Supporting Information for

Vulnerability to APOBEC3G linked to the pathogenicity of deltaretroviruses.

Takafumi Shichijo^{1, 2}, Jun-ichirou Yasunaga^{1, 2, *}, Kei Sato^{3, 4}, Kisato Nosaka¹, Kosuke Toyoda^{1, 2}, Miho Watanabe¹, Wenyi Zhang¹, Yoshio Koyanagi⁵, Edward L. Murphy^{6, 7}, Roberta L. Bruhn⁷, Ki-Ryang Koh⁸, Hirofumi Akari⁹, Terumasa Ikeda^{10, 11, 12}, Reuben S. Harris^{11, 12}, Patrick L. Green¹³, and Masao Matsuoka^{1, 2, *}

Corresponding Authors:

Masao Matsuoka, Jun-ichirou Yasunaga Email: mamatsu@kumamoto-u.ac.jp, jyasunag@kumamoto-u.ac.jp

This PDF file includes:

Figures S1 to S10 Tables S1 to S2

Fig. S1. Deep sequencing of HTLV-1, HTLV-2, and STLV-1 proviruses in vivo.

(*A*) Circular cladogram showing the HTLV-1 subgroups (green, Japanese subgroup [n = 53]; blue, transcontinental subgroup [n = 12]). References strains are indicated in the tree: ATK_J02029, YS_U119949, and AB513134 are Japanese subgroup; TSP1_M86840 and BOI_L36905 are transcontinental subgroup. (*B-D*) Depth (top) and the percentage of targeted bases covered by $\leq 200 \times$, $> 200 \times$, $> 500 \times$, $> 1000 \times$, $> 1500 \times$ and $> 2000 \times$ sequencing reads (bottom) from deep sequencing analysis of the provirus in HTLV-1 asymptomatic carriers (ACs) (n = 65) (*B*), HTLV-2-infected individuals (n = 18) (*C*), and STLV-1-infected Japanese macaques (n = 16) (*D*). (*E*) Example of mutations in HTLV-1 asymptomatic carriers (ACs; Japanese subgroup, n = 10; transcontinental subgroup, n = 4), HTLV-2-infected individuals (HTLV-2a, n = 3; HTLV-2b, n = 3), and STLV-1-infected Japanese macaques (n = 5), analyzed by

HYPERMUT(https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html). Reference sequences were AB513134 for HTLV-1 Japanese subgroup, L36905 for HTLV-1 transcontinental subgroup, NC_001488 for HTLV-2a, L20734 for HTLV-2b and MH542226 for STLV-1. (*F-H*) Heatmaps of mutations observed in the *tax* gene (*F*), *rex* gene (*G*), and *HBZ* gene (*H*) in 65 HTLV-1 ACs.

Fig. S2. Deep sequencing of HTLV-1, HTLV-2, and STLV-1.

(*A*) Frequency of mutations detected in the provirus of five HTLV-2b-infected individuals by deep sequencing analysis. (*B*) Frequency of nonsense mutations detected in the provirus of five HTLV-2b-infected individuals by deep sequencing analysis. (*C*) Schema of wild-type and mutants with a nonsense mutation (Q87*) in the *APH-2* gene in two cases (#9 and #991). Frequencies of provirus mutations in these two HTLV-2-infected individuals (#9 and #991): (top) G-to-A mutations and (bottom) nonsense mutations. (*D*) Immunoblot showing the expression of APOBEC families in transfected HEK293T cells. IB, immunoblot. (*E*) Frequency of mutations detected in the provirus of HTLV-1-infected cells (left) or HTLV-2-infected cells (right) with hA3C/D/F/H expression *in vitro*. (*F*) Frequency of mutations detected in HTLV-1-infected cells under hA3G expression *in vitro* (top) corresponds with that in more than 10% of HTLV-1 ACs (n=65) *in vivo* (bottom). (*G*) Frequency of mutations detected cells (top) and STLV-1-infected cells (bottom) under E259Q mutant hA3G expression *in vitro*.

Fig. S3. Antisense proteins suppress A3G.

(*A*) Schema of the experiment to analyze the effects of HTLV-2 encoded genes and antisense viral proteins on viral infectivity in the presence of A3G using TZM-bl cells. Pseudotype recombinant HIV-1 (pNL4.3/ Δ Vif/ Δ Env) is produced using 293T cells expressing A3G and various viral genes. Vif is used as a positive control. (*B*) Among all the HTLV-2 coding proteins tested, only APH2 restored viral infectivity in the presence of hA3G (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired Student's t test; *P < 0.05). (*C*) Of the antisense proteins of HTLV-2, HTLV-1, or STLV-1, APH2 best inhibits human A3G and restores infectivity (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired Student's t test; *P < 0.05). (*D*) The antisense proteins of HTLV-1 or STLV-1 can inhibit simian A3G and restore infectivity (normalized mean \pm s.d. of triplicate experiments; twotailed unpaired Student's t test; *P < 0.05). (*D*) The antisense proteins of HTLV-1 or STLV-1 can inhibit simian A3G and restore infectivity (normalized mean \pm s.d. of triplicate experiments; twotailed unpaired Student's t test; *P < 0.05). (*E*) Immunoblotting showing the antisense proteins purified from QT6 cells overexpressing HBZ, APH-2, or SBZ. All experiments were performed at least twice.

Fig. S4. Interaction between A3G and antisense viral proteins.

(*A*) Immunoblot showing that the amount of A3G is unchanged in the presence or absence of antisense proteins with or without MG132 treatment. (*B*) Immunoblot showing the expression of endogenous hA3G in HTLV-1-negative T-cell lines (Jurkat, Molt4, SupT1, Kit225, Hut78, and H9), HTLV-1-infected T-cell lines (MT-2, and MT-4), and ATL cell lines (HPB-ATL-2, MT-1, ED, TL-Om1, ATL43Tb(-), and ATL55T+)(left). Expression of mRNA of *HBZ* in HTLV-1-infected T-cell lines (MT-2, MT-4, and Hut102), and ATL cell lines (HPB-ATL-2, HPB-ATL-T, MT-1, ED, TL- Om1, ATL43Tb(-), and ATL55T(+)) by RT-qPCR (right). (*C-E*) Co-immunoprecipitation experiments showing the interaction of deletion mutants of A3Gs with HBZ (*C*), SBZ (*D*) and APH-2 (*E*) in transfected HEK293T cells. IP, immunoprecipitation; IB, immunoblot. (*F*) Schema of wild-type and deletion mutants of A3Gs with deletion mutants of HBZ (*G*), APH-2 (*H*) and SBZ (*I*) in transfected HEK293T cells. IP, immunoprecipitation; IB, immunoblot. (*J*) Immunoblot showing the incorporation of both hA3G and HBZ into viral particles in MT-2 cells. Experiments were performed at least twice.

Fig. S5. hA3G enhances the activation of the TGF-β/Smad pathway by HBZ.

(*A*-*C*) Luciferase activity of 3TP-Lux under the control of a TGF- β responsive element in cells co-expressing hA3G with HBZ (*A*), hA3G with APH-2 (*B*), or sA3G with SBZ (*C*) (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired Student's t test; *P < 0.05; **P < 0.01; ***P < 0.001; **** P < 0.0001). (*D*) Luciferase activity of 3TP-Lux under the control of a TGF- β responsive element in hA3G knockdown HepG2 cells expressing HBZ (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired Student's t test; **P < 0.01; ***P < 0.001; ****P < 0.0001). The hA3G expression values were analyzed by ImageJ. (*E*) Luciferase activity of 3TP-Lux under the control of a TGF- β responsive element in cells expressing deletion mutants of hA3G (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired student's t test; **** P < 0.001). (*F*) Luciferase activity of 3TP-Lux under the control of a TGF- β responsive element in cells co-expressing HBZ with empty, hA3G-WT, or hA3G-F17A mutant (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired Student's t test; **P < 0.01). All experiments were performed at least twice.

Fig. S6. Interaction of hA3G with Smad proteins.

(*A*) Co-immunoprecipitation experiment showing the interaction of hA3G with Smad2/3/4/7 in transfected HEK293T cells. IP, immunoprecipitation; IB, immunoblot. (*B*) Interaction between hA3G and endogenous Smad7 is analyzed by immunoprecipitation assay in HTLV-1-negative T-cell lines (Hut78, H9), an HTLV-1-infected T-cell line (MT-2), and an ATL cell line (ATL55T+). IP, immunoprecipitation; IB, immunoblot. (*C*) GSEA with RNA-seq showing a category of significantly enriched gene signatures related to protein tyrosine kinase activity in hA3G knockdown ATL cells. (*D*) Immunoblot analysis reveals no dose-dependent phosphorylation of Smad2 under expression of hA3G in transfected HepG2 cells. (*E*) Endogenous interaction between HBZ and Smad3 in ATL55T(+) and hA3G-knockdowned ATL55T(+) cells is analyzed by immunoprecipitation assay. IP, immunoprecipitation; IB, immunoblot. The hA3G expression values were analyzed by ImageJ. (*F*) Immunoblot analysis reveals no dose-dependent phosphorylation of Smad2 under expression values were analyzed by ImageJ. (*F*) Immunoblot analysis reveals no dose-dependent phosphorylation; IB, immunoblot. The hA3G expression values were analyzed by ImageJ. (*F*) Immunoblot analysis reveals no dose-dependent phosphorylation of Smad2 under expression values were analyzed by ImageJ. (*F*) Immunoblot analysis reveals no dose-dependent phosphorylation of Smad2 under expression values were analyzed by ImageJ. (*F*) Immunoblot analysis reveals no dose-dependent phosphorylation of Smad2 under expression of HBZ in transfected HepG2 cells. Experiments were performed at least twice (*A-B, D, and F*).

Fig. S7. Cell growth assays in HTVL-1-non-infected and -infected T-cell lines.

(A) Cell growth of HTLV-1-infected T-cell lines/ATL cell lines treated with SB431542 (normalized mean \pm s.d. of triplicate experiments). (B) Cell growth of HTLV-1-non-infected T-cell lines treated with SB431542 (normalized mean \pm s.d. of triplicate experiments). (C) Cell growth of HTLV-1-infected T-cell lines/ATL cells lines treated with SIS3-HCl (normalized mean \pm s.d. of triplicate experiments). (D) Cell growth of HTLV-1-non-infected T-cell lines treated with SIS3-HCl (normalized mean \pm s.d. of triplicate experiments). (D) Cell growth of HTLV-1-non-infected T-cell lines treated with SIS3-HCl (normalized mean \pm s.d. of triplicate experiments).

Fig. S8. MYC is upregulated by the TGF-β/SMAD pathway in HTLV-1-infected cells. (*A*) Significantly enriched gene signatures for cell cycle related gene sets in ED cells (top) and MT-1 cells (bottom) treated with SB431542, by GSEA with RNA-seq. (*B*) c-*Myc* expression in an HTLV-1-negative T-cell line (Hut78), an HTLV-1-infected T- cell line (MT-2), and ATL cell lines (ED, MT1, HPB-ATL-2) treated with SB431542 or SIS3-HCl, by RT-qPCR (normalized mean \pm s.d. of triplicate experiments; one-way ANOVA with Tukey correction; *P < 0.05; **P < 0.01; ***P < 0.001). (*C*) c-*Myc* expression in cell lines treated with or without recombinant TGF-β1 (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired Student's t test; **P < 0.01; **** P < 0.001). Experiments were performed at least twice (*B*-*C*).

Fig. S9. BATF3 and IRF4 are upregulated by activation of the TGF-β/SMAD pathway. (*A*), Venn diagram of differentially expressed genes (DEG) by RNA-seq in ED cells and MT-1 cells treated with SB431542. (*B*), Transcripts per million (TPM) of *BATF3* (left) and *IRF4* (right) expression in MT-1 cells treated with SB431542, analyzed by RNA-seq. (*C*), RT-qPCR showing *BATF3* (left) and *IRF4* (right) expression in an HTLV-1-infected T-cell line (MT-2) and ATL cell lines (ED, MT1, HPB-ATL-2) treated with SB431542 or SIS3-HCl (normalized mean \pm s.d.; *P < 0.05; **P < 0.01; ***P < 0.001; **** P < 0.0001). (*D*), RT-qPCR showing *BATF3* (left) and *IRF4* (right) expression in ED cells and MT-2 cells treated with or without recombinant TGF-β1 (normalized mean \pm s.d. of triplicate experiments; two-tailed unpaired Student's t test; ***P < 0.001; **** P < 0.0001). Experiments were performed at least twice (*C-D*).

Fig. S10. Schema of HBZ/hA3G-induced ATL cell proliferation.

In ATL cells, HBZ and hA3G potentiate the TGF- β /Smad signaling. Enhanced TGF- β /Smad signaling through HBZ/hA3G promotes the proliferation of ATL cells by upregulation of *BATF3/IRF4* and *MYC*.

Cases	PVL (%)	Cases	PVL (%)	Cases	PVL (%)
HTLV-1 AC1	5.4	HTLV-1 AC34	0.5	HTLV-2#3	25.7
HTLV-1 AC2	8.2	HTLV-1 AC35	0.2	HTLV-2#10	0.24
HTLV-1 AC3	0.5	HTLV-1 AC36	6.8	HTLV-2#5	0.009
HTLV-1 AC4	0.1	HTLV-1 AC37	0.8	HTLV-2#6	1.545
HTLV-1 AC5	24.9	HTLV-1 AC38	0.03	HTLV-2#7	0.867
HTLV-1 AC6	1.2	HTLV-1 AC39	8.0	HTLV-2#8	8.927
HTLV-1 AC7	2.5	HTLV-1 AC40	12.5	HTLV-2#9	16.38
HTLV-1 AC8	20.0	HTLV-1 AC41	0.4	HTLV-2#1791	NA
HTLV-1 AC9	10.5	HTLV-1 AC42	1.3	HTLV-2#2204	NA
HTLV-1 AC10	4.5	HTLV-1 AC43	5.3	HTLV-2#1622	NA
HTLV-1 AC11	9.3	HTLV-1 AC44	0.9	HTLV-2#1890	NA
HTLV-1 AC12	6.1	HTLV-1 AC45	12.4	HTLV-2#1875	NA
HTLV-1 AC13	3.8	HTLV-1 AC46	3.1	HTLV-2#1009	NA
HTLV-1 AC14	4.6	HTLV-1 AC47	1.5	HTLV-2#991	NA
HTLV-1 AC15	1.5	HTLV-1 AC48	0.2	HTLV-2#1975	NA
HTLV-1 AC16	91.3	HTLV-1 AC49	5.5	HTLV-2#1073	NA
HTLV-1 AC17	4.2	HTLV-1 AC50	3.8	HTLV-2#416	NA
HTLV-1 AC18	1.2	HTLV-1 AC51	2.5	STLV1-1	1.3
HTLV-1 AC19	10.0	HTLV-1 AC52	3.2	STLV1-2	1.5
HTLV-1 AC20	14.1	HTLV-1 AC53	3.5	STLV1-3	5.9
HTLV-1 AC21	1.9	HTLV-1 AC54	7.3	STLV1-4	6.5
HTLV-1 AC22	0.2	HTLV-1 AC55	2.2	STLV1-5	9.8
HTLV-1 AC23	11.0	HTLV-1 AC56	2.4	STLV1-6	11.5
HTLV-1 AC24	1.3	HTLV-1 AC57	1.5	STLV1-7	11.6
HTLV-1 AC25	22.6	HTLV-1 AC58	0.3	STLV1-8	13.7
HTLV-1 AC26	7.7	HTLV-1 AC59	3.1	STLV1-9	14.1
HTLV-1 AC27	3.5	HTLV-1 AC60	1.2	STLV1-10	17.1
HTLV-1 AC28	1.9	HTLV-1 AC61	17.7	STLV1-11	53.2
HTLV-1 AC29	2.1	HTLV-1 AC62	0.6	STLV1-12	0.2
HTLV-1 AC30	10.4	HTLV-1 AC63	3.5	STLV1-13	0.4
HTLV-1 AC31	1.3	HTLV-1 AC64	7.8	STLV1-14	1.2
HTLV-1 AC32	6.1	HTLV-1 AC65	15.8	STLV1-15	3.3
HTLV-1 AC33	0.1	HTLV-2#1	6.0	STLV1-16	0.3

Table S1. Proviral loads in HTLV-1 asymptomatic carriers, HTLV-2-infected individuals, and STLV-1-infected Japanese macaques

Abbreviation: HTLV-1, human T-cell leukemia virus type 1; HTLV-2, human T-cell leukemia virus type 2; STLV-1, simian T-cell leukemia virus type 1; AC, asymptomatic carrier; PLV, proviral load; NA, not available.

Gene/target		Sequence
Human APOBEC3G	F	5'-CCGAGGACCCGAAGGTTAC-3'
	probe	5' FAM-ccaggagg-TAMRA 3'
	R	5'-TCCAACAGTGCTGAAATTCG-3'
SMAD2	F	5'-CTCAAGGCAATTGAAAACTGCG-3'
	R	5'-GGCGGAAGTTCTGTTAGG-3'
SMAD3	F	5'-GTGACCACCAGATGAACCAC-3'
	R	5'-GTAGTAGGAGATGGAGCACC-3'
SMAD7	F	5'-CTGTGCCTTCCTCCGCTG-3'
	R	5'-CACTCTCGTCTTCTCCTC-3'
BATF3	F	5'-CGGAAGAAGCAGACCCAGAA-3'
	R	5'-CATCTTCTCGTGCTCCTTCAGT-3'
IRF4	F	5'-GACTTTGAGGAACTGGTTGAGC-3'
	R	5'-GTAAGGCGTTGTCATGGTGTAG-3'
MYC	F	5'-CCTGGTGCTCCATGAGGAGAC-3'
	R	5'-CAGACTCTGACCTTTTGCCAGG-3'
HBZ	F	5'-CGACCTGAGCTTTAAACTTACC-3'
	R	5'-GCCCGTCCACCAATTCCTCC-3'
HTLV-1 provirus	F	5'-TACGTCTTTGTTTCGTTTTCTGTTCTGCGCCG-3'
	R	5'-AGAGCCGGCTGAGTCTAGGTAGGCT-3'
HTLV-2a provirus	F	5'-CTCGGCTAGACTCTGCCTTAAACT-3'
	R	5'-TCGACCTGAGAGGAGACTTACCTT-3'
HTLV-2b provirus	F	5'-GTTCTTTCCTCTTCGTCGTCAC-3'
	R	5'-GTGACGACGAAGAGGAAAGAAC-3'
STLV-1 provirus	F	5'-CCGCTGCAGATCGAAAGTTCC-3'
	R	5'-AGAGCCGGCCGAATCTAGG-3'
pX1MT-M pX region	F	5'-GGCCTTACAAACTGGAATCACC-3'
	R	5'-AGAGCCGGCTGAGTCTAGGCAGGCT-3'
pH6neo pX region	F	5'-GAGGATTAGACCTCCTATTCTGGG-3'
	R	5'-CTTCCCCGGGAAGACAATGC-3'
pWK1699 pX region	F	5'-GGCCTTACAAACTGGAATCACC-3'
	R	5'-GAGAGAGTTGTAAAATGGGCTGCT-3'

Table S2. Primers for quantitative RT-PCR and deep-sequencing analysis

Abbreviation: RT-PCR, reverse transcription polymerase chain reaction; F, forward; R, reverse; BATF3, basic leucine zipper ATF-like transcription factor 3; IRF4, interferon regulatory factor 4; HBZ, HTLV-1 bZIP factor.