169003B; RRID: AB_2661806

Anti-Human CD8a (CyTOF, 172Yb, clone RPA-T8) Biolegend 301002; RRID:AB_314120

Anti-Human CD14 (CyTOF, 173Yb, clone 61D3) Thermo Fisher 14-0149-82; RRID:AB_467129

Anti-Human HLA-DR (CyTOF, 174Yb, clone L243) Fluidigm 3174001B; RRID: AB_2665397

Anti-Human CD56 (CyTOF, 176Yb, clone CMSSB) Fluidigm 3176003B; RRID: AB_2756430

Anti-Human CD16 (CyTOF, 209Bi, clone 3G8) Fluidigm 3209002B; RRID: AB_2756431

Biological samples

PBMC and Plasma LJI Clinical Core https://www.lji.org/research/research-

services/clinical-studies/

Chemicals, peptides, and recombinant proteins

Pertussis Toxin (PT) List Biologicals 180

Tetanus Toxoid (TT) List Biologicals 191A

Pertactin (PRN) List Biologicals 187

Fimbriae 2/3 (Fim2/3) List Biologicals 186

Diphtheria Toxoid (DT) List Biologicals 151

Filamentous Hemagglutinin (FHA) Sigma F5551-50UG

Ovalbumin (OVA) Sigma vac-stova

MagPlex-C Microspheres Luminex MC10012-01

MC10019-01

MC10025-01

MC10034-01

MC10037-01

MC10042-01

MC10048-01

Zeba TM Spin Desalting Columns 7K MWCO Thermo Scientific 89882

Ficoll-Paque PLUS GE 17144003

RPMI 1640 medium Omega Scientific RP-21

DMSO Sigma D8418
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QIAzol Lysis Reagent Qiagen 79306

Human Pertussis antiserum NIBSC 06/140

Cell-ID Intercalator-Ir Fluidigm NC1038184

Critical commercial assays

Target 96 Immuno-oncology panel Olink https://olink.com/products-services/

target/immune-response-panel/

Target 96 Immune response panel Olink https://olink.com/products-services/target/

immune-response-panel/

Target 96 Metabolism panel Olink https://olink.com/products-services/

target/biological-process/

xMAP� Antibody Coupling Kit Luminex 40–50016

MAGPIX Calibration Kit Luminex MPX-CAL K25

MAGPIX Performance Verification Kit Luminex MPX-PVER-K25

miRNeasy Mini Kit Qiagen 217084

TruSeq Stranded mRNA Library Prep Kit Illumina 20020595

Deposited data

bulkRNAseq, PBMC subset frequencies,

plasma antibody measurements, plasma

cytokine measurements.

This paper https://www.cmi-pb.org/data; https://doi.org/10.5281/

zenodo.10789473

Software and algorithms

R (V4.0.1 - V4.3.1) R Core Team (2020) https://www.r-project.org/

FlowJo software version 10.7.0 BD Biosciences https://www.flowjo.com/

Python (v3.7+) Python community https://www.python.org/

PostgreSQL (V4) PostgreSQL Team https://www.postgresql.org/

JIVE Lock et al.44 https://cran.r-project.org/web/

packages/r.jive/index.html

Multiple co-inertia analysis (MCIA) Meng et al.46 https://bioconductor.org/packages/

release/bioc/html/omicade4.html

GLMNET https://cran.r-project.org/web/

packages/glmnet/index.html

STAR (v2.6.1) Dobin et al.56 https://github.com/alexdobin/STAR

PRINSEQ Lite (v0.20.3) Schmieder & Edwards57 https://github.com/uwb-linux/prinseq

SAMtools Li et al.58 https://github.com/samtools/samtools

featureCounts (v1.6.5) Liao et al.59 https://subread.sourceforge.net/

Antibody titer data normalization This paper https://doi.org/10.5281/zenodo.10642095

Generation computable matrices and MCIA model This paper https://doi.org/10.5281/zenodo.10642081

24 models derived using the literature-based survey This paper https://doi.org/10.5281/zenodo.10642079

JIVE models This paper https://doi.org/10.5281/zenodo.10642104
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by Lead Contact, Bjoern Peters

(bpeters@lji.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The training and test datasets used for the first challenge can be accessible through a Zenodo repository at https://doi.org/10.

5281/zenodo.10789473. The repository includes detailed information on the datasets, challenge tasks, submission format,
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submission files and evaluation code, descriptions, and access to the necessary data files that contestants used to develop

their predictive models and make predictions.

d The codebase for normalizing antibody titer data is available at Zenodo (https://zenodo.org/records/10642152), while the code

for standardizing data and generating computable matrices is available at Zenodo (https://doi.org/10.5281/zenodo.10642081).

The codes for all models submitted for the first CMI-PB challenge are available, including those identified from the literature. All

24 models derived using the literature-based survey are available at Zenodo (https://zenodo.org/records/10642081). The co-

debase for the JIVE models is available at Zenodo (https://zenodo.org/records/10642104) and the codebase for the MCIA-

based models can be found at Zenodo (https://zenodo.org/records/10642081).

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human volunteers that were primed with either the aP or wP vaccination during childhood were recruited. The characteristics of all

participants are summarized in Table S4. All participants provided written informed consent before donation and were eligible for

Tdap (aP) booster vaccination containing tetanus toxoid (TT), diphtheria toxoid (DT), and acellular Pertussis that contains inactivated

pertussis toxin (PT) and cell surface proteins of Bordetella pertussis including filamentous hemagglutinin (FHA), fimbriae 2/3 (Fim2/3),

pertactin (PRN). Longitudinal blood samples were collected pre-booster vaccination (day 0) and post-booster vaccination after 1, 3,

7, and 14 days. This study was performed with approvals from the IRB at the La Jolla Institute for Immunology, and written informed

consent was obtained from all participants before enrollment.

METHOD DETAILS

PBMC and plasma extraction
Whole blood samples (with heparin) were centrifuged at 1850 rpm for 15 min with breaks off. Subsequently, the upper fraction

(plasma) was collected and stored at �80�C. PBMCs were isolated by density gradient centrifugation using Ficoll-Paque PLUS

(GE). 35 mL of RPMI 1640 medium (RPMI, Omega Scientific) diluted blood was slowly layered on top of 15 mL Ficoll-Paque

PLUS. Samples were spinned at 1850 rpm for 25 min with breaks off. Then, PBMC layers were aspirated and two PBMC layers

per donor were combined in a new tube together with RPMI. Samples were spinned at 1850 rpm for 10 min with a low break. Cell

pellets of the same donors were combined and washed with RPMI and spinned at 1850 rpm for 10 min with breaks off. Finally,

PBMCs were counted using trypan blue and a hemocytometer and, after another spin, resuspended in FBS (Gemini) containing

10% DMSO (Sigma-Aldrich) and stored in Mr. Frosty cell freezing container overnight at �80�C. The next day, samples were stored

at liquid nitrogen until further use.

Plasma antibody measurements
Pertussis antigen-specific antibody responses were quantified in human plasma by performing an indirect serological assay with xMAP

Microspheres (details described in xMAPCookbook, Luminex 5th edition). Pertussis, Tetanus, and Diphtheria antigens (PT, PRN, Fim2/

3, TT, and DT (all from List Biological Laboratories) and FHA (Sigma) and as a negative control Ovalbumin (Sigma) were coupled to

uniquely coded beads (xMAP MagPlex Microspheres, Luminex Corporation). PT was inactivated by incubation with 1% formaldehyde

(PFA) at 4�C for 1 h. 1% PFA PT and TT were then purified using Zeba spin desalting columns (ThermoFisher). The antigens were

coupled with each unique conjugated microsphere using the xMAP Antibody Coupling Kit (Luminex Corporation). Plasma was mixed

with a mixture of each conjugated microsphere, andWHO International Standard Human Pertussis antiserum was used as a reference

standard (NIBSC, 06/140). Subsequently, themixtureswerewashedwith 0.05%TWEEN20 inPBS (Sigma-Aldrich) to exclude non-spe-

cific antibodies, and targeted antibodies responses were detected via anti-human IgG-PE, IgG1-PE, IgG2-PE, IgG3-PE, IgG4-PE (all

from SouthernBiotech) and human IgE-PE (ThermoFisher). Samples were subsequently measured on an FLEXMAP 3D instrument (Lu-

minex Corporation), and the log(10) of the median fluorescent intensity (MFI) was calculated.

PBMC cell frequencies
Cryopreserved PBMC were thawed by incubating cryovials at 37�C for 1 min and stained with the viability marker Cisplatin. Subse-

quently, PBMCs were incubated with an antibody mixture for 30 min. After washing, PBMCs were fixed in PBS (Thermo Fisher) with

2%PFA (Sigma-Aldrich) overnight at4�C.Thenextday,PBMCswerestainedwithan intracellular antibodymixtureafter permeabilization

using saponin-based Perm Buffer (eBioscience). After washing, cellular DNA was labeled with Cell-ID Intercalator-Ir (Fluidigm) and cell

pelletswere resuspended in 1:10EQBeads (Fluidigm) in 1mLMiliQwater. Samplesweremeasured using aHeliosmass cytometer (Flu-

idigm). Twenty One different PBMC cell subsets were identified using the unsupervised gating approach DAFi60 with the exception of

antibody-secreting cells (ASCs), which were manually gated as CD45+Live+CD14�CD3�CD19+CD20�CD38+ cells. Gating was per-

formed using FlowJo (BD, version 10.7.0).
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Plasma cytokine concentrations
Plasma samples were randomly distributed on 96 well plates for quantification. 276 different proteins (immuno-oncology, immune

response, and metabolism Olink panels) were quantified by Analysis Lab at Olink Proteomics. Protein quantification involved the

Proximity Extension Assay (PEA) technology.61 Briefly, the plasma was incubated with oligonucleotides labeled antibodies targeting

the proteins of interest. The oligonucleotides of matched oligonucleotides-antibodies-antigen will bind to each other, enabling ampli-

fication and thereby quantification by qPCR. Ct values from the qPCRwere used to calculate Normalized Protein eXpression (NPX), a

relative quantification unit to report protein expression levels in plasma samples.

RNA sequencing
Per sample, 6 million PBMCs were lysed using QIAzol Lysis Reagent (Qiagen). Samples were stored at �80�C until RNA extraction.

RNA was extracted using the miRNeasy Mini Kit (Qiagen) including DNase treatment according to the manufacturer’s instructions.

500 ng of RNA was used for RNA sequencing (RNAseq) library preparation. Library preparation was performed using the TruSeq

Stranded mRNA Library Prep Kit (Illumina). Libraries were sequenced on a HiSeq3000 (Illumina) system.

Bioinformatics RNA sequencing
The paired-end reads that passed Illumina filters were further filtered for reads aligning to tRNA, rRNA, adapter sequences, and

spike-in controls. The remaining reads were aligned to the GRCh38 reference genome and Gencode v27 annotations using STAR

(v2.6.1).56 DUST scores were calculated with PRINSEQ Lite (v0.20.3),57 and low-complexity reads (DUST >4) were removed from

the BAM files. The alignment results were parsed via the SAMtools58 to generate SAM files. Read counts to each genomic feature

were obtained with the featureCounts (v1.6.5)59 using the default options along with a minimum quality cut-off (Phred >10).

Computational models development
Establishing baseline prediction models from the systems vaccinology literature

For literature models that did not present a quantification of the gene sets, a gene set output score was developed. The first step of

the calculation was to separate genes that were up- and down-regulated. Next, for each specimen, i the TPM normalized gene

expression counts were summed for the upregulated genes (SumUP) and the downregulated genes (SumDOWN). Then the difference

between SumUP and SumDOWN was calculated for each specimen:

Xi = SumUP � SumDOWN

The average (Avg) and the standard deviation (Std) of the TPMnormalized gene expression was calculated across all specimens as

well as the square root of the total number of specimens N. Finally, a standard score (zscoreÞ was calculated for each specimen:

zscorei = ðXi � AvgÞ
.�

Std
. ffiffiffiffi

N
p �

If there were only upregulated genes, or if it could not be determined whether the genes in the gene signature were up- or down-

regulated, the sum of the genes in the signature was simply used for the calculation of the zscore.

Establishing purpose-built models using JIVE

To developmodels using JIVE we used harmonized datasets for transcriptome, antibody levels and cytokine levels and located sam-

ple values for every variable, in other words, complete datasets which resulted in 13 individuals (Figure 2C). Decomposition with JIVE

was then applied by using the r.jive package with jive(omics, rankJ=10, rankA = rep(10, 3)), method = "given", conv = "default", max-

iter = 100, showProgress=FALSE)which resulted in 10 factors and saved the factor loading values.62 In order to make amodel from a

reduced representation of the omics datasets, each omic was multiplied by its corresponding factor loadings to generate factor

scores. During training, these factor scores were used as input into various models and approaches from scikit-learn python pack-

age,63 specifically, we used basic linear regression (LinearRegression), lasso (Lasso), elastic net (ElasticNet), and lastly, lasso and

elastic net with automatic hyperparameter tuning via cross-validation (LassoCV and ElasticNetCV). For methods using automatic hy-

perparameter tuning, candidate values were not specified, therefore using the internal heuristics, which tests hyperparameter values

of various magnitudes. During the prediction steps, the testing data is projected onto the lower dimensional space by multiplying the

factor loadings by the omics datasets. These new factor scores were then used as input for predictions and finally ranked before

contest submission.

Establishing purpose-built models using MCIA

TheMICE (Multiple Imputation by Chained Equations) method was employed to replace missing data values in the harmonized data-

set (Figure 2D). Specifically, transcriptome data was utilized to imputemissing values in other datamodalities through the application

of MICE. We utlilized MICE imputed data to construct models. We implemented MCIA using the mbpca function in themogsa pack-

age.46,64 We generated 10 low-dimension multi-omics factor scores for training datasets. Each multi-omics factor was derived

through a linear combination of the original features (e.g., genes or proteins) extracted from the input data. Subsequently, global

scores were computed for the test dataset, capturing the overall representation or summary of the data in relation to the underlying

factors identified from the training data. This was accomplished by utilizing factor loadings from the training dataset and feature

scores from the test dataset. For each task, we constructed a prediction model utilizing a general linear model with lasso
e4 Cell Reports Methods 4, 100731, March 25, 2024
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regularization using the glmnet library.65 We used the feature scores as input data and the prediction task values as response vari-

ables, generating separate predictive models for each task.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses are detailed for each specific technique in the specific Methods section or in the figure legends, where each

specific comparison is presented. Statistical tests were performed using R (version 4.1, www.r-project.org/) of Spearman corre-

lation coefficient. Details pertaining to significance are also noted in Figure 3 legends, and p < 0.05 defined as statistical

significance.
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Supplementary Figures

Figure S1: CMI-PB central database schema. The database schema is divided into information, experimental
data, and metadata tables. The information tables capture subject and sample information, while the experimental
data tables capture experimental data for each omics. In the rnaseq table, each row represents an Ensembl gene
identifier (versioned_ensembl_gene_id) along with specimen id (specimen_id) and values for measured analytes
(raw_count and tpm_count). The ab_titer table contains a row for each specimen (specimen_id), with the names and
values for measured analytes (isotype, is_antigen_specific, antigen, ab_titer, unit, and lower_limit_of_detection) for
the antibody titer experiment. The olink table contains a row for each specimen (specimen_id), with the names and
values for measured analytes (olink_id and protein_expression). Each row in the live_cell_percentages table
represents a specimen (specimen_id) along with the names and values for measured analytes (cell_type_name and
percent_live_cell). Information on the mapping between olink_id and uniprot_id can be extracted using the
olink_prot_info table. The metadata tables capture information about ID mapping between CMI-PB data and
external databases. The gene, transcript, and protein tables map Ensembl gene, transcript, and protein IDs. These
Ensembl IDs are then mapped to UniProt IDs. The live_cell_percentages_info and cell_type tables provide
information about gating information and the experimental technique used to run cell frequency experiments.
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Figure S2: Plot of antibody titer data prior to normalization. Individual plots show the pre- and post-immune
response of IgG and its subtypes against antigens. The average titer values differed between the train and test
datasets.
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Figure S3: Plot of antibody titer data after normalization.We performed separate standardization of the antibody
data in the train and test datasets, using the baseline median as the normalization factor. This approach allowed more
direct comparisons of the normalized datasets between the train and test datasets.
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Figure S4: Identification of published methods to predict vaccine responses. The literature search identified
previously presented methods for predicting vaccine responses. First, 40 papers were selected from the literature
search using keyword searches and relevant references in other papers. From the 40 papers, 13 studies were
confirmed to present relevant prediction methods based on a literature search for published vaccine response
prediction methods. For several of the 13 relevant studies, multiple prediction methods were presented. In total, 24
prediction methods were implemented from 10 relevant 13 studies (mentioned in Table S1). The prediction methods
that obtained significant results for both performance metrics in the CMI-PB train datasets were also evaluated in the
CMI-PB test dataset used for the first challenge.
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Supplementary Tables

Table S1: List of prediction tasks and their biological significance.

Task Title Task statement Biological and clinical
significance

Reference

Antibody level tasks

1 IgG-PT_D14 IgG levels against Pertussis Toxin
(PT) antigen in plasma on 14 days
post booster vaccination

Vaccine-induced immunity for B.
pertussis

1

2 IgG-FHA_D
14

IgG levels against Filamentous
hemagglutinin (FHA) antigen in
plasma on 14 days post booster
vaccination

Vaccine-induced immunity for B.
pertussis

1

3 IgG-Pertacti
n_D14

IgG levels against Pertactin antigen
in plasma on 14 days post booster
vaccination

Vaccine-induced immunity for B.
pertussis

Figure 5 in 1

4 IgG1-PT_D1
4

IgG1 levels against PT antigen in
plasma on 14 days post booster
vaccination

Vaccine-induced immunity for B.
pertussis

Figure 5 in 1

5 IgG1-FHA_
D14

IgG1 levels against FHA antigen in
plasma on 14 days post booster
vaccination

Vaccine-induced immunity for B.
pertussis

Figure 5 in 1

6 IgG4-PT_D1
4

IgG4 levels against PT antigen in
plasma on 14 days post booster
vaccination

Signature of Acellular Pertussis
(aP) vs. whole-cell Pertussis (wP)
response

Figure 5 in 1

7 IgG4-FHA_
D14

IgG4 levels against FHA antigen in
plasma on 14 days post booster
vaccination

Signature of aP vs. wP response Figure 5 in 11

Cell frequency tasks

8 Plasmablast_
D7

Plasmablast cells on day 7
post-booster vaccination

Vaccine-induced immunity for B.
pertussis

Figure 3 in 1

9 CD4TCM_D
3

CD4 TCM cells on 3 days post
booster vaccination

Vaccine-induced immunity for B.
pertussis

Figure 3 in 1

10 Monocytes_
D3

Monocytes on day 1 post-booster
vaccination

Vaccine-induced immunity for B.
pertussis

Figure 3 in 1

Gene expression tasks

11 CCL3_D3 CCL3 on day 3 post booster
vaccination

Signature of aP vs. wP response Figure 7 in 1

12 IL6_D3 IL6 on day 3 post-booster
vaccination

Signature of aP vs. wP response Figure 7 in 1

6

https://www.zotero.org/google-docs/?broken=7lR6mC


13 NFKBIA_D
7

NFKBIA at day 7 post booster
vaccination

Signature of aP vs. wP response Figures 6 and
8 in 1

14 XIST_D14 XIST on day 14 post-booster
vaccination

Biological sex-specific marker 2
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Table S2: Implemented prediction methods for the first challenge.Models 1-24: Supervised methods based on
published vaccine response prediction studies. Models 25-43: unsupervised methods based on Multi-omics
dimension reduction.

Model title Short
Description

Method type Output score Experimental data Refer
ence

1 avey_2017_gene
_sig

9-gene
signature
(RAB24,
GRB2,
DPP3,ACT
B, MVP,
DPP7,
ARPC4,
PLEKHB2,
and
ARRB1)

Classification
(Diagonal
Linear
Discriminant
Analysis:
DLDA)

geneset
signature score

Experimental data:
PBMC and whole blood
gene expression, cell
subset frequencies,
antibody titers

Pathogen: Influenza
virus

Avey
et al.
2017
1

2 avey_2017_M54 B-cell
signaling
Blood
transcripto
me module
(BTM;
Module
M54)

Classification
(DLDA)

geneset
signature score

3 avey_2017_M42 Platelet
activation
(III)
(Module
M42)

Classification
(DLDA)

geneset
signature score

4 avey_2017_M33 Inflammator
y response
Module
(M33)

Classification
(DLDA)

geneset
signature score

5 kotliarov_2020_
TGSig

10 gene
signature
(C2orf63,
CD101,
ENPP1,
RETN,
SMC1A,
ADAM12,
EPHB1,
PAPSS2,

gene
signature
score

geneset
signature score

Experimental data:
PBMC and whole blood
gene expression, cell
subset frequencies, cell
surface proteins,
antibody titers

Pathogen: Influenza
virus, Yellow fever
virus

Kotli
arov
et al.
2020
2
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LONP2,
C15orf57)

6 kotliarov_2020_
SLE-Sig

Systemic
lupus
erythematos
us
(SLE-Sig)
gene
signature

gene
signature
score

geneset
signature score

7 kotliarov_2020_I
FN-I-DCact

IFN-I-DCac
t gene
signature

gene
signature
score

geneset
signature score

8 tsang_2014_DL
DA_top2

DLDA
model (2
cell
populations

Classification
(DLDA)

Class
probabilities

Experimental data:
PBMC gene expression,
cell subset frequencies,
antibody titers

Pathogen: Influenza
virus

Tsan
g et
al.
2014
3

9 tsang_2014_DL
DA_top5

DLDA
model (5
cell
populations)

Classification
(DLDA)

Class
probabilities

10 fourati_2015_Bio
Age

BioAge Classification
(Naïve Bayes)

Class
probabilities

Experimental data:
Whole blood gene
expression, cell subset
frequencies, serum
proteins, antibody titers

Pathogen: Hepatitis B
virus

Four
ati et
al.
2015
4

11 fourati_2015_M1 M1 of
BioAge

Classification
(Naïve Bayes)

Class
probabilities

12 fourati_2015_M1
+M16

M1+M16 of
BioAge

Classification
(Naïve Bayes)

Class
probabilities

13 fourati_2015_NB Naïve
Bayes
classifier
(15 DEGs)

Classification
(Naïve Bayes)

The ratio
between the
post-probabilit
ies and the log
odds in the
logistic model

14 fourati_2015_LR Logistic
regression
(4 cell
populations)

Regression
(logistic)

The ratio
between the
post-probabilit
ies and the log
odds in the
logistic model
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15 furman_2013_ag
e

gene
signature
scores Age

Regression
(Elastic net)

age Experimental data:
Whole blood gene
expression, cell subset
frequencies serum
cytokines, antibody
titers, hemagglutinin
peptides

Pathogen: Influenza
virus

Fur
man
et al.
2013
5

16 iulio_2021_HBV
_transfer_sig

HBV
pre-vaccine
transfer
signature

Classification
(Random
Forest)

geneset
signature score

Experimental data:
PBMC and whole blood
gene expression

Pathogen: Influenza
virus, Hepatitis B virus,
Mycobacterium
tuberculosis

Iulio
et al.
2021
6

17 iulio_2021_Inf_
M_transfer_sig

Influenza M
pre-vaccine
transfer
signature

Classification
(Random
Forest)

geneset
signature score

18 iulio_2021_Inf_F
_transfer_sig

Influenza F
pre-vaccine
transfer
signature

Classification
(Random
Forest)

geneset
signature score

19 iulio_2021_TB_t
ransfer_sig

TB
pre-vaccine
transfer
signature

Classification
(Random
Forest)

geneset
signature score

20 fourati_2021_RF Random
Forest
model (top
500 varying
genes)

Classification
(Random
Forest)

Class
probabilities

Experimental data:
PBMC and whole blood
gene expression, cell
surface proteins, cell
subset frequencies,
antibody titers

Pathogen: Influenza,
smallpox, Yellow fever
virus, Pneumococcal
meningococcal

Four
ati et
al.
2021
7

21 bartholomeus_20
18_gene_sig

23
differentiall
y expressed
genes

Classification
(Random
Forest)

Class
probabilities

Experimental data:
Whole blood gene
expression, absolute
numbers of white blood
cells, red blood cells,

Bart
holo
meu
s et
al.
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and platelets, antibody
titers

Pathogen: Hepatitis B
virus

2018
8

22 bartholomeus_20
18_NB

Naïve
Bayes
classifier
(first 5 PCs)

Classification
(Naïve Bayes)

Class
probabilities

23 qui_2018_gene_s
ig

55 up- and
15
down-regul
ated genes

gene
signature
score

geneset
signature score

Experimental data:
PBMC gene expression,
antibody titers

Pathogen: Hepatitis B
virus

Qui
et al.
2018
9

24 franco_2013_gen
e_sig

49 genes
correlated
with
antibody
response

gene
signature
score

geneset
signature score

Experimental data:
Whole blood gene
expression,
whole-genome
genotyping, antibody
titers

Pathogen: Influenza
virus

Fran
co et
al.
2013
10

25 jive.elastic_net_c
v

Elastic net
regression
with
cross-valida
tion

Regression
(Elastic net)

Experimental data:
PBMC gene expression,
cell frequencies,
antibody titers

Lo
ck
et
al.
20
13
1126 jive.elastic_net Elastic net

regression
Regression
(Elastic net)

27 jive.lasso_cv lasso
regression
with
cross-valida
tion

Regression
(lasso)

28 jive.lasso lasso
regression

Regression
(lasso)

29 jive.lr Linear
regression

Regression
(linear)

30 baseline Regression
(lasso)

Baseline tasks, clinical
and demographic
features

31 MCIAbasic Regression
(lasso)

Experimental data:
transcriptome, cell
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frequencies, antibody
levels, cytokines

32 MCIAplus Regression
(lasso)

Factors from the
MCIAbasic model and
features from the
baseline model
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Table S3. Summary of questions asked by contestants on the Solutions center. In total, we received 23 questions
that we divided into three categories.

Category of
Questions

Number of
Questions

Summary

Data access and
format

14 Most questions were raised to know details about how contestants can access
more data on the analytes' names, how analytes were measured, and the
description of the measured unit. Several questions raised issues, like how QC
was performed by Olink assay and the role of limit detections on filtering
analyte values. Contestants found multiple proteins with duplicate expressions
(i.e., IL5). All these questions have been assessed and resolved by the CMI-PB
team. Several questions are raised to inquire about difficulties in accessing data
API. The CMI-PB team provided direct file download options to contestants.
The major concern discussed was antibody titer data was not predictive. Ab
titer data normalization was performed using the median at day 0 as a
normalization factor for CMI-PB data. Normalization was separately
performed on training and test datasets.

Data processing 6 Questions were raised on how to deal with missing values in the data. Missing
values arose if analyte measurements were below the limit of the detection
threshold and samples needed to be included for subjects to make a complete
multi-omics dataset. Out of two that worked with machine learning
approaches, one decided to work only with available analyte measurements,
and another team worked on data imputation after the decision in a regular
meeting.

Miscellaneous
(Contest, website)

3 Other questions were specifically asked about how to access challenge tasks,
and contestants mentioned that they could not access information about data
files on the website.
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Table S4. Cohort demographic information

Subject
id

Infancy
vaccination

Biological
sex Ethnicity Race

Year of
birth Date of boost

61 wP Female
Not Hispanic or
Latino

Unknown or
Not Reported 1/1/1987 4/8/2019

62 wP Female
Not Hispanic or
Latino Asian 1/1/1993 11/26/2018

63 wP Female
Not Hispanic or
Latino White 1/1/1995 11/26/2018

64 wP Male
Not Hispanic or
Latino Asian 1/1/1993 11/26/2018

65 wP Male
Not Hispanic or
Latino White 1/1/1990 12/3/2018

66 wP Female
Not Hispanic or
Latino

Black or
African
American 1/1/1976 12/3/2018

67 wP Female Hispanic or Latino White 1/1/1972 1/28/2019

68 wP Male Hispanic or Latino White 1/1/1972 1/28/2019

69 wP Female Hispanic or Latino White 1/1/1990 1/28/2019

70 aP Male
Not Hispanic or
Latino

American
Indian/Alaska
Native 1/1/1998 1/28/2019

71 aP Female
Not Hispanic or
Latino White 1/1/1998 1/28/2019

72 wP Female
Not Hispanic or
Latino White 1/1/1991 2/25/2019

73 wP Female
Not Hispanic or
Latino White 1/1/1995 2/25/2019

74 wP Female
Not Hispanic or
Latino White 1/1/1995 2/25/2019

75 aP Female
Not Hispanic or
Latino

Native
Hawaiian or
Other Pacific
Islander 1/1/1998 2/25/2019

76 aP Female
Not Hispanic or
Latino Asian 1/1/1998 2/25/2019

77 wP Male
Not Hispanic or
Latino White 1/1/1988 3/18/2019

78 wP Female
Not Hispanic or
Latino White 1/1/1993 3/18/2019

79 wP Male
Not Hispanic or
Latino White 1/1/1987 3/18/2019

80 wP Female Not Hispanic or Asian 1/1/1992 3/18/2019
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Latino

81 wP Male
Not Hispanic or
Latino White 1/1/1993 3/18/2019

82 aP Female
Not Hispanic or
Latino

More Than
One Race 1/1/1998 3/18/2019

83 aP Female
Not Hispanic or
Latino White 1/1/1999 4/8/2019

84 aP Female
Not Hispanic or
Latino

More Than
One Race 1/1/1997 4/8/2019

85 aP Female Hispanic or Latino White 1/1/2000 4/29/2019

86 aP Female
Not Hispanic or
Latino Asian 1/1/1998 4/29/2019

87 aP Male
Not Hispanic or
Latino Asian 1/1/2000 4/29/2019

88 aP Male
Not Hispanic or
Latino Asian 1/1/1900 4/29/2019

89 aP Female
Not Hispanic or
Latino Asian 1/1/1997 6/3/2019

90 aP Female
Not Hispanic or
Latino Asian 1/1/1999 6/3/2019

91 aP Male Unknown
Unknown or
Not Reported 1/1/1998 6/3/2019

92 aP Female Hispanic or Latino White 1/1/2000 6/24/2019

93 aP Female
Not Hispanic or
Latino

More Than
One Race 1/1/1996 6/24/2019

94 aP Male
Not Hispanic or
Latino

Unknown or
Not Reported 1/1/1999 6/24/2019

95 aP Female Hispanic or Latino
Unknown or
Not Reported 1/1/1998 6/24/2019

96 aP Male Hispanic or Latino
Unknown or
Not Reported 1/1/2000 6/24/2019
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