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§1.  Introduction 

The main purpose of this Appendix is to delineate a simple theoretical framework that can 

reconcile two seemingly contradictory observations: (1) the existence of substantial variablity in 

single neuron coding properties from day to day (as evidenced, for example, by substantial 

day-to-day changes in single neuron 𝑑′ values shown in Extended Data Figs 2f,k); and (2) the 

existence of a single decoder for each mouse that can stably decode across many days with a 

high 𝑑′ value (as demonstrated in Fig. 3c). A key finding that can potentially reconcile the 

apparent contradiction is the high correlation between two very different kinds of noise 

fluctuations: (1) within-day, trial-to-trial noise fluctuations about the mean response to each 

stimulus; and (2) between-day changes in the mean stimulus tuning vector. Indeed, we have 

found empirically that the change in the mean stimulus tuning vector between days is closely 

aligned with the directions of the largest within-day, trial-to-trial noise fluctuations (Fig. 3f). 

Before discussing our main results, in §2 we first provide a self-contained introduction to 

optimal linear decoders and their relationship to stimulus statistics. In §3 we will explain 

theoretically how this important empirical observation enables decoders optimized for a single 

day to also maintain high performance across days, despite substantial day-to-day changes in 
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single neuron coding properties. Further, in §4 we showcase a simple proof-of-principle neural 

network model that: (1) exhibits substantial day-to-day variability in single neuron coding 

properties (analogous to Extended Data Figs 2f,k); but nevertheless (2) exhibits a tight relation 

between the within-day fluctuations about neurons’ mean responses and their between-day 

changes in mean responses (analogous to Fig. 3f); and (3) exhibits day-to-day robustness of 

optimal decoders that are trained on data from a single day.  

§2.  Discrimination of two stimuli using the signals of a noisy neural population 

Consider two stimuli 𝐬$ and 𝐬%, each of which elicits a conditional distribution of cortical 

neural ensemble activity, namely 𝑃$(𝐫|𝐬$) and 𝑃%(𝐫|𝐬%). We wish to decode stimulus identity 

from the population activity using a decision variable that reads out the activity in a linear 

manner, 𝑣 = 𝐰. ⋅ 𝐫 . The two conditional distributions for the ensemble activity lead to 

conditional distributions for the decision variable, 𝑃$(𝑣|𝐬$) and 𝑃%(𝑣|𝐬%). The ease with 

which we can discriminate the two stimuli depends on how well separated these two distributions 

are.  

When the readout vector 𝐰. samples from many neurons, and the neural populations are 

weakly correlated, the distributions over 𝑣  will be approximately Gaussian and thus well 

characterized by their mean and variance. More generally, a convenient measure of the 

separation between the two distributions is given by the signal-to-noise ratio (SNR), also known 

as (d¢)2. This measure is the squared difference in the means of the two distributions, normalized 

to the variance:  

 𝑑0(𝐰.)1 = 	
34𝑣5𝐬$674𝑣5𝐬%68

9

:
94(𝛿𝑣)

15𝐬$6	<:9	4(𝛿𝑣)
15𝐬%6

	= [𝐰.⋅>𝝁]9

𝐰.A𝚺𝐰.
, (1) 
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where Δ𝝁 = 𝝁$ − 𝝁%  and 𝝁$  and 𝝁%  are the mean neural population patterns for each 

stimulus, and 𝚺 = F
1
𝚺$ + F

1
𝚺% is the average noise covariance matrix of the two conditional 

distributions of neural activity patterns. This measure of discriminability depends on the 

statistical structure of the two conditional distributions of neural population activity in response 

to the two stimuli, and on the linear readout direction 𝐰.. One can maximize (1) over the choice 

of readout 𝐰. to obtain the optimal readout  

 𝐰HIJ = 𝚺7FΔ𝝁, (2) 

and its associated optimal signal-to-noise ratio  

 K𝑑0HIJL
1
= Δ𝝁M𝚺7FΔ𝝁. (3) 

This optimal SNR depends on the stimulus conditioned neural distributions only through the 

difference of means Δ𝝁 (which we henceforth call the stimulus tuning vector) and the average 

covariance 𝚺. When the two distributions are exactly Gaussian with the same covariance matrix, 

this optimal SNR is the Kullback-Leibler divergence between the two distributions. This 

divergence is a statistical measure of how different the two distributions are from each other and 

governs the error rate of a hypothesis test attempting to distinguish between them1. Furthermore, 

when the two means 𝝁$	and	𝝁%	are close to each other, this Kullback-Leibler divergence 

becomes proportional to the Fisher information2 conveyed about the stimulus identity by a single 

neural activity pattern. 

§3.  Robustness of decoders to changes in day-to-day neural population statistics 

We next consider a situation in which we record neural activity on two distinct days (which we 

term day 1 and day 2). We assume that on day 1 the neural population has a stimulus tuning 

vector Δ𝝁F and average within-day, trial-to-trial noise covariance matrix 𝚺F, while on day 2 the 
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corresponding stimulus statistics have changed to Δ𝝁1 and 𝚺1, respectively. Thus, the two days 

have two different optimal decoders according to Eq. (2): 𝐰HIJ,F = 	𝚺F7FΔ𝝁F and 𝐰HIJ,1 =

	𝚺17FΔ𝝁1.  To understand the conditions under which we can obtain robust decoding across days 

using a single decoder, despite changes in stimulus statistics, we consider the (d¢)2 values 

obtained by decoding on day 2 using two different decoders: the optimal decoder 𝐰HIJ,1 for 

day 2, and the alternate decoder 𝐰HIJ,F that would have been optimal for day 1 but is now 

suboptimal for day 2. The first optimal (d’)2 is given, according to Eq. (3), by  

 K𝑑0HIJ,1L
1
= 	Δ𝝁1𝚺17FΔ𝝁1. (4) 

The second suboptimal (d’)2, obtained using the stimulus statistics from day 2 but the optimal 

decoder from day 1 is given, according to Eq. (2), by  

 K𝑑0RSTHIJ,1L
1
= 𝑑0K𝐰HIJ,FL

1
= U𝐰VWX,:⋅>𝝁9Y

9

𝐰VWX,:A 𝚺9	𝐰VWX,:
= 	 U>𝝁:A	𝚺:Z:>𝝁9Y

9

>𝝁:A	𝚺:Z:𝚺9𝚺:Z:>𝝁:
. (5) 

We define a measure of decoder robustness 𝑅 as 

																																							𝑅 = 	 K\
]
^_`VWX,9L

9

K\]VWX,9L
9 = 		 U>𝝁:A	𝚺:Z:>𝝁9Y

9

(>𝝁:A	𝚺:Z:𝚺9𝚺:Z:>𝝁:)(>𝝁9𝚺9Z:>𝝁9)
	. (6) 

The decoder robustness 𝑅 is the fractional (d’)2  attainable on day 2 using the decoder optimal 

for day 1 (but suboptimal for day 2) relative to that for the optimal decoder for day 2. R has a 

value between 0 and 1. This measure captures how robustly a decoder optimized solely for day 1 

generalizes to day 2, with values near 1 indicating high day-to-day decoder robustness.   

     We are particularly interested in situations in which the stimulus statistics change 

substantially from day 1 to day 2, yet the decoder robustness nevertheless remains high. To 

provide a simple example of such a scenario, we consider the simple case in which the 

covariance doesn’t change (i.e., 𝚺F = 	𝚺1 = 	𝚺) but the stimulus tuning vector does (i.e., Δ𝝁F =
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	Δ𝝁 − 	𝜺	 and Δ𝝁1 = 	Δ𝝁 + 	𝜺). Here Δ𝝁 = (Δ𝝁F + Δ𝝁1)/2	is the mean stimulus tuning vector 

across days, and 𝜺 = 	 (Δ𝝁1 − Δ𝝁F)/2	 reflects the change in stimulus tuning across days. To 

better understand the decoder robustness 𝑅, we can take advantage of the common covariance 𝚺 

across days to express Δ𝝁 and 𝜺 in the eigenbasis of the within-day noise covariance (note 

there is nothing essential about the assumption of identical covariance across days; it just 

provides a particularly simple example, and in the next section we treat another example in 

which the covariance changes across days).  Let 𝜆e and 𝐯e denote the 𝛼’th eigenvalue and 

eigenvector, respectively, of 𝚺. Furthermore, let Δ𝜇e and εe denote the components of Δ𝝁 

and 𝜺, respectively, along the eigenvector 𝐯e.  Then in the eigenbasis of 𝚺, Eq. (6) reduces to, 

																																							𝑅 = 		
j∑ lmno

9

po
	7	ℇo

9

po
ro s
9

j∑ (mnoZ	to)9
poo sj∑ (mnou	to)9

poo s
	. (7) 

Clearly when εe = 0 for all 𝛼, indicating no change in neural population statistics, the decoder 

robustness 𝑅 = 1.  Also, inspecting Eq. (7), it is clear that a change of the stimulus tuning 

vector along a single noise eigenmode 𝛼 with fixed magnitude εe leads to a smaller (larger) 

reduction in R when the mode 𝛼 corresponds to a larger (smaller) noise eigenvalue 𝜆e.   

     This observation suggests a general principle: if the day-to-day change in the mean 

stimulus tuning vector, which is proportional to 𝜺, is preferentially aligned to within-day noise 

eigenmodes	 𝐯e with large noise eigenvalues 𝜆e, then decoder robustness 𝑅 may remain high 

even if the mean stimulus tuning vector changes substantially.  We can measure the change in 

the mean stimulus tuning vector through the cosine similarity metric 

																																							𝐶 = 		 >𝝁:A	>𝝁9

y>𝝁:A	>𝝁:y>𝝁9A	>𝝁9
	. (8) 
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The key question is then, is it possible to have a mean inter-day stimulus tuning vector change 𝜺 

such that there is a substantial inter-day change in stimulus tuning (i.e., small 𝐶), but a large 

decoder robustness (i.e., large 𝑅)? We show in Appendix Fig. 1 that this is indeed possible, 

when the stimulus tuning vector change across days is aligned to directions of high within-day 

noise fluctuations, as suggested by Eq. (7). In particular, we consider a scenario with an 

exponentially decaying within-day noise eigenspectrum {𝜆e} (Appendix Fig. 1a). We also only 

consider large stimulus tuning vector changes, corresponding to 𝜺 vectors with large norm, 

which lead to a small between-day tuning vector cosine similarity of 𝐶 ≈ 0.5 in Eq. (8) 

(Appendix Fig. 1b). We then find that the direction of between-day stimulus tuning change 𝜺 

in relation to within-day noise eigenmodes can substantially impact decoder robustness. Indeed, 

if the magnitude of the projection of the between-day stimulus tuning change vector 𝜺 onto each 

within-day noise eigenmode 𝐯e is proportional on average to that mode’s noise eigenvalue 𝜆e 

(as it is in the data in Fig. 3f), then the decoder robustness 𝑅 in Eq. (7) can remain as high as 

0.9 (blue points in Appendix Fig. 1c). On the other hand, for the same overall magnitude of 

stimulus tuning change, with a similar cosine similarity, if 𝜺 instead projects onto every noise 

eigenmode with similar magnitude on average (unlike the data in Fig. 3f), then decoder 

robustness can decrease substantially to as small as 0.2 (red points in Appendix Fig. 1c).    
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Appendix Fig. 1 Decoder robustness despite substantial changes in stimulus 

tuning,when inter-day tuning changes co-align with intra-day fluctuations.  

(A)  We simulate a population of N=400 neurons. We assume a generic 

within-day noise covariance 𝚺 with a random orthonormal basis of eigenvectors 

𝐯e and an exponentially decaying eigenvalue spectrum 𝜆e = 1 + 	Γ𝑒7
o
� for 𝛼 =

0  to 𝑁 − 1.  This corresponds to approximately 𝐾  large eigenvalues ranging 

from 𝜆� = 1 + Γ down to approximately 1. An example spectrum is shown in (A) 

for Γ = 50 and K = 20. These parameters were chosen to qualitatively match the 

eigenvalue spectrum observed in Fig. 3f, but none of our conclusions depend in 

detail on this specific choice of Γ and K.  

(B) We further model the stimulus tuning vectors on day 1 and day 2 as Δ𝝁F =

	Δ𝝁 − 	𝜺	  and Δ𝝁1 = 	Δ𝝁 + 	𝜺  respectively, where Δ𝝁  is a random Gaussian 

vector whose elements are chosen i.i.d. from a zero mean Gaussian with variance 1 

(which simply sets an overall scale for (d’)2).  We then model the day-to-day 

change 𝜺 in stimulus tuning using two methods. In the first method, we simply 

choose the components 𝜀e (in the eigenbasis 𝐯e) to be i.i.d. random variables 

drawn from a zero mean unit variance Gaussian distribution for all 𝛼 ≤ 	𝛼��� and 

0 for all 𝛼 >	𝛼���. Thus in this method, the between-day stimulus tuning change 

𝜺 has uniform power on the largest within-day noise modes up to a maximal mode 

index 𝛼��� and zero power on the smaller noise modes. In the second method, we 

make the same random choice for 𝜺 up to some maximal mode index 𝛼���, but 

we additionally scale up each component 𝜀e by the noise eigenvalue 𝜆e. This 

yields on average a larger magnitude for projections of the between-day stimulus 
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tuning change 𝜺 onto eigenvectors 𝐯e  of the within-day noise covariance 𝚺 

with larger eigenvalues 𝜆e, similar to what we observe in the data in Fig. 3f. For 

both methods we multiply 𝜺 by an overall scale factor so that its norm is 60% of 

the expected norm of Δ𝝁 . We chose this large percentage to force a large 

fractional change in the stimulus tuning vector from day to day that is 

approximately the same for every maximal mode index 𝛼���. To confirm this, for 

each value of 𝛼���, we plot the cosine similarity 𝐶 in Eq. (8) for both methods, 

with method 1 given by the red points and method 2 given by the blue points. The 

low value of 𝐶	in (B) indicates a substantial change in stimulus tuning from day to 

day for all maximal mode indices 𝛼���.  

(C)  We next plot the day-to-day decoder robustness 𝑅 defined in Eq. (7) for 

both method 1 (weak alignment of stimulus tuning change with noise, red points) 

and method 2 (stronger alignment of stimulus tuning change with noise, blue 

points). The red points with 𝛼��� near 𝑁 − 1 correspond to the stimulus tuning 

vector change 𝜺  being uniformly spread out across almost all noise modes, 

resulting in a very low day-to-day decoder robustness of 𝑅 ≈ 0.2. The blue points 

with 𝛼��� near 𝑁 − 1 correspond to the stimulus tuning vector change 𝜺 being 

spread out across almost all noise modes, but with a strength proportional to each 

mode’s within-day noise eigenvalue 𝜆e , yielding a substantially high decoder 

robustness of 𝑅 ≈ 0.9. 

. 

    In summary, we have shown that if between-day changes in the mean stimulus tuning 

vector are preferentially aligned to directions of large within-day noise fluctuations, then a 
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decoder trained to be optimal on day 1 will also tend to do well on day 2, relative to a decoder 

trained specifically to be optimal on day 2. A key intuition for why this is true can be gleaned 

from the structure of the optimal decoder on day 1, given by 𝐰HIJ,F = 	𝚺7FΔ𝝁F. This decoder 

will tend to avoid directions in which the within-day noise is large, in order to be robust to this 

noise. Such a decoder will then also be robust to day-to-day changes in the tuning vector, 

provided such day-to-day changes in the tuning vector preferentially lie along directions in 

which the within-day noise is large. More generally, when this connection between inter-day 

mean changes and within-day noise fluctuations persists across multiple days, it should be 

straightforward to find a single decoder that achieves high performance across multiple days 

despite subtantial changes in single neuron coding properties.      

§4.  A simple neural network model to account for key observations 

The previous section elucidated the theoretical significance of Fig. 3f, namely the observation 

that between day changes in the mean stimulus tuning vector are preferentially aligned to 

directions of large within-day noise fluctuations. In particular we showed that this observation 

makes it easier to construct a single decoder that performs well across many days. However, the 

previous section did not address any particular neural mechanism that could naturally achieve a 

tight relation connecting substantial between-day changes in mean stimulus responses to the 

eigenstructure strength of within-day noise fluctuations. Here, we provide an exceedingly simple 

mechanistic neural model that can generate such a relation in a biologically plausible manner 

without any fine tuning. We make no claim that this is the only way such a relation can arise 

mechanistically; our model is intended to just serve as a proof of principle that this relation is 

realizable in one simple setting.  
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We consider a two-layer circuit with Ns sensory neurons in its first layer and Nc visual 

cortical neurons in the second layer. We respectively denote the activity patterns of these cells as 

𝐬�, for	𝑗 = 1,… ,𝑁� and 𝐫�, for 𝑖 = 1, … , 𝑁�. We take a simple linear input-output relationship 

given by 

 𝒓 = 𝐆\𝐖K𝐬 + 𝝃��L + 𝝃HSJ. (9) 

Here 𝝃�� and 𝝃HSJ are, respectively, vectors, or patterns, of sensory input noise and cortical 

output noise that fluctuate from trial to trial. We model them as Gaussian random vectors with 

zero means and covariance matrices 𝚺��,� and 𝚺HSJ,�. Here 𝑑 = 1,2 is a day index indicating 

that the covariance of both the input noise and the output noise can vary from day to day. 𝐆\ in 

Eq (9) is a diagonal gain matrix that can also vary from day to day. Each diagonal element 𝑮��\  

reflects a gain, or single neuron excitabilty level, of a cortical neuron 𝑖 on day 𝑑. The 𝑁� by 

𝑁� matrix 𝐖 reflects a constant synaptic connectivity matrix from the sensory layer to the 

cortical layer, and we assume it does not vary from day to day.  

     Now the conditional distribution of cortical activity, 𝐫$ , that results from a specific 

pattern of input activity, 𝐬$ is Gaussian with a mean on day 𝑑 given by 

 𝝁\$ = 	𝐆\𝐖𝐬$. (10) 

For two stimuli 𝐬$ and 𝐬%, this implies a stimulus tuning vector on day 𝑑 given by 

 Δ𝝁\ = 	𝝁\$ − 𝝁\% 	= 	𝐆\𝐖Δ𝐬, (11) 

where Δ𝐬 = 	 𝐬$ −	𝐬% is the stimulus tuning vector in the first layer. We are assuming that the 

mean stimulus representations 𝐬$ and 𝐬% in the first layer do not change from day to day, 

although we did also explore that possibility and obtained qualitatively similar results. Here, we 
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focused on day-to-day changes in the statistics of the input noise (through 𝚺��,�), the output 

noise (through 𝚺HSJ,�), and the excitability of each cortical neuron (through 𝐆\). This last 

day-to-day variability can cause a day-to-day change in the cortical stimulus tuning vector Δ𝝁\ 

even though the mean sensory tuning vector Δ𝐬 does not change from day to day. Next, the 

trial-to-trial noise covariance of cortical activity on day 𝑑 is given by  

 𝚺\ = 𝐆\𝐖	𝚺��,�𝐖M𝐆� + 𝚺HSJ,�. (12) 

This within-day noise covariance can vary from day to day via combined day-to-day changes in 

cortical excitability 𝐆\ , input noise statistics	𝚺��,�, and output noise statistics 𝚺HSJ,� . Thus 

overall this model gives us a stimulus tuning vector Δ𝝁\ in Eq. (10) and noise covariance 𝚺\ 

in Eq. (12) which can be inserted into Eq. (6) to determine the day-to-day decoder robustness 𝑅. 

Moreover, this model yields day-to-day changes in single neuron (d¢)2 values. Indeed the (d¢)2 

value for cortical neuron 𝑖 on day 𝑑 is given by  

 K𝑑�,\0 L
1
	= 	 K>𝝁�,�L

9

𝚺�,��
. (13) 

    We next describe the constant properties 𝐖 and Δ𝐬, as well as the nature of the day-to-day 

changes in 𝐆\, 	𝚺��,� and 𝚺HSJ,�. We model 𝐖 as a random synaptic connectivity matrix with 

a prescribed singular value distribution through the singular value decomposition 𝐖 = 𝐔𝐃𝐕M. 

We assume 𝐔 is an 𝑁� ´ 𝑁� matrix with random orthonormal columns that are the output 

singular vectors of 𝐖, 𝐕 is an 𝑁� ´ 𝑁� random orthonormal matrix, and 𝐃 is an 𝑁� ´ 𝑁� 

diagonal matrix of singular values, where 𝐃�� = 𝑑�. We choose the singular value spectrum 𝑑� 

to be exponentially decaying of the form 𝑑� = Γ𝑒7
�
�, corresponding to roughly 𝐾 nontrivially 

large singular values. Note that the rows of 𝐖 can be thought of in this model as the set of 
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receptive fields of cortical neurons, and if this set of receptive fields approximately spans a 

low-dimensional space, then we naturally expect the singular value spectrum to decay with a 

small number of large singular values. The detailed structure of the singular vectors in 𝐔 and 𝐕 

do not impact our final conclusions, hence we simply chose them to be random. For the stimulus 

tuning vector Δ𝐬 in the sensory layer, we simply choose its components i.i.d. from a zero mean 

unit variance Gaussian. The unit variance of this Gaussian simply sets an overall scale by which 

all other variances are measured. We now turn to the properties in 𝐆\, 	𝚺��,� and 𝚺HSJ,� which 

each change day by day.  

     We assume the day-to-day changes in the gain matix are given by 𝐆\ = 	𝐈 + f	diagK𝜺¤,�L, 

where 𝐈 is the identity matrix, 𝜺¤,�  is a zero mean unit variance random Gaussian vector 

denoting a day specific gain perturbation, diagK𝜺¤,�L is a diagonal matrix with diagonal 

elements specified by the components of 𝜺¤,�, and f is a positive fraction between 0 and 1. 

Under this scheme, every cortical neuron 𝑖 has a base gain of 1, which can change on day 𝑑 to 

the value 1 +	f	𝜺�
¤,�. Similarly, we assume day-to-day changes in the input noise covariance 

matrix are given by 	𝚺��,� = 	𝜎��	1 𝐈 + f	𝜎��	1 	diagK𝜺��,�L, where 𝜺��,� is a zero mean unit variance 

random Gaussian vector. Under this scheme, every sensory neuron 𝑗 has a base input noise 

variance 𝜎��	1  which can change on day 𝑑 to the value 𝜎��	1 K1 +	f	𝜺�
��,�L.  Also, we assume 

day-to-day changes in the output noise covariance matrix are given by 	𝚺HSJ,� = 	𝜎HSJ	1 𝐈 +

f	𝜎HSJ	1 	diagK𝜺HSJ,�L, where 𝜺HSJ,� is a zero mean unit variance random Gaussian vector. Under 

this scheme, every cortical neuron 𝑖 has a base output noise variance 𝜎HSJ	1  which can change 

on day 𝑑 to the value 𝜎HSJ	1 K1 +	 f	𝜺�
HSJ,�L.  Finally, for any sensory or cortical neuron in which 
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the sampled noise variance happens to be negative (an event that occurs with low probability for 

small f), we rectify it to a small value of 0.01.  

     Overall, a key parameter in this framework is f	, which denotes the common fractional 

change on average in single neuron gain, input variance, and output variance across days. For 

small (large) f there are negligible (substantial) day-to-day changes in single neuron gain, and 

input and output noise variance. The key question is then: is there an intermediate range of f such 

that there are substantial changes in single neuron coding fidelity, as measured for example by 

substantial day-to-day changes in single neuron (d’)2 values in Eq. (13), yet at a population level, 

the overall day-to-day decoder robustness 𝑅 in Eq. (6) remains high?  

    We show in Appendix Fig. 2 that this dichotomy between substantial day-to-day changes in 

single neuron coding fidelity, yet population level decoder robustness, is indeed possible in this 

model. We modelled 𝑁� = 200 sensory neurons and 𝑁� = 1000 cortical neurons. We chose 

Γ = 10 and 𝐾 = 20 so that the singular spectrum of 𝐖, given by 𝑑� = Γ𝑒7
�
�, corresponds to 

the amplification of a small number of modes, with an order of magnitude range of amplification 

from largest to smallest. This ampification of a small number of modes from sensory inputs to 

cortical outputs is a key property required to achieve our results, and is a property shared by prior 

models of V13. We chose our baseline output noise variance 𝜎HSJ	1 = 10 to compensate for this 

amplfication in 𝐖 so that single neuron (d’)2 values in the model would remain primarily less 

than 1 as they do in the data (Extended Data Fig. 2jkl). We chose our baseline input noise 

variance 𝜎HSJ	1 = 1 so that the overall optimal population decoder (d’)2 values would remain in 

the range of 10 to 40 as they do in the data (Fig. 3c). With these baseline parameters chosen to 

qualitatively match the characteristics of the data, we examined a relatively large fractional 
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day-to-day change of 𝑓 = 0.25 of single neuron cortical gains, cortical output noise and 

sensory input noise. We found for this value of 𝑓 a substantial variation in single neuron (d’)2 

values from day to day, where the 𝑅1, or fraction of variance explained in the (d’)2 value of 

neurons on day 2, given their (d’)2 values on day 1, was as low as 0.65 (Appendix Fig. 2a).  

This day-to-day variation in single neuron (d’)2 values is qualitatively similar to that seen in the 

data (Extended Data Fig. 2k). We then confirmed that despite this variation at a single neuron 

level, between day changes in the stimulus tuning vector (i.e. Δ𝝁1 − Δ𝝁F obtained from Eq. 

(11)) had a magnitude of projection onto a noise eigenmode 𝐯e of 𝚺F in Eq. (12), which was 

tightly related to the corresponding noise eigenvalue 𝜆e, especially for large noise eigenvalues 

(Appendix Fig. 2b).  

     This relation connecting between day stimulus tuning vector changes to within-day noise 

eigenmodes is qualitatively similar to what is observed in the data (Fig. 3f).  Finally, for 

multiple pairs of days, we plot the (d’)2 value on day 2 obtained by a decoder that is optimal for 

day 1, against the necessarily higher (d’)2 value for a decoder that is optimal for day 2 

(Appendix Fig. 2c). We find that these points lie near the unity line with a mean decoder 

robustness of 𝑅 = 0.86. We also compute how these properties vary as a function of the 

day-to-day fractional change f, finding that day-to-day changes in single neuron (d’)2 values 

increase rapidly with f (Appendix Fig. 2d), while the correlation between day-to-day stimulus 

tuning changes and within-day noise eigenmodes remains high (Appendix Fig. 2e), as does the 

decoder robustness 𝑅 (Appendix Fig. 2f) (See next page).        
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Appendix Fig. 2 | Coexistence of single neuron level variability and population 

level decoder robustness in a simple model.  

(A)  For the model parameters described in the Appendix text, and for an interday 

fractional change f=0.25, for a single pair of days we plot single neuron (d’)2 

values on day 2 against the same neuron’s (d’)2 value on day 1. The small R2 value, 

or fraction of variance explained from day 1 to day 2, indicates that the model 

parameters chosen allow substantial variaiblity in coding fidelity from day to day 

at the single neuron level.  

(B) For twenty pairs of days (corresponding to the analog of averaging over 5 mice 

with 5 sessions each, qualitatively similar to what is done in Fig. 3f), we compute 

the noise eigenvalues 𝜆e of 𝚺F in Eq. (12), and the magnitude of the projection 

of the stimulus change vector Δ𝝁1 − Δ𝝁F  obtained from Eq. (11) onto the 

corresponding noise mode 𝐯e of 𝚺F. We average these two quantities over the 20 

pairs of days (sorting eigenvalues from largest to smallest on each day to identify 
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modes across days) and plot them against each other, revealing that the average 

eigenvalue magnitude can predict the average projection of the stimulus change 

vector well with a high R2 value.  

(C) For the same twenty pairs of days in (B) we plot the (d’)2 value on day 2 

obtained by a decoder that is optimal for day 1, against the (d’)2 value for a decoder 

that specifically is optimal for day 2. The points lie near the unity line with a mean 

decoder robustness across 20 pairs of days of decoder robustness	𝑅 = 0.86.  

(D) The mean (blue line) and standard deviation (red bars), across 20 pairs of days,  

of the fraction of variance explained in single neuron (d’)2 values on day 2 given  

the same neuron’s (d’)2 value on day 1, for the same model parameters in the main 

text, but for a range of day-to-day fractional change values of f. We see that single 

neuron (d’)2 values change rapidly from day to day as f increases.  

(E) The fraction of variance explained in projections of the stimulus change vector 

onto a noise eigenmode, given the noise eigenvalue, with both averaged over 20 

pairs of days, identical to the R2 value computed in (B), but now plotted for a range 

of f. The alignment of between-day stimulus tuning changes to within-day noise 

remains a robust property of this model over this range of f.  

(F) The mean (blue line) and standard deviation (red bars), across 20 pairs of days 

of the decoder robustness 𝑅 in Eq. (6), plotted for a range of f. This population 

level decoder robustness degrades gracefully with the fractional day-to-day change 

f even though the day-to-day stability in single neuron (d’)2 values degrades 

rapidly with f in (D).  
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 Overall this model serves as a simple proof of principle that a network can tolerate large 

degrees of changes in single neuron (d’)2 values from day to day through completely independent 

and relatively large fractional changes in every single neuron gain, and every single neuron input 

noise variance, both in an earlier sensory layer and in the recorded cortical layer, without 

necessarily destroying a structured relationship connecting between-day stimulus tuning changes 

to within-day noise fluctuations, and without precluding the existence of a robust decoder that 

performs well across multiple days. Of course we can make no claim that this is the only model 

that accomplishes this, nor that the changes in biophysical properties posited in the model from 

day to day are analogous to the actual day-to-day changes in biophysical properties in the brain.  

However, we believe this model provides the beginnings of a simple conceptual framework to 

explain how in principle the seemingly contradictory properties of day-to-day single neuron 

variability and population level decoder robustness can simultaneously coexist.   
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