
Expanded View Figures

Figure EV1. Male but not female mice exhibit HFD-induced liver steatosis.

(A–C) Bar charts display physiological parameters assessed upon sacrifice in female (f) and male (m) mice (n= 4 mice per condition, +SD), which were previously
examined (Hases et al, 2020). (A) Total weight, (B) liver weight and (C) blood glucose after 2 h fasting were measured. Color gradient indicates female and male mice on
different diets (CD or HFD) and male mice upon ERα/β-agonist treatments (DPN, DIP, E2 and PPT). P values highlight non-significant, and asterisks indicate significant
differences (*P < 0.05, **<0.01, ***P < 0.005, one-way ANOVA followed by Tukey’s post-hoc test). (D) Hepatic cross-sections of four female and male mice on different
diets (CD or HFD) and HFD males treated with an ER-agonist (DPN, DIP, E2 or PPT) were stained with hematoxylin and eosin. Images shown in Fig. 1B are highlighted in
black boxes. Scale bar: 100 μm. (E) Two-way Venn diagram (left) shows the intersection and number (n) of genes deregulated exclusively in HFD male (top) or HFD
female (bottom) mice compared to CD or deregulated in both sexes (middle). Bubble plots (right) show the top eight gene ontology terms (biological processes) for each
intersected gene set. One-sided Fisher’s exact test with Benjamini–Hochberg correction was used for the overrepresentation analysis.
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Figure EV2. ERα/β-agonist treatments control molecular responses.

(A, B) Four-way Venn diagrams show intersections and numbers (n) of gene sets that are either (A) upregulated (red arrow) or (B) downregulated (blue arrow) by ER-
agonist treatments compared to HFD in male mice (n= 4 mice per condition). (C) Horizontal bar plots (top) display the proportional frequency of up- (red) and
downregulated (blue) genes in male mice on HFD compared to HFD male mice treated with an ERα/β-agonist (DPN, DIP, E2 or PPT). Horizontal bar plots (bottom) show
the respective occurrences of the deregulated genes upon ER-agonist treatment in a diet comparison of male CD versus HFD. Genes significantly higher in CD male (red),
higher in HFD male (blue) or unaltered (gray) are shown. Alluvial line width connecting upper and lower side indicate how many HFD-deregulated genes are recovered
upon treatment (from red to red or blue to blue). Genes indicated in light gray are unchanged by HFD. Genes changed in both comparisons but not recovered upon
treatment (from red to blue or blue to red) were categorized as non-reverted. (D) Bubble plot displays significantly enriched gene ontology terms (biological processes)
per cluster (Fig. 2A, B) in reverted (denim) and ERβ-specific (ocher) gene sets. Circle color indicates the corresponding cluster, and circle size represent statistical
significance of the gene ontology term (-log10 P value, low: narrow, high: wide). Hypergeometric test with Benjamini–Hochberg correction was used for the
overrepresentation analysis.
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Figure EV3. ER-responsive molecular gene signatures show cell type-specificity and are maintained in primates.

(A) Single-cell map projected in UMAP space displays reference annotation of liver cell types (numbered according to Fig. EV3B). (B) Bar plots show the relative
abundance in percent of distinct liver cell populations in control (left) and MASLD (middle) mice as well as their difference (right). Arrows indicate higher abundance in
control (red) and MASLD (blue) mice. (C) Enrichment maps present liver cell type specificities of murine gene sets (defined in Fig. 2B) in human (top) and macaque
(bottom) livers. Four relevant mouse- and primate-maintained cell types are labeled. (D) Enrichment maps show signal distribution of enriched pathways across liver cell
types in mouse. (E) Spatial transcriptomics maps display liver zonation patters of the selected pathways. (C–E) Enrichment score: low: yellow, high: black.
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Figure EV4. ERα/β-agonist treatments alter metabolic gene regulation.

(A) Histograms show frequency of genome-wide (top) or differentially acetylated (DAc, bottom) promoters (teal) and enhancers (dark blue) (y axis) with respect of
distance to the closest annotated transcription start site (TSS, log10 scale, x axis). Median distance from nearest annotated TSS to promoters (teal) and enhancers (dark
blue) is highlighted. (B) Stacked bar plot indicates percentage of DAc or genome-wide (all or downscaled to the number of DAc) promoter and enhancer elements binned
according to the distance to the closest annotated TSS in bp. The numbers (n) of DAc and all promoter and enhancer regions are specified in parenthesis. (C) Box plots
illustrate number of normalized (1× genome coverage) reads in peaks (log2) for the same regions and diet comparisons as in Fig. 4A (n= 3 mice per condition). Each box
represents interquartile range (IQR) divided by the median (horizontal line), and whiskers span a maximum of 1.5×IQR. Outliers (circles) are shown. (D) Workflow displays
identification of estrogen-sensitive enhancer-gene pairs (ES-E-Gs). First, for each enhancer, which is DAc in CDm versus HFDm (n= 2181), the three closest TSS are
determined. The directionality of nearby gene transcription is not considered, instead the distance to the TSS (n= 6543). Second, Pearson correlation (r) and significance
between H3K27ac signal and gene expression is assessed for each E-G pair, within individual replicates, considering only correlations of P < 0.01. Colors indicate male mice
on different diets (CD or HFD) and upon ERα/β-agonist treatments. Third, E-G pairs with genes identified as ER-agonist treatment-reverted at the transcript level (Fig. 2B)
and fourth, those with a CTCF peak within 50 kb under consideration of strand orientation, are selected. Numbers (n) of E-G pairs are displayed. (E) Bubble plot (top)
shows the top 12-enriched gene ontology terms for the 49 genes part of ES-E-Gs (-log10 adjusted p value, low: narrow, high: wide). One-sided Fisher’s exact test with
Benjamini–Hochberg correction was used for the overrepresentation analysis. Horizontal bar plot (bottom) illustrates the contributions of the 49 genes to the GSEA
pathway clusters (Fig. 3A). (F) Genome browser view (left) shows genomic regions (mm10) around Acot2 and Acot4 gene loci. Black boxes represent exons and UTRs.
Arrows indicate directionality of gene transcription. Scale bar shows length of genomic regions in kilobases (kb). Promoter-capture Hi-C (CHi-C) 3D connections are
shown for the Acot gene loci as black and green arcs. Genomic regions are enriched for CTCF (black peaks) with CTCF motif orientations determined with FIMO (indicated
by plus or minus symbols), ERα (black peaks) and significant ERα peaks (black insets), H3K27ac in livers of CDm, HFDm and ER-agonist-treated HFDm, H3K4me3 and
H3K4me1 (horizonal gray bars, dark: high, light: low). One replicate per condition is shown. The y axis of each track specifies normalized read density in livers of male mice.
Genomic location of enhancers (numbered from 1 to 4) paired with the Acot gene loci are highlighted (gray vertical boxes). An additional enhancer-rich region across the
Acot4 and Acot3 gene loci is shown (green vertical box). The degree of genomic sequence conservation at base resolution across selected vertebrates is shown (conserved:
black, not conserved: white). Scatter plots (right) correlate Acot2 and Acot4 gene expression (TPM, y axis) and their respective paired enhancers (H3K27ac signals, x axis)
in livers of male mice on different diets and ER-agonist treatments. All replicates are shown. Enhancer coordinates (400 bp window around the enhancer summit), Pearson
correlation coefficient (r) and significance (p) are indicated in each box.
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Figure EV5. TEAD inhibition changes key cellular processes in the liver.

(A) Bar plot displays mean of basal, minimum, and maximum oxygen consumption rate in HepG2 cells with control (siNT, dark gray) and siRNA-mediated TEAD1-KD
(siTEAD1, light gray) (n= 63 per condition, +SD). Dots indicate single wells across two biological replicates. Significant P values are indicated (two-sided t test). (B) Bar
plot shows the adjusted P values (log10) of the top 12 KEGG pathways enriched for genes deregulated upon TEADap treatment. Red vertical line indicates adjusted P value
threshold (P < 0.05). Color gradient indicates gene number per pathway (low: gray, high: black). One-sided Fisher’s exact test with Benjamini–Hochberg correction was
used for the overrepresentation analysis. (C) Heatmap displays gene expression changes of the top 12 KEGG pathways altered upon TEADap treatment. Left panel
indicates normalized gene expression (z-score) in free fatty acid-fed controls, TEADsf and TEADap treatments (low: blue, high: red). Right panel shows log2FC for ER-
agonist treatments compared to untreated male mice on HFD (low: green, high: brown). Gene names follow human nomenclature. Ortholog absence in mouse is specified
(gray). (D) Genome browser views (IGV, hg38) show genomic regions around SREBF1, HMGCR and GHR gene loci. Genomic locations and sizes are indicated. The y axis of
each track specifies normalized ChIP-seq read density (parenthesis) of YAP (pink), TAZ (purple) or TEAD1 (blue) in HUVEC cells (GSE163458). Vertical lines indicate
TEAD1-binding sites identified by motif search. Blue boxes represent exons and UTRs, connecting lines indicate intronic sequences. Arrows indicate directionality of gene
transcription. (E) Density plot shows the distribution of overlaps between 1000 random sets of genes unchanged by TEADap treatment and genes changed by ER-agonist
treatments falling within the top 12-enriched KEGG pathways (gray peak). The percentage of overlapping genes changed in both TEADap and ER-agonist treatments for
the top 12-enriched KEGG pathways is displayed (black vertical line). P value is indicated (permutation tests).
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