

Supporting Information for

Steering lithium and potassium storage mechanism in covalent organic frameworks by incorporating transition metal single atoms

Yingnan Cao¹, Qing Xu², Yi Sun¹, Jixin Shi³, Yi Xu¹, Yongfu Tang⁴, Xiudong Chen⁵, Shuai Yang^{6,7}, Zheng Jiang⁸, Han-Don Um⁹, and Xiaopeng Li³*, Yong Wang¹*

*Email of corresponding authors: xiaopeng.li@dhu.edu.cn (Xiaopeng Li); yongwang@shu.edu.cn (Yong Wang)

This file includes:

Supporting text Figures S1 to S26 Tables S1 to S3

Fig. S1. Structure characterizations of TP-BPY-COF, Co-COF, and Co-COF@CNT. (**A**) PXRD patterns, (**B**) Nitrogen sorption isotherm profiles, (**C**) pore size distribution curves, and (**D**) FT-IR spectra. **Notes:** black, blue, and red stands for TP-BPY-COF, Co-COF, and Co-COF@CNT, respectively.

Fig. S2. PXRD spectra of Fe-COF@CNT (blue) and Ni-COF@CNT (yellow).

Fig. S3. PXRD spectra of various samples.

Fig. S4. The survey XPS spectrum of (A) Co-COF and (B) Co-COF@CNT.

Fig. S5. SEM images of (A, B) TP-BPY-COF, (C, D) Co-COF, and (E, F) Co-COF@CNT.

Fig. S6. TEM images of (A, B) CNT and (C, D) Co-COF@CNT.

Fig. S7. (A) High-resolution bright-field TEM and (B) the corresponding HAADF-STEM images of Co-COF.

Fig. S8. (A, C) High-resolution bright-field TEM and (B, D) the corresponding HAADF-STEM images of Co-COF@CNT.

Fig. S9. Initial CV curves of the TP-BPY-COF, Co-COF, COF@CNT, and Co-COF@CNT electrodes for LIBs during 0.01-3.0 V at 0.1 mV s⁻¹. Notes: TP-BPY-COF (black), Co-COF (purple), COF@CNT (brown), and Co-COF@CNT (red).

Fig. S10. Initial discharge and charge profiles of the TP-BPY-COF, Co-COF, COF@CNT, and Co-COF@CNT electrodes for LIBs at 100 mA g⁻¹. Notes: TP-BPY-COF (black), Co-COF (purple), COF@CNT (brown), and Co-COF@CNT (red).

Fig. S11. Specific capacities and Coulombic efficiencies of the Co-COF@CNT electrode for 3 cells in LIBs.

Fig. S12. Cycling performance of CNTs for LIBs. Specific capacity of CNTs at 100 mA g⁻¹ vs. Li⁺/Li.

Fig. S13. Rate capabilities of TP-BPY-COF, Co-COF, COF@CNT, and Co-COF@CNT electrodes for LIBs.

Fig. S14. Rate capabilities of Fe-COF@CNT, Ni-COF@CNT, and Co-COF@CNT for LIBs.

Fig. S15. XPS results of the Co 2p spectrum during the lithiation and delithiation process.

Fig. S16. *In-situ* FT-IR spectra of the Co-COF@CNT electrode in LIBs. Notes: upward indicates the generation.

Fig. S17. CV curves at different scan rates ranging from 0.2 to 1.0 mV s⁻¹ vs. Li⁺/Li. (A) TP-BPY-COF, (B) Co-COF, (C) COF@CNT, and (D) Co-COF@CNT.

Fig. S19. The spatial distribution calculated by the Fukui function for Co-COF and COF to exhibit the nucleophilic sites.

Fig. S20. CV curves of the TP-BPY-COF, Co-COF, COF@CNT, and Co-COF@CNT electrodes for PIBs during 0.01-3.0 V at 0.1 mV s⁻¹. Notes: TP-BPY-COF (black), Co-COF (purple), COF@CNT (brown), and Co-COF@CNT (red).

Fig. S21. Cycling performance of CNTs for PIBs. Specific capacity of CNTs at a high current density of 100 mA g^{-1} vs. K⁺/K.

Fig. S22. Cycling performances of Fe-COF@CNT, Ni-COF@CNT, and Co-COF@CNT for PIBs. Specific capacity of Fe-COF@CNT, Ni-COF@CNT, and Co-COF@CNT at a current density of 1000 mA g^{-1} vs. K⁺/K.

Fig. S23. XPS results of the Co 2p spectrum during potassiation and de-potassiation process.

Fig. S24. In-situ FT-IR spectra of the Co-COF@CNT electrode in PIBs. Notes: upward indicates the generation.

Fig. S25. CV curves at different scan rates ranging from 0.2 to 1.0 mV s⁻¹ vs. K⁺/K. (A) TP-BPY-COF, (B) Co-COF, (C) COF@CNT, and (D) Co-COF@CNT.

Fig. S26. The capacitive contribution of TP-BPY-COF (black), Co-COF (purple), COF@CNT (brown), and Co-COF@CNT (red) in PIBs.

Sample	shell	Ν	R [Å]	ΔE₀ [eV]	σ² [10 ⁻³ Ų]	R-factor
Co-COF	Co-N	2	2.14	2.75	3.0	1.7%
Co-COF	Co-O	4	2.00	-7.60	7.5	1.7%

Table S1. K-edge fitting parameters of Co-COF.

N: coordination numbers; R: the internal atomic distance; σ^2 : Debye-Waller factor; ΔE_0 : the edge-energy shift.

Table S2. Electrochemical properties comparison between Co-COF@CNT and previous relation	ted
organic polymer anodes for PIBs.	

Materials	Retained	Cycle	Rate Capacity	Ref.	
	Reversible	Number/	@Current		
	Capacity	Current	Density		
	[mA h g ⁻¹]	Density	[mA g ⁻¹]		
		[mA g⁻¹]			
Co-COF@CNT	449	150/100	301@500		
	185	500/1000	184@2000	_ This work	
COF-10@CNT	288	500/100	~200@500 ~100@2000	ACS Nano 2019 , <i>13</i> , 3600	
PIM@KB	110	500/100	130@500 118@2000	<i>Small</i> 2020 , <i>16</i> , 2002953	
COF@Co	371	400/100	~160@500 105@2000	ACS Appl. Mater. Interfaces 2021 , 13, 48913-48922	
E-FCTF	228	100/100	~150@500 58@2000	ACS Nano 2019 , <i>13</i> , 14252	

CTF-0				
N. N	113	200/100	~84@500	Chem. Sci. 2019 , 10,
			63@1000	7695
N (N				
CTF-1				
	60	200/100	~39@500	Chem. Sci. 2019, 10,
	00		31@1000	7695
РуВТ				
	272	500/50	~200@200	ACS Nano 2019 , <i>13</i> ,
			104@500	745
N S-N				

Motoriolo	Potoinod	Civala	Current	Dof	
Waterials	Retained	Number	Density	Rei.	
	Reversible	Number			
	Capacity		[mA g⁻¹]		
	[mA h g ⁻ ']				
	449	150	100	This work	
	185	500	1000		
CNC	405	400	000	Adv. Energy Mater. 2018, 8,	
(carbon nanocage)	195	100 200		1801149	
GNC-600	280		FO	Adv. Funct. Mater. 2019, 29,	
(N-doped)	200	1	50	1903641	
NCNF-650	249	25	100	Not Commun 2018 0 1720	
(N, O-doped)	240	25	100	Nat. Commun. 2018 , 9, 1720	
CNFF	159	2000	1000	Nana Latt 2019 18 7407	
(carbon nanofiber)	100	2000	1000	Nano Lett. 2018 , 18, 7407	
PNCM	260	120	100	Adv Mater 2017 20 1702268	
(N-doped)	200	120	100	Auv. Mater. 2011, 29, 1102200	
Hollow carbon	240	/	100	J. Am. Chem. Soc. 2018, 140,	
(N-doped)	340			7127	
NHC	161	1600	1000	Energy Environ. Sci. 2019, 12,	
(N-doped)	101			1605	
N-HPC	202	400	100	Nana Latt 2010 10 4065	
(N-doped)	292	400	100	Nano Leii. 2013 , 19, 4903	
NPC	242	500	100	Adv. Energy Mater. 2018, 8,	
(N-doped)	342	500	100	1802386	
FFGF	405	200	500	ACS Appl. Mater. Interfaces	
(F-doping)	100	200	500	2016 , <i>8</i> , 20682	
S-RGO-600	207	1	100	Nano Energy 2018 53 415	
(S-doping)	291	1	100	Mano Energy 2010, 00, 410	
SNHC	212	500	100	Adv. Energy Mater. 2019, 9,	
(S, N-doped)	210		100	1901379	
NOHPHC	130	1100	1050	Adv Mater 2018 30 1700104	
(N, O-doped)	100	1100	1000	Auv. Maler. 2018 , 30, 1700104	

 Table S3. Electrochemical properties comparison between Co-COF@CNT and previous representative carbon anodes for PIBs.

PCMs	109	2000	1000	Adv. Energy Mater. 2018, 8,
(S, O-doped)	100	2000	1000	1800171
PHC-700	260	1000	200	Adv. Energy Mater. 2019, 9,
(P, O-doped)	200	1000	200	1901676
N, P-VG@CC	345	1000	25	Small 2019 15 1901285
(N, P-doped)	545	1000	20	Sinaii 2013 , 13, 1301203