

Figure S2

Figure S2. 2 mo wild time (WT) B1a cells versus ATAµĸ Tg ATA B tumor.

2 mo WT B cells: spleen-immature B (T1+T2 B), FO B, MZ B, and spleen B1a (sB1a,) and PerC B1a (pB1a) in mRNA. ATA B tumor for mycloarray analysis mRNA: as listed Figure 4A, TC⁻ZAP70⁻CD5⁻ (16 mo) and TC⁻ZAP70⁺CD5⁺ (22 mo), versis middle aged ATA B tumor TC⁺ZAP70⁻CD5⁺ (10 mo). Figure 4B, TC⁻ZAP70⁻CD5⁻ (17 mo) versus TC⁺ZAP70⁺CD5⁺ (15 mo). As in Figure 5A, 12 mo TC⁻ATAμκTg mice ATA B with normal CD5⁺B #31, and CD5⁻B with spleen increased #25. (A) 12 mo ATA B for TC⁻ cells, CD5⁺ #31 showed slightly AA4.1 (immature) present, however most mature B1a, and #25 is the mature CD5⁻ B cell with Spl⁺⁺. This 12 mo CD5⁻ ATA B cell is similar to old aged TC⁻ATA B tumors, down IL5R and Nod1, increase CTNNB1, HMGB1, Ki67, AID and DPP4, down CD180 and CD1d, as TC⁻ compared to middle aged TC⁺ZAP70⁻CD5⁺. However, both TC⁻ and TC⁺ZAP70⁻ cells are CTLA4 down. Nod2 is TC⁻ZAP70⁺CD5⁺ cells are down. CTNNB1, HMGB1, Ki67 are higher in TC⁻ ZAP70⁺CD5⁺ than TC⁻ZAP70⁻CD5⁻ and similar to high TC⁺ZAP⁺CD5⁺. AID was originally (in 2 mo) all mature B cells were low, then, old aged TC⁻ZAP⁻CD5⁻ATA B tumor more increased than TC⁻ZAP70⁺CD5⁺ cells and TC⁺ cells are negative. Down: For CXCR. CXCR5 was originally high in B1a cells, then, 12 mo CD5⁻ spl⁺⁺ cell showed down CXCR5, then CXCR4 and CXCR3 increased as old aged TC⁻ATA B tumor. TC⁺ZAP70⁻CD5⁺ cells are continuously CXCR5⁺ and low CXCR4 and CXCR3. TC⁺ZAP70⁺CD5⁺ cells are lower CXCR5 but low CXCR4 and slightly increased CXCR3. CCR7 is slightly higher by old aged TC^- cells than TC^+ . **(B)** 2 mo WT B cells compared with TC⁻ZAP70⁻CD5⁻ versus TC⁺ZAP70⁻CD5⁺ in listed Figure 4A1,3. 2 mo WT CD38, CD43, CD44, STAT3, BAFF are higher in pB1a, and old age TC⁻ATA B are more increased than middle aged TC⁺, but TC⁺ZAP70⁺CD5⁺ increased for CD44 and STAT3 (Figure 4B2). TC⁺ in CD21, CD23. CD24, CD27, CD49d are higher than TC⁻. In 2 mo WT B1a cells, CD21 negative and CD23 low originally, and low in TC⁻ and TC⁺ZAP70⁺CD5⁺ also low. CD49d showed higher in original pB1a, then all CD24, CD27, CD49d were low in old aged TC⁻ATA B tumor (both ZAP70⁻ and ZAP70⁺) than TC⁺. Since CD27 is generally lower in all B cells in mice (not human) TC⁺Tg slightly increased. CD49d and CD24 down are old aged TC⁻ATA B tumor. In APRIL, 2 mo WT showed higher in pB1a and TC⁻CD5⁻showed decreased at 12 mo and also low in old aged TC⁻ATA B tumor, compared to increased BAFF. (C) 2 mo WT, CD22 and Arid5a are FOB > B1a, and Hamp2 are FOB < B1a. Then, 12 mo TC⁻CD5⁻ cells showed similar to old aged TC⁻ATA B tumor than middle aged TC⁺ZAP70⁻CD5⁺ cells (Figure 5C) and also TC⁺ZAP70⁺CD5⁺ cells. Clearly, high CD22R and Arid5a, and higher Hamp2, USF2⁺, and IL-22R⁺ in TC⁻ than TC⁺(ZAP70⁻ and ZAP70⁺). Thus, not Hamp2 increased in TC^+Tg mice.