Supplementary Material

Uterine macrophages and NK cells exhibit population- and genelevel changes after implantation but maintain pro-invasive properties

Sneha Mani,¹ James Garifallou,² Se-jeong Kim,³ Michael K. Simoni,¹ Dan Dongeun Huh,^{3,4} Scott M. Gordon,^{2,5,*} Monica Mainigi^{1,*}

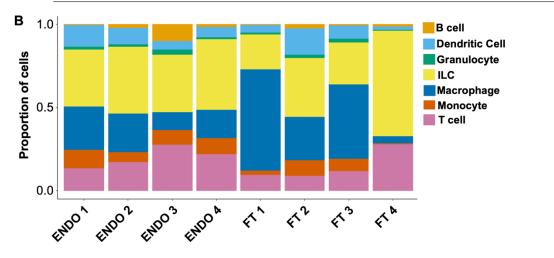
¹Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA

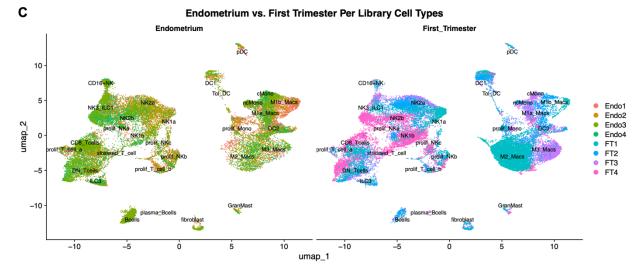
²Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA

³Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA

⁴Center for Engineering MechanoBiology, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA

⁵Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA

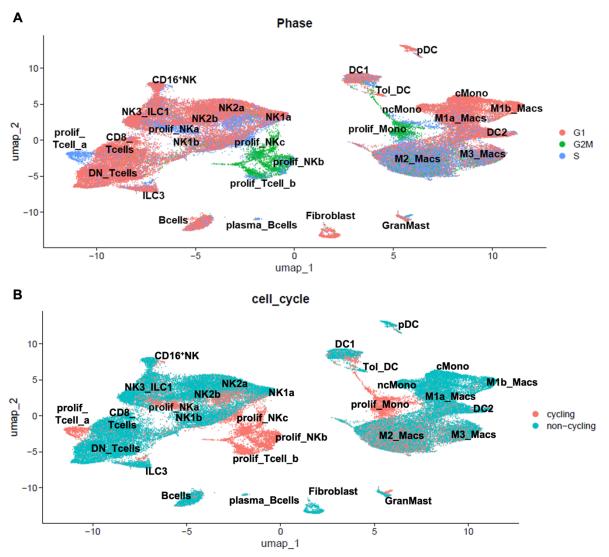

* These authors contributed equally to this work and share senior authorship, listed in alphabetical and ascending height order.


Correspondence: gordons1@chop.edu, monica.mainigi@pennmedicine.upenn.edu

Α

Condition	Patient	Ethnicity	Age	BMI		Prior Losses
MSE/ENDO	1	Asian	23	19.8	-	0
MSE/ENDO	2	White	29	20.9	-	0
MSE/ENDO	3	White	33	23.8	-	0
MSE/ENDO	4	White	23	24	-	0

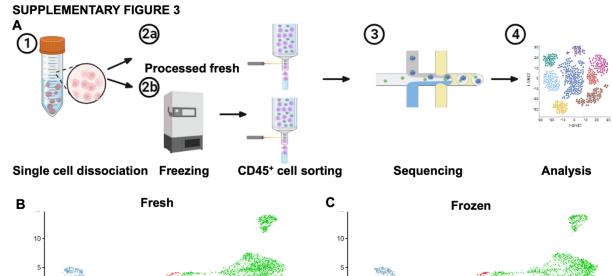
Condition	Patient	Ethnicity	Age	BMI	EGA	Prior Losses
FT	1	White	32	20.3	5w6d	0
FT	2	African-American	29	23.1	6w3d	0
FT	3	African-American	29	28.5	9w3d	0
FT	4	African-American	24	29.1	11w4d	1

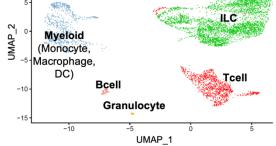


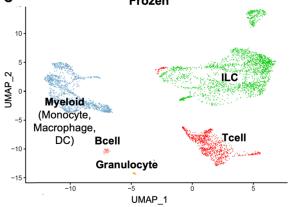
Supplementary Figure 1. Demographics of patients included in this study and immune composition by supercluster of individual samples.

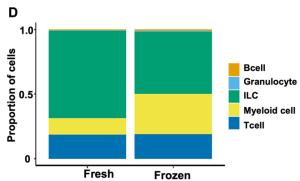
(A) Demographics of subjects from whom CD45+ cells were obtained for scRNAseq.MSE/ENDO, window of implantation (mid-secretory) endometrium. FT, first trimester decidua.

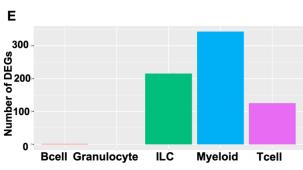
(B) Stacked bar graphs show each supercluster as a percentage of total CD45+ cells in indicated samples of window of implantation (mid-secretory) endometrium (ENDO) and first trimester decidua (FT).


(C) Split UMAPs show the contributions of individual samples to endometrial (Endo) and first trimester (FT) decidual subclusters.




Supplementary Figure 2. Cell cycle analysis guides identification of proliferative immune subclusters.


(A) Cells shown in red are predicted to be in the G1 phase of the cell cycle, cells shown in green are predicted to be in G2/M phase, and cells shown in blue are predicted to be in S phase.


(B) Similar to (A), cells shown in red are predicted to have entered the phases of the cell cycle associated with active division, while teal cells are not predicted to be actively dividing.

	Myeloid			ILCs	
GENE SYMBOL	AVG LOG2FC	ADJ P VALUE	GENE SYMBOL	AVG LOG2FC	ADJ P VALUE
GNLY	2.773140706	0.000100081	CYP26A1	1.182911436	9.08E-41
NKG7	1.560181824	1.84E-05	SPINK2	1.068238959	1.16E-23
GZMA	1.439200012	3.05E-05	GNLY	1.058311845	6.12E-94
IL2RB	1.388372409	4.41E-10	IGFBP7	1.056597177	2.09E-47
TRDC	1.077737589	8.44E-05	KIR2DL3	0.971549397	2.79E-47
KLRB1	1.00135502	0.0001023	ADAMTS1	0.919063879	2.96E-28
IL32	0.778293254	0.033197277	AFAP1L2	0.882989684	1.17E-44
RPS10	0.668243728	5.65E-77	ITGAD	0.84760035	2.98E-45
LGALS2	0.582725433	2.96E-18	SLC12A8	0.833331168	2.42E-31
CXCR4	0.565182655	0.001314232	CSF1	0.830772466	2.72E-25
CD300E	0.556975733	0.000298315	KIR2DL1	0.801509892	7.51E-23
FCER1A	0.491461162	0.001236627	EPAS1	0.784828344	2.65E-29
RPL23	0.472650995	4.02E-40	IL2RB	0.752076257	5.40E-149
AREG	0.470100372	1.53E-06	MYO1E	0.715569388	1.33E-25
RPS11	0.45288378	7.28E-53	SLC44A1	0.710101712	5.49E-27
CD1C	0.452081876	0.001355567	ACY3	0.702408294	7.00E-17
RPS20	0.444437081	3.08E-20	GZMB	0.699019509	1.02E-58
RPL7	0.433984623	2.30E-43	KIR3DL1	0.697150963	6.05E-17
RPL31	0.429344851	1.15E-27	ABHD2	0.631028183	3.51E-28
FOSL2	0.423073931	3.57E-05	HIPK2	0.613581866	1.09E-25
IGF1	-1.39469571	1.88E-15	AC253572.2	-0.59914772	7.46E-11
MSR1	-1.42313905	3.44E-23	MTRNR2L8	-0.6021063	5.84E-08
FCGBP	-1.45020023	4.11E-18	PFN1	-0.61602268	4.52E-161
SLCO2B1	-1.46293799	3.18E-23	MT-ATP8	-0.62418172	2.11E-44
A2M	-1.62195104	5.05E-21	TUBA1A	-0.64166352	3.79E-37
STAB1	-1.6320888	3.72E-24	SEPTIN1	-0.65149936	1.13E-34
GAL3ST4	-1.67721967	6.59E-27	ITM2C	-0.65716653	1.47E-24
LYVE1	-1.72912978	1.39E-14	IFITM1	-0.69523371	2.83E-24
APOC1	-1.76372745	8.74E-20	ALOX5AP	-0.71741684	1.47E-63
MAF	-1.82712141	4.80E-24	RGS2	-0.71891451	1.02E-27
PLTP	-1.84705175	6.13E-28	LTB	-0.73504358	4.38E-23
HAMP	-1.88080831	4.38E-19	LINC01871	-0.75624479	1.40E-25
FOLR2	-2.12629776	9.46E-36	ARF5	-0.80881552	1.96E-35
DAB2	-2.17925705	3.68E-21	LYZ	-1.14345605	4.20E-68
CCL2	-2.22074164	9.45E-20	CST3	-1.16993438	1.64E-85
NRP1	-2.38230962	2.72E-28	HLA-DPB1	-1.23909116	1.21E-80
APOE	-2.48653915	6.88E-31	CD74	-1.28848108	2.37E-151
SPP1	-2.66783398	9.56E-06	HLA-DPA1	-1.33397876	2.59E-107
SELENOP	-2.83889601	2.74E-27	HLA-DRB1	-1.76235973	1.66E-190
RNASE1	-3.7120661	7.34E-24	HLA-DRA	-1.89840892	1.98E-216

Increased in Fresh

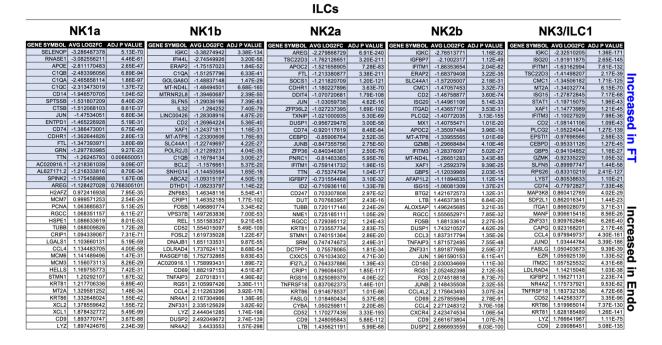
Increased in Frozen

Supplementary Figure 3. Similar clustering, similar gene expression profiles, and modest relative decrease in ILC representation when sequencing previously frozen uterine immune cells.

(A) Graphical representation of workflow to dissociate MSE tissue, process and sort CD45+ cells fresh or frozen/thawed, and perform scRNAseq.

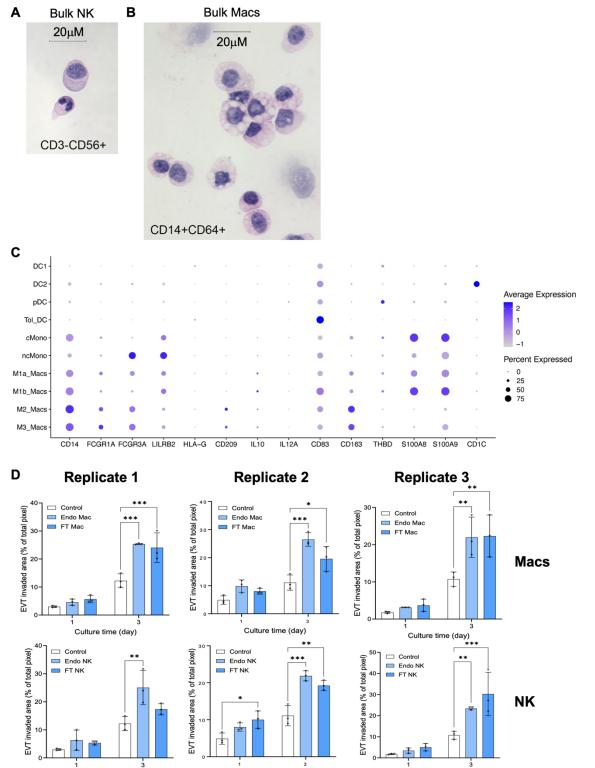
(B, C) UMAP plots showing superclustering of CD45+ cells meeting quality metrics, recovered from fresh (B) and frozen/thawed (C) MSE. ILC, innate lymphoid cells.

(D) Stacked bar charts showing proportion of total CD45+ cells represented by each supercluster in fresh and frozen/thawed MSE.


(E) Bar graph showing absolute number of significant, differentially expressed genes (DEGs) in indicated fresh versus frozen/thawed superclusters. Significant genes are defined as having an adjusted p value of <0.05 and an absolute fold change of 25% or greater (either \geq 25% enriched in fresh or \geq 25% in frozen).

(F) List of the top 20 DEGs enriched in fresh (highlighted in pale red) or frozen (highlighted in pale yellow) myeloid cells (left) and ILCs (right). Official gene symbol, average log2 fold change, and adjusted p values are shown.

					Macrop	hages				
	M1a			M1b			M2		М3	
GENE SYMBO	L AVG LOG2FC	ADJ P VALUE	GENE SYMBOL	AVG LOG2FC	ADJ P VALUE	GENE SYMBO	L AVG LOG2FC	ADJ P VALUE	GENE SYMBOL AVG LOG2FC	ADJ P VALUE
SPP1	-4.638317418	2.98E-240	SELENOP	-3.4415097	2.77E-49	SELENOP	-2.439964321	0	SPP1 -3.09564238	7.32E-139
APOE	-3.422933287	3.13E-125	HLA-DRB5	-3.243605499	5.73E-66	IFI44L	-2.183662157	3.29E-174	RNASE1 -3.0524065	4.45E-174
RNASE1	-2.942427864	2.10E-134	RNASE1	-3.046674328	3.60E-45	MTSS1	-2.092628258	2.20E-219	CD28 -2.342372045	6.96E-62
PLIN2	-2.435063017	7.52E-107	C1QC	-2.331358802	5.53E-39	JUN	-2.033339645	0	SELENOP -2.220786186	8.43E-108
FIT2	-2.315354314	1.75E-75	C1QB	-2.212345034	8.04E-33	CXCL12	-1.978001633	1.37E-113	IFI44L -2.125124548	6.47E-60
CTSL	-2.273440363	8.15E-125	C3	-2.176899447	6.28E-29	EGR1	-1.88574926	1.00E-206	AC253572.2 -2.124581801	3.73E-34
MSR1	-2.266002664	1.60E-153	AC079753.2	-2.103720904	5.92E-49	PLTP	-1.677683422	5.27E-204	MSR1 -2.110509923	4.34E-130
FIT3	-2.165358975	9.49E-109	C1QA	-1.94455187	1.75E-25	RNASE1	-1.648905398	2.15E-294	PLTP -2.091330361	9.91E-92
SG15	-2.144800948	1.40E-92	OTUD1	-1.517991706	2.93E-26	SERPING1	-1.62588744	2.88E-116	MX1 -2.008745289	1.25E-70
FIT1	-2.070112891	1.32E-77	GBP2	-1.25724121	1.70E-22	GYPC	-1.556851464	7.72E-194	IFIT2 -1.997888471	1.95E-27
ABP5	-2.053047327	4.33E-65	TMEM176B	-1.251622022	3.85E-20	C3	-1.453697847	5.64E-205	TMIGD3 -1.991682969	6.79E-29
APOC1	-2.04401613	1.58E-22	TNFAIP8	-1.16969046	4.94E-13	F13A1	-1.450850343	2.74E-229	SDC2 -1.989267739	2.24E-35
N1	-1.911606611	3.07E-16	PLCG2	-1.154105498	1.46E-41	IGF1	-1.446924203	6.08E-164	FABP5 -1.84693005	1.44E-52
FITM3	-1.774934547	2.90E-162	TNF	-1.151543835	1.18E-26	TNFAIP3	-1.446276681	3.52E-117	IFIT3 -1.817953622	3.83E-37
C15orf48	-1.739616828	3.29E-118	KCNJ2	-1.12453467	2.15E-09	DUSP6	-1.427105908	8.84E-187	AL021155.5 -1.813318542	1.35E-20
FI6	-1.721137884	3.52E-100	AC253572.2	-1.106470433	2.95E-11	SIGLEC1	-1.402423088	2.20E-116	AC007952.4 -1.798364341	6.22E-42
MX1	-1.685606731	8.60E-90	AC016831.1	-1.106252747	2.78E-10	KLF4	-1.37306504	3.78E-148	C2 -1.796847478	1.23E-65
C1QC	-1.520482531	1.98E-68	PELI1	-1.066061856	3.83E-09	AC020916.1	-1.372529963	4.49E-170	ITSN1 -1.757379875	7.62E-51
GPNMB	-1.517720264	2.45E-34	CCL4L2	-1.030213141	5.46E-15	FOSB	-1.366707814	9.40E-260	IFIT1 -1.750805244	5.89E-30
FI44L	-1.507481269	1.81E-80	TMEM176A	-0.979282339	3.16E-10	AZIN1-AS1	-1.338123165	3.09E-43	CADM1 -1.725718181	3.99E-33
SELENOK	1.115505488	1.96E-56	IFI30	1.014130679	3.31E-29	RPS26	1.245287923	1.40E-231	ALDH2 1.408923465	2.68E-50
MEGF9	1.122443393	3.32E-42	ARL4A	1.072553529	7.75E-07	SH3BGRL3	1.255977852	4.56E-270	FGL2 1.426427944	4.71E-80
CYCS	1.13597871	1.05E-59	AL034397.3	1.072708793	6.69E-06	LST1	1.293226532	7.20E-288	WARS 1,429078129	5.50E-36
OSM	1.220625209	1.14E-32	CAPG	1.089375807	5.07E-15	CKLF	1.298491742	4.89E-130	RGS2 1.493943124	2.11E-42
RGS2	1.22407144	2.18E-118	ATP1B3	1.101648473	4.71E-15	FABP5	1.305355244	4.42E-127	JAML 1.504359769	1.33E-49
LTA4H	1.255422013	2.00E-90	RNASE2	1.14674881	4.77E-05	CAMK1	1.314733217	2.17E-159	AC020656.1 1.559001279	1.56E-39
HBEGF	1.269804034	7.06E-92	LGALS1	1.158075546	2.45E-41	OLR1	1.321581445	5.52E-125	CD52 1.586117229	5.08E-43
S100A9	1.282570643	1.81E-93	SELENOK	1.17034108	5.93E-12	CD48	1.332224142	5.23E-133	LST1 1.611174948	5.19E-106
FCN1	1.290366926	3.23E-187	TIMP1	1.301102966	2.51E-32	IFI30	1.367408348	0	ALOX5AP 1.687785984	1.48E-68
CD1D	1.329404422	8.40E-76	SMIM25	1.319207694	9.97E-16	CAPG	1.392313109	9.39E-251	IL1B 1.701500487	1.71E-16
HSPA1B	1.340120503	1.69E-82	RPS26	1.319979273	2.73E-51	PKIB	1.494995422	2.49E-160	HLA-DQB1 1.919486116	3.43E-162
HLA-DRB5	1.346718089	8.57E-19	ALOX5AP	1.339827513	2.94E-06	LSP1	1.512817154	2.63E-180	LTA4H 1.936691276	1.04E-62
S100A8	1.523703371	1.41E-97	MARCO	1.37225202	5.63E-08	S100A6	1.583122281	9.50E-163	CYP27A1 2.16774256	6.45E-79
BP1	1.611252697	3.54E-124	LYZ	1.372532812	9.79E-88	TIMP1	1.61011874	3.61E-187	GPR183 2.217896581	1.56E-112
ALOX5AP	1.67504248	3.89E-131	TWISTNB	1.609231467	1.93E-05	S100A4	1.684824959	9.15E-264	OLR1 2.248277274	4.93E-94
CD52	1.768854927	6.33E-169	PLAC8	1.690365705	2.14E-12	APOC2	1.851674482	9.06E-59	HLA-DQA1 2.521097506	1.15E-213
MCEMP1	1.916024607	8.06E-84	HBEGF	2.043722294	5.39E-35	PPA1	1.866487525	1.74E-283	CLEC10A 2.562361323	1.26E-173
_YZ	1.976816344	0.002-04	MCEMP1	2.081796817	9.00E-23	LGALS1	2.015593415	0	HLA-DRB5 2.675710706	2.99E-45
PLAC8	2.216325805	7.42E-148	FBP1	2.348415738	6.54E-19	CLEC10A	2.201682858	1.07E-292	LYZ 3.234862239	2.61E-161
RETN	2.750379612	1.08E-112	RETN	2.976923464	5.06E-14	LYZ	3.180809276	0	FCN1 3.347605528	3.60E-144


Supplementary Figure 4. Top genes differentially expressed between endometrial and first trimester decidual macrophages.

List of the top 20 DEGs enriched in first trimester decidual (highlighted in pale blue) or preimplantation endometrial (white cells, unhighlighted) macrophage subclusters. Official gene symbol, average log2 fold change, and adjusted p values are shown.

Supplementary Figure 5. Top genes differentially expressed between endometrial and first trimester decidual ILCs.

List of the top 20 DEGs enriched in first trimester decidual (highlighted in pale blue) or preimplantation endometrial (white cells, unhighlighted) ILC subclusters. Official gene symbol, average log2 fold change, and adjusted p values are shown.

Culture time (day)

Culture time (day)

Culture time (day)

Supplementary Figure 6. Pre- and post-implantation bulk CD14+CD64+ macrophages promote invasion of primary EVTs as strongly as pre- and post-implantation bulk NK cells ex vivo on an implantation-on-a-chip device.

(A,B) H&E-stained cytospins were prepared from cryopreserved first-trimester decidual flowsorted cells and imaged with a Leica brightfield microscope at 63x. The scale bar shown is 20 microns. Shown are (A) CD3-CD56+ "Bulk NK cells" that appear lymphocytic with abundant fine cytotoxic granules. In (B), CD14+CD64+ "Bulk Macrophages" are predominantly large, heavily vacuolated cells that resemble tissue macrophages.

(C) Dot plot representation of DC10-associated genes expressed among indicated myeloid subclusters.

(D) Quantification of individual biological replicates on the implantation-on-a-chip (IOC). Three technical replicates per biological replicate are shown. Invasion area of EVTs beyond the fetal channel at days 1 and 3 of culture are shown. One-way ANOVA with Tukey's multiple comparison test was performed. Data are presented as mean \pm SD. *, p<0.05; **, p<0.01; ***, p<0.001.