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S1. Implementation of the compositional Neural Ordinary Dif-
ferential Equation

S1.1 Flux implementation of cNODE.

We implemented cNODE using Flux1, a library for machine learning in the Julia programming
language with support for Neural Ordinary Differential Equations2. A complete implementation
of cNODE is given in the file cNODE.jl.

Our implementation is based on a structure called FitnessLayer that contains cNODE’s pa-
rameter � 2 RN �N . This parameter is initialized using the Xavier’s method3. When evaluated in a
composition p, the FitnessLayer computes first f�.p/ D �p. More complex functions f� can
be easily incorporated in the code. Finally, the structure uses f� to calculate the right-hand side of
the ODE in Eq. (??).

To predict the composition Op 2 �N associated with a species collection z 2 f0; 1gN , cN-
ODE numerically solves such an the ODE in Eq.(2). In Flux, this is automated by the function
neural_ode, which constructs the cNODE by building a NODE with the dynamics specified by
the FitnessLayer.

The dynamics is numerically integrated over the interval � 2 Œ0; �c� using the Tsit5 method4,
which is the default integration method for nonstiff ODEs in Julia. We choose �c D 1 without loss
of generality, as � in Eq. (??) can be rescaled by multiplying f� by a constant. After integration,
the final value at time � D 1:0 is returned as the prediction of cNODE.

The loss function calculates the average Bray-Curtis dissimilarity between there true composi-
tion p 2 �N and the prediction Op 2 �N generated by cNODE.

S1.2 Training cNODE.
To train cNODE, we adjust the parameters � to minimize the loss over the training set. We experi-
mented with two training algorithms:

1. The ADAM algorithm5. ADAM is a widely used gradient-based stochastic optimization
algorithm that often compares favorably to other gradient optimization algorithms6. We
refer to [5, 6] for additional details.

2 ADAM plus a first-order gradient-based meta-learning algorithm based on Reptile7. In
the meta-learning framework, lets consider a set T of different tasks that the network needs
to perform, such as learning to predict in different datasets. Reptile works by sampling some
task � 2 T , training on it to obtain the weights Q� , and then updating the initial weights �

towards Q� .

To train cNODE, we used ADAM plus Reptile training7. More precisely, we defined each
task as a random partition of the training set in mini-batches. In this way, training enhances
cNODE’s generalizing ability from the predictions regardless of any specific partition or any
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sequence order of mini-batches. The algorithm we used is described below:

Algorithm 1: ADAM + Reptile for cNODE
Initialize � , the vector of initial parameters
for epoch = 1,2... do

Random partition of training set �

Compute Q� D ADAMk
�.�/, denoting k steps

Update �  � C ADAM. Q� � �/
end

Our implementation in the Julia language of the above algorithm is based on the model zoo
of the library Flux8.

S2. Comparison of two deep learning frameworks in predict-
ing microbiome compositions

S2.1 A ResNet architecture for predicting microbiome compositions.

We tested the performance the classical ResNet architecture2 for predicting microbiome composi-
tions. More precisely, we used the input layer

h0 D W0z C b0;

where W0 2 R
N �N and b0 2 R

N are parameters to adjust. We used L D 3 hidden layers of the
form:

h` D h`�1 C ReLU.W`�1h`�1 C b`�1/; ` D 1; � � � ; L;

where W` 2 R
N �N and b` 2 R

N are parameters to adjust. Finally, the output layer takes the form

Op D

 
hL;1z1P
j hL;j zj

; � � � ;
hL;N zNP
j hL;N zN

!
:

A Flux implementation of this ResNet can be found in the file ResNet.jl.
We trained this ResNet architecture using the two methods described in S1.2.

S2.2 Performance comparison.

We compared the performance of cNODE and ResNet architecture for predicting the composition
of four out of six real microbiome datasets described in Supplementary Note S4. These datasets
contain a small set of species (between 5 and 58) and samples (between 26 and 113), allowing us
to make computationally expensive leave-one-out cross validation analysis. Here, we also com-
pared the effect of training both architectures with ADAM, and with ADAM plus the Reptile like
metalearning algorithms (see Table.S1 for the training hyperparameters used for the cNODE and
ResNet).

To perform the comparison we used a leave-one-out cross validation on each of the four datasets
(Supplementary Fig. S1). From these results, some remarks are in order:

1. For both in-vivo datasets, cNODE trained with Reptile outperforms all other algorithms.
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2. The ResNet architecture trained using only ADAM can provide reasonably accurate predic-
tion for simple small species collections (i.e., for the N D 5 species in Drosophila gut and
the N D 8 species in the soil in-vitro community).

3. For cNODE, training using the Reptile metalearning algorithm decreases the prediction error
in the test dataset. Interestingly, using Reptile does not alway decreases the prediction error
in the train dataset. Therefore, the Reptile metalearning algorithm is performing as desired
to enhance the generalizing ability of cNODE.

4. For ResNet, training with the Reptile metalearning algorithm can increase the prediction
errors in both the training and test datasets when compared to training only with ADAM.

5. The ResNet architecture exhibits a higher variability in the training set when compared to
cNODE. This suggests that the performance of ResNet is significantly influenced by the ini-
tialization parameters. In particular, training a ResNet with Reptile can significantly increase
the variability of prediction errors (see, e.g., the soil in vitro dataset).

Overall, the above remarks indicate that cNODE training with Reptile outperforms the other archi-
tectures when predicting complex microbial communities like human gut microbiota or in vivo soil
communities.

Dataset Inner Learning Rate Outer Learning Rate Minibatch size
Drosophila Gut 0.01 0.1 10
Soil in Vitro 0.01 0.1 5
Soil in Vivo 0.001 0.01 10
Human Gut 0.001 0.005 10
Human Oral 0.001 0.005 10
Ocean 0.01 0.025 10
GLV 0.001 0.0025 10

Supplementary Table S1: Training hyperparameters used for the cNODE and ResNet.
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S3. Population dynamics for the in silico validations.

We generated in-silico species pools using the Generalized Lotka-Volterra (GLV) equations, a
classical population dynamics model successfully applied to diverse microbial communities, from
soils9 and cheese10, to the human body11,12. The GLV model takes the form

dx.t/

dt
D x.t/ˇ ŒAx.t/C r�; x.0/ D x0; (S1)

where x.t/ D .x1.t/; � � � ; xN .t//> 2 R�0 and xi.t/ denotes the absolute abundance of species i

at time t . Above, xˇ v is the entry-wise multiplication of vectors x; v 2 RN . The GLV model has
two parameters: the interaction matrix of the species pool A D .aij / 2 RN �N , and the intrinsic
growth-rate of the species r D .ri/ 2 R

N . In particular, the j -th species has a positive impact on
the i -th species if aij > 0, a negative impact if aij < 0, and no impact if aij D 0. Recall also
that the interaction matrix determines the underlying ecological network G.A/ of the species pool.
This network has one vertex associated to each species and an edge .j ! i/ 2 G.A/ if aij ¤ 0.

To generate the relative abundance vector p 2 �N corresponding to a local community with
species collection z 2 f0; 1gN , we follow four steps:

1. Set the parameters .A; r/.

2. Set the initial abundance of species x0 2 R
N
�0 as

x0; i D

�
0 if zi = 0;

UniformŒ0; 1� otherwise,

for i D 1; � � � ; N .

3. Numerically integrate Eq. (S1) with initial condition x0 until the system reaches a steady-
state abundance x� D .x�

1 ; � � � ; x�
N / 2 RN . For the results presented in our paper, we choose

a final integration time tf D 1000.

4. Compute the relative abundance vector p D .p1; � � � ; pN /T 2 �N as pi D x�
i =
P

j x�
j .

Using the above procedure, we generated a datasetD by randomly sampling species collections
z 2 f0; 1gN and calculating the corresponding Op 2 �N . Below we detail the construction of the
three types of datasets used in the Main Text.

S3.1 Generating datasets with universal dynamics.
To generate a dataset with universal dynamics, we considered that all species collections have the
same parameters .A; r/. These parameters were generated as follows. The interaction matrix A of
the community is obtained as the adjacency matrix of a directed weighted Erdös-Rényi random net-
work with connectivity C 2 Œ0; 1�. The edge-weights were chosen from a Normal distribution with
zero mean and variance �2, where � > 0 represents the “characteristic” inter-species interaction
strength. The intrinsic growth ri is chosen uniformly at random from the interval Œ0; 1�.

S3.2 Generating datasets with non-universal dynamics.
To generate a dataset with non-universal dynamics, we considered two possible sources for non-
universality. First, the mechanisms of interaction between species may differ across local commu-
nities. In Eq. (S1), this translates as using different parameters aij for each non-zero interaction in
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different local communities. Thus, in this case we replaced each aij ¤ 0 by aij C �Normal.0; 1/,
where � > 0 quantifies the changes in the typical interaction strength, and hence the “loss" of
universality in this case.

Second, we considered that each local community may have a different ecological network. To
model this case, we considered that the ecological network of each local community is obtained by
randomly rewiring a proportion � 2 Œ0; 1� of the edges of a baseline ecological network G.A/, thus
shuffling a proportion of entries of the associated A matrix. Since � D 0 corresponds to universal
dynamics, the magnitude of � quantifies the “loss” of universality in this case.

S3.3 Adding measurement noise to a dataset.
For a pair .z; p/ in a dataset D, we added noise by replacing pi by first adding a small noise
wi D maxf0; pi C "Normal.0; 1/g, and then normalizing to obtain the noisy measurement pi  

wi=
P

j wj . Here, the parameter " > 0 controls the measurement noise intensity.

S3.4 Generating datasets with multi-stability.
To generate a dataset with true multi-stability, we calculated the steady-states from a population
dynamics model with the following non-linear functional response:

dxi.t/

dt
D xi.t/

24ri C

NX
j D1

aij

xj .t/

1C h xj .t/2

35 ; i D 1; � � � ; N; (S2)

where h denotes the handling time.
To generate steady-states with multi-stability, we first select a GLV model with a linear func-

tional response (Eq. S1) and universal dynamics (Supplementary Notes S3), and compute the
steady-state ��. Note that the steady-state abundances satisfies the equation

ri D �

NX
j D1

aij ��
j : (S3)

The steady-states of Eq.(S2) satisfies the equation

NX
j D1

aij

xj

1C h x2
j

C ri D 0; (S4)

so that we substitute Eq.S3 in Eq.S4 and solve for xj the following quadratic equation:

h��
j x2

j � xj C ��
j D 0; (S5)

for all j , and then we compute the relative abundance vector p D .p1; � � � ; pN /T 2 �N as
pi D x�

i =
P

j x�
j . To ensure that there are two real solutions for xj , we chose h D 1

4��
k

2 > 0 for
some k.

The two steady-state abundances corresponds to a high and low total biomass regimes, respec-
tively. To build the datasets, we chose a fraction (1-�) from the first regime, and the rest from the
second.
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S4. Description of the experimental datasets.

S4.1 In-vivo drosophila core gut microbiome.

The drosophila dataset13 contains the absolute abundance of the five species in each possible local
community with different species collection. See Supplementary Table S2 for species IDs. There
is five replicates for each of those species collections. We averaged those five replicates, discarded
samples with a single species, and obtained the relative abundance of each of the remaining sam-
ples. This yielded 31 samples with different species collection.

ID Genus Species
1 Lactobacillus plantarum
2 Lactobacillus brevis
3 Acetobacter pasteurianus
4 Acetobacter tropicalis
5 Acetobacter orientalis

Supplementary Table S2: Species IDs Drosophila gut microbiota.

S4.2 In-vitro soil community.

This laboratory community of N D 8 heterotrophic soil-dwelling bacterial species14 described in
Table S3. The available dataset contains 98 samples, including all solos, all duos, some trios, one
septet and one octet.

ID Genus Species
1 Enterobacter aerogenes
2 Pseudomonas aurantiaca
3 Pseudomonas chlororaphis
4 Pseudomonas citronellolis
5 Pseudomonas fluorescens
6 Pseudomonas putida
7 Pseudomonas veronii
8 Serratia marcescens

Supplementary Table S3: Species IDs the in-vitro soil community.

S4.3 In-vivo soil microbiome.
The soil dataset consists of soil microbiome across Central Park in New York City consist of 1160
samples. This data set is 16S rRNA gene-based with variable region V4. The data is available at
https://qiita.ucsd.edu/ under study ID 2140 and the detailed description of this data set can be found
in Ref. [15]. We used the function summarize_taxa.py QIIME 1 to summarize taxa to different
taxonomic levels with defaults options. Supplementary Table S4 provides the IDs associated to
each phylumm.

S4.4 Human gut microbiome.
A 16S rRNA gene-based data set from variable regions V3 to V5. The data are available at
http://www.hmpdacc.org/HMQCP/. We selected the samples from the stool body site. For mul-
tiple samples from the same subject, we only keep one single sample of that subject. To guarantee
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ID Kindgom Phylum
1 Archaea Crenarchaeota
2 Archaea Euryarchaeota
3 Archaea Parvarchaeota
4 Bacteria others
5 Bacteria Acidobacteria
6 Bacteria Actinobacteria
7 Bacteria Aquificae
8 Bacteria Armatimonadetes
9 Bacteria BHI80-139
10 Bacteria Bacteroidetes
11 Bacteria Chlorobi
12 Bacteria Chloroflexi
13 Bacteria Cyanobacteria
14 Bacteria Elusimicrobia
15 Bacteria FBP
16 Bacteria Firmicutes
17 Bacteria GN02
18 Bacteria Gemmatimonadetes
19 Bacteria Lentisphaerae
20 Bacteria NC10
21 Bacteria Nitrospirae
22 Bacteria OD1
23 Bacteria OP3
24 Bacteria OP9
25 Bacteria Planctomycetes
26 Bacteria Proteobacteria
27 Bacteria SBR1093
28 Bacteria Spirochaetes
29 Bacteria TM6
30 Bacteria TM7
31 Bacteria TPD-58
32 Bacteria Tenericutes
33 Bacteria Verrucomicrobia
34 Bacteria WPS-2
35 Bacteria WS1
36 Bacteria WS6

Supplementary Table S4: Phylum IDs for soil dataset.
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the model can be trained sufficiently, we summarized the taxa into the genus level and removed
the genus with fewer than 50 reads. See also Supplementary Table S5 for genus ID.

S4.5 Universality of experimental datasets.

To assess the university of microbial dynamics, we performed the dissimilarity-overlap analysis16.
For any pair of microbiome samples, the overlap is defined as half of the sum of relative abun-
dances of the shared species of the two samples, while the dissimilarity is defined between the
renormalized abundance profiles of the shared species of the two samples. For each of real dataset,
we calculated the overlap and dissimilarity of all the sample pairs, represented by the dots in the
dissimilarity-overlap plane. The negative correlation between dissimilarity and overlap in the high-
overlap regime is a strong signal of universal microbial dynamics. We found that those real datasets
all display signal of universal microbial dynamcis to some extent. The signal is strongest for the
ocean microbiome, where a very strong negative relationship between dissimilarity and overlap can
be seen in the high-overlap regime. This result is also consistent with the outstanding performance
of cNODE in the ocean microbime dataset (as shown in Fig. ??) of the main text.
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ID Phylum Class Order Family Genus
1 Firmicutes Clostridia Clostridiales Veillonellaceae Veillonella
2 Firmicutes Clostridia Clostridiales Ruminococcaceae Clostridium
3 Firmicutes Clostridia Clostridiales Ruminococcaceae Bacteroides
4 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Coprobacillus
5 Firmicutes Clostridia Clostridiales ClostridialesFamilyXIII.IncertaeSedis
6 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Odoribacter
7 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnobacterium
8 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia
9 Bacteroidetes
10 Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus
11 Firmicutes Clostridia Clostridiales Veillonellaceae Megasphaera
12 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus
13 Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus
14 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides
15 Firmicutes Clostridia Clostridiales Dehalobacteriaceae Dehalobacterium
16 Tenericutes
17 Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus
18 Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea
19 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Catenibacterium
20 Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio
21 Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira
22 Firmicutes Clostridia Clostridiales Lachnospiraceae Clostridium
23 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia
24 Firmicutes Bacilli Turicibacterales Turicibacteraceae
25 Firmicutes Clostridia Clostridiales Ruminococcaceae
26 Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Collinsella
27 Firmicutes Clostridia Clostridiales Veillonellaceae Acidaminococcus
28 Firmicutes Clostridia Clostridiales ClostridialesFamilyXIII.IncertaeSedis Eubacterium
29 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
30 Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia
31 Firmicutes Clostridia Clostridiales Ruminococcaceae Eubacterium
32 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira
33 Bacteroidetes Bacteroidia Bacteroidales
34 Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila
35 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella
36 Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes
37 Firmicutes Clostridia Clostridiales Veillonellaceae Dialister
38 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus
39 Proteobacteria Betaproteobacteria Burkholderiales
40 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Holdemania
41 Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium
42 Firmicutes Clostridia Clostridiales Lachnospiraceae Eubacterium
43 Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum
44 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium
45 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Clostridium
46 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Sutterella
47 Others
48 Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium
49 Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus
50 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
51 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
52 Firmicutes Clostridia Clostridiales Clostridiaceae
53 Firmicutes Clostridia Clostridiales Lachnospiraceae Bacteroides
54 Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium
55 Firmicutes Clostridia Clostridiales
56 Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
57 Firmicutes Clostridia Clostridiales Veillonellaceae Megamonas
58 Firmicutes Clostridia Clostridiales Lachnospiraceae

Supplementary Table S5: Genus IDs for the human gut microbiota dataset.
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S5. Related work.

Here we describe related methods, emphasizing some key differences with respect to our frame-
work.

1. Abundance prediction based on inferred population dynamics. A classical method to
predict species abundance in microbial ecosystems is modeling their population dynam-
ics10,11,12,14,17. Typically, the model is a set of parametrized ODEs —such as the Generalized
Lotka-Volterra equations— describing the changes over time in the absolute abundances
of a set of species. The model is fitted to available temporal data of absolute abundance
to infer parameters, such as intrinsic growth rates, inter-species interaction strengths, etc.
Then, to predict the abundance of certain species collection, the fitted ODE model is solved
starting from suitable initial condition. However, applying this method for large microbial
communities like the human gut is challenging if not impossible because: 1) the absence of
high-quality temporal data; and 2) typically only relative abundance of species are measured.
Furthermore, because the very broad population dynamics that ecosystems display even at
the scale of two species18, it is always very challenging to choose an adequate parametrized
ODE model for the population dynamics of the community.

2. Predictions based on neural networks methods. Larsen et al.19 employed an artificial neu-
ral network to predict the temporal evolution of the composition of bacterial communities
with a constant species collection. More precisely, they developed a bioclimatic model of
relative microbial abundance that specifically incorporates interactions between biological
units. They modeled the complex interactions between microbial taxa and their environment
as an artificial neural network (ANN). This method is based on two key assumptions: (1)
community patterns share mathematically describable relationships with environmental con-
ditions; and (2) the ecosystem maintains a persistent microbial community. Note that the
second assumption implies that this method can not be used to predict the impact of chang-
ing the species collections. Compared to method based on inferring population dynamics,
this method has the advantage of not requiring to specify any model for the community dy-
namics. However, in contrast to our framework, this method cannot predict the effect of
changing the species collection.

Similarly, the recent work of Zhou et al.20 uses a neural network to predict the temporal
and spatial evolution of the composition of microbial communities with a constant species
collection. More precisely, the authors formulated the prediction of microbial communities
at unsampled locations as a multi-label classification task, where each location is considered
as an instance and each label represents a microbe species. Based on a set of heterogeneous
features extracted from the urban environment, they aimed to predict the presence or absence
of a list of microbes species at a nearby location. Note, however, that this method cannot be
immediately used to predict the effect of changing the species collection.

3. Predictions based on statistical methods. Recently, Maynard et al.21 proposed a statistical
method to predict species abundances from species collections. More precisely, based on
measuring the absolute abundance of species at some steady-states of the ecosystem, this
method assumes a linear model to predict all other steady-states. For the method to be
applicable, it requires that the following assumptions are satisfied: (1) each species must
be present in at least n distinct endpoints, not counting replicates; (2) each species must
co-occur with each other species in at least one endpoint (that is, for every pair of species
i and j , there must be some endpoint where i and j co-occur, possibly along with other
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species); and (3) for each i there must exist a perfect matching between the n species and
the endpoints in which they co-occur with i . As explained in the original manuscript21,
conditions (1) and (2) above requires that “coexistence among species must be reasonably
widespread for [these] conditions to hold.” This method may be challenging to apply for
microbial communities because it requires measuring absolute abundances. Furthermore,
because microbial communities tend to have nonlinear behaviors even at the scale of two
species18,22, the implicit assumption of linearity may fail to be satisfied. Finally, we note that
cNODE does not require any of the above three assumptions to be applicable, although its
prediction accuracy may be influenced by them.

Similarly, Tung et al.23 use a linear regression method to predict species compositions from
information of social networks of individuals. More precisely, the authors fit a classical
linear mixed model to predict the relative abundance of species in a sample based on the
following predictors: social group membership, age, sex, and read depth. We note here that
the predictors in this approach are completely different than the predictors used in cNODE
(i.e., it only uses species collections), and thus are not comparable.
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S6. Comparing cNODE with Maynard et al.’s method.

Here we compare the performance of cNODE with the method of Maynard et al. for predicting
endpoints21. This last method is described with details in item 3 of Supplementary Note S5.

To perform the comparison, we generated in silico datasets of N D 5 species with Gener-
alized Lotka-Volterra dynamics. More precisely, we generated datasets with universal dynamics,
maintaining the connectivity C D 0:5 constant and changing the typical interaction strength as
� 2 f0:1; 0:2; 0:3; 0:4g. For each value of � , we generated 10 datasets containing all S D 25 � 1

samples with different species collections following the simulation method described in Supple-
mentary Note S3. We repeated this simulation method three times, obtaining three repetitions for
the abundance of each species collections that can be used in Maynard’s method. Additionally,
because Maynard’s method requires absolute abundances, we kept in the datasets both the absolute
abundance and relative abundance of each steady-state that is reached. Using these datasets, we
constructed training datasets by randomly choosing 70% of the samples, and the rest of the samples
as test datasets.

To adjust Maynard’s method we used the default parameters that were selected for N D 4

species. After this, we obtained the corresponding absolute abundance predictions of the test
dataset. Finally, to allow a comparison with cNODE that predicts relative abundances, we trans-
formed each predicted absolute abundance into a predicted relative abundance, and then calculated
the prediction error using the Bray-Curtis dissimilarity.

For cNODE, we used the exact same training dataset as for Maynard’s method, the only differ-
ence being that we trained cNODE with relative abundances. We choose a inner learning rate of
0.001, an outer learning rate of 0.005, and trained cNODE for 500 epochs using mini batches of 5
samples. We then calculated the prediction error in the test dataset using the Bray-Curtis dissimi-
larity. We emphasize that cNODE uses less information that Maynard’s method, in the sense that
the total biomass of each sample is unknown in this case.

The results of the comparison of Maynard’s method and cNODE are shown in Fig. S5. We
find that, for the above conditions used to construct the datasets, cNODE outperforms Maynard’s
method in both the training and test datasets. Crucially, note that cNODE was trained using only
relative abundance measurements. We do not claim this results holds for all datasets, as there might
be cases where the assumptions required by Maynard’s method are exactly satisfied but none of
the assumptions of cNODE are satisfied.
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Supplementary Figure S1: Performance of the ResNet and cNODE architectures for predicting
compositions in experimental microbiomes. Vertical axis denotes prediction error.
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Supplementary Figure S2: Correlation between true and predicted samples from experimental
microbiomes. Dots represent species abundances in log scale. Legends show the Spearman’s rank
correlation coefficient �.
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Supplementary Figure S3: In silico validation of cNODE. Results are for pools of N D 100

species with Generalized Lotka-Volterra (GLV) population dynamics. Lines show performance
of cNODE for in-silico datasets with non-universal dynamics, produced by changing the species
interactions in a sample-specific manner. The percentage of different interactions every sample is
quantified by the value of �.
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Supplementary Figure S4: Dissimilarity-Overlap analysis of real microbiome datasets. For the
microbiome data of human gut, human oral, ocean, and in-vivo soil, the Dissimilarity-Overlap anal-
ysis was done at the genus level. For data from Drosophila gut and in-vitro soil, the Dissimilarity-
Overlap analysis was done at the species level. Note that for those two datasets, due to the very
low species richness (N D 5 and 8, respectively), there are many sample pairs sharing only one
common species. These sample pairs have zero dissimilarity between the renormalized abundance
profiles of the common species. This explains those data points with non-zero overlap but zero
dissimilarity.
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Supplementary Figure S5: Prediction errors of Maynard et al.’s method21 and cNODE. For an
in silico dataset of N D 5 species with universal dynamics and different typical interaction strength.
Circles denote mean error for 10 repetitions, and gray shadows indicate standard deviation of the
mean. a. Train dataset. b. Test dataset.
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Supplementary Figure S6: Performance of cNODE is quite robust to the change of dissimilarity
or distance measure. Results are for synthetic communities of N D 100 species generated by
the Generalized Lotka-Volterra model with � D 0:1 and C D 0:5. Prediction error was measured
by the Bray-Curtis dissimilarity, Manhattan distance or Yue-Clayton dissimilarity24 for training
(solid) and test (dash) samples. Sample size for training, validation and test are 500, 100 and 400
respectively.

20


	Implementation of the compositional Neural Ordinary Differential Equation
	Flux implementation of cNODE.
	Training cNODE.

	Comparison of two deep learning frameworks in predicting microbiome compositions
	A ResNet architecture for predicting microbiome compositions.
	Performance comparison.

	Population dynamics for the in silico validations.
	Generating datasets with universal dynamics.
	Generating datasets with non-universal dynamics.
	Adding measurement noise to a dataset.
	Generating datasets with multi-stability.

	Description of the experimental datasets.
	In-vivo drosophila core gut microbiome.
	In-vitro soil community.
	In-vivo soil microbiome.
	Human gut microbiome.
	Universality of experimental datasets.

	Related work.
	Comparing cNODE with Maynard et al.'s method.

