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1 Supplementary Methods27

1.1 Point Estimate Calculation28

To apply the estimators to the COVID-19 pandemic, we calculated estimates in the following29

sequence:30

1. Tc: Using Assumption (iv) listed above, for each week interpolate the number of SARS-31

CoV-2 NAAT tests performed in each county where testing data is unavailable.32

2. Ts and T : For each week, use the sums of the numbers of tests in each county to find33

the number of tests in each state and across the entire U.S.34

3. ι: For each week, estimate the total number of SARS-CoV-2 infections across the U.S.35

using T from the previous step, the estimator ι̂, and Assumption (ii).36

4. ω: For each week, estimate the odds ratio across the U.S. using the estimator ω̂.37

5. ωs and ωc: For each week, estimate the odds ratio at the state and county levels via38

the Assumption (i) listed above.39

6. ιs and ιc: For each week, estimate the number of SARS-CoV-2 infections at the state-40

and county-levels using the estimator ι̂j and the odds ratios from the previous step. Sum41

these estimates across weeks to generate estimates of the total number of SARS-CoV-242

infections between April 1, 2020 - September 30, 2020.43

7. ϕs and ϕc: Estimate the SARS-CoV-2 IFRs at the state- and county-levels using the44

estimator ϕ̂j with the total mortality and estimated infections between April 1, 2020 -45

September 30, 2020.46

1.2 Validation: performance when assumptions are met47

To assess the performance of the estimators, under scenarios with set numbers of infections,48

we generated simulated COVID-19 case data for each week between April 1, 2020 to Septem-49

ber 30, 2020, and then numerically assessed the performance of the estimators against these50

known numbers of infections. Specifically, we used the following generating model:51

1. We set the country-level odds ratio, ωn equal to 26/
√
d+ 0.5, where d is the number52

of weeks elapsed since April 1, 2020. (With regard to the numerator, there were 2653
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weeks between April 1, 2020 and September 30, 2020.) As per Assumption (i), we set54

the state- and county-level odds ratios equal to the same country-level values.55

2. For each region, with the exception of the numbers of cases and country-wide IFR, we56

set the observed quantities in Table S1 equal to their known values (Table S2).57

3. For each county, we simulated the total number of SARS-CoV-2 infections (ιc) as a58

random variate from the following distribution: ⌊0.0196 · PcU
4⌋, where ⌊·⌋ is the floor59

function and U is a uniform [0, 1] random variate, with the condition that ιc ≥ Dc.60

While this may seem like an arbitrary choice of distributions, it has the desirable61

property of resulting in a country-wide IFR (ϕn) of 5.00 deaths per 1, 000 infections,62

consistent with Assumption 2.63

4. For each county, we simulated the number of COVID-19 cases in each county (Cc) as64

a variate from Wallenius’ noncentral hypergeometric distribution, using the simulated65

odds ratio and number of SARS-CoV-2 infections from above.66

5. For each state and the entire country, we found simulated numbers of SARS-CoV-267

infections and COVID-19 cases (ιs, ιn, Cs, and Cn) by summing the corresponding68

values simulated above from the counties that it contained.69
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2 Supplementary Figures70
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Figure S1: Performance of models used to predict the number of SARS-CoV-2 NAATs in

counties where testing data were unavailable. Separate linear models were fit for each week

between April 1, 2020 and September 30, 2020, with the total population and number of

observed COVID-19 cases and mortality used as possible predictors, and the number SARS-

CoV-2 NAATs as the response (all log transformed). (A) All subsets model selection with

51-fold cross validation yielded population and the number of COVID-19 cases as consistently

the best predictors. Missing symbols indicate that a predictor was not included in the model

for a given week. (B) The models generally had high predictive accuracy, with the correlation

between predicted and observed (omitted in cross-validation) values consistently greater than

0.8. The inset graph shows an example of the predictive power for the second week of

June. Each point represents the number of SARS-CoV-2 NAATs in a held-out county; color

indicates the density of points.
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Figure S2: Uncertainty associated with the point estimates for the SARS-CoV-2 IFRs and

numbers of infections. Counties and states (x-axes) are ordered by increasing point estimate.

Point estimates are shown by black points; bootstrap resamples (n = 100 for each county

and state) are shown in blue. Both the IFR and infections estimators have low variance at

both the county and state level.
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Figure S3: Performance of state-level estimators. The maps and graphs are analogous to

those in main text Figure 2, but are at the state level.
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Figure S4: The estimators developed here greatly outperform uncorrected estimators for

IFRs and numbers of infections. With simulated data where true values were known, at

both the county and state levels, the case fatality ratio and number of cases overestimate

and underestimate the IFR and number of infections, respectively, by up to several orders of

magnitude. While this might seem expected, it shows that the estimators for developed here

for the IFR and number of infections make substantial corrections.
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Figure S5: The estimators at the county level are relatively robust against model misspecifi-

cation. (A) Low and (B) high levels of geographic variability in the odds ratios, a violation of

Assumption 1, result in an increase in the variance of the estimators, but little bias. Overall

IFRs (C) higher and (D) lower than the assumed value of 5 deaths per 1,000 infections lead

bias of the estimators, while retaining the ability of the estimators to correctly rank IFRs in

different geographic regions relative to each other.
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Figure S6: The estimators at the state level are relatively robust against model misspecifica-

tion. As in Figure S5, there is a slight increase in variance with (A) low and (B) high levels

of geographic variability in the odds ratios, a violation of Assumption 1. Bias in the overall

IFRs (C) higher and (D) lower than the assumed value of 5 deaths per 1,000 leads to bias in

the estimators, but they retain the ability to correctly rank geographic locations.
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(A) (B)

Figure S7: The estimates of the numbers of SARS-CoV-2 infections, directly estimated for

states, match the numbers estimated by summing the SARS-CoV-2 infection the estimates

for the counties, regardless of whether the estimates are (A) uncorrected or (B) corrected

for total state population. The consistency of these estimation approaches suggests good

performance of the estimators.
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Figure S8: Comparison between SARS-CoV-2 IFR estimates from the hypergeometric es-

timator and independent seroprevalence estimates from other studies Ioannidis (2021). At

both the state and county levels, there is a strong match between the estimate types (most

points fall close to the 1:1 line).
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3 Supplementary Tables71
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Table S1: Real world COVID-19 data: Observed (black) and unobserved (red) quantities.

The number of tests was partially observed and estimated elsewhere.

Quantity Country State County

Deaths Dn Ds Dc

Cases Cn Cs Cc

Population Pn Ps Pc

Infection fatality ratio ϕn ϕs ϕc

Infections ιn ιs ιc

Tests Tn Ts Tc

Odds ratio ωn ωs ωc
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Table S2: Validation data: Observed (black) and simulated (blue) quantities. Starred quan-

tities were simulated as being non-random.

Quantity Country State County

Deaths Dn Ds Dc

Cases Cn Cs Cc

Population Pn Ps Pc

Infection fatality ratio ϕn ϕs ϕc

Infections ιn ιs ιc

Tests Tn Ts Tc

Odds ratio ωn∗ ωs∗ ωc∗
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