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Supp. Fig. 1 | Map of the relevant regions of Hilbert space. For any intermediate or large system size, N , an average
Haar random state in the Hilbert space will have nearly maximal entanglement entropy (up to the Page correction1), and
correspondingly is described by an MPS with approximately maximal bond dimension. By contrast, states such as GHZ state
and cluster states – which are colloquially referred to as maximally-entangled – actually have very little extensive
entanglement entropy, and can be written in an efficient MPS representation with only χ = 2.

Supp. Fig. 2 | Schematic for mixed state entanglement estimation of a target quantum state. a. The quantum
device prepares a target state2 of interest, |ψ⟩, before performing an ergodic quench, and measuring a set of resulting
bitstrings. The experimental fidelity drops both during state preparation and the quench due to errors (not pictured). b. A
classical computer then performs noise-free simulations of the entire dynamics (either exactly or approximately), calculates
both the bitstring probabilities and the time-averaged bitstring probabilities, pavg, and further estimates the second moment
of the bitstring probability distribution. c. The fidelity is then estimated via a cross-entropy type quantity2–4, Fd. If the
classical simulation were approximate, Fd is predicted either via Monte Carlo inference or direct extrapolation. d. The
negativity of the target state is estimated or assumed, and the experimental mixed state entanglement-proxy is calculated.

Experiment Type Date N
Fidelity
(×10−2)

Mixed state
entanglement Reference

Sycamore Digital Oct 2019 53 0.22 16.7 Arute et al. [5]

Zuchongzhi 2.0 Digital Jun 2021 56 0.066 17.0 Wu et al. [6]

Zuchongzhi 2.1 Digital Sep 2021 60 0.037 18.1 Zhu et al. [7]

Sycamore Digital Apr 2023 70 0.17 25.3 Morvan et al. [8]

Quantinuum H2 Digital May 2023 32 57 14.7 Moses et al. [9]

This work Analog Aug 2023 42† 9.5 14.6 This work

Supp. Table I | Summary of mixed state entanglement values for various experiments. For all literature
experiments, we assume the target pure state is as entangled as a typical Haar random state, while for this work we
extrapolate the entanglement directly (Supp. Fig. 16). † indicates an approximate effective system size due to the Rydberg
blockade constraint, see text.
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A. Description of the Experiment

A1. State preparation and readout

Our experiment is a Rydberg atom array quantum simulator2,10 trapping individual strontium-88 atoms in optical
tweezers11,12; see also Supp. Fig. 3. Up-to-date details of our apparatus may be found in previous works2,13. In brief,
we use dark-state enhanced loading14 to load a 68-tweezer array with ∼61 atoms, which we then rearrange15,16 into
defect free arrays of various sizes, with the array spacing calibrated with a laser-based ruler17. Atoms are initially in
the 5s2 1S0 state, and are cooled on the narrow-line 5s2 1S0 ↔ 5s5p 3P1 transition close to their motional ground
state. Atoms are prepared into the long-lived 5s5p 3P0 clock state with a preparation fidelity of 0.9956(1) per atom,
which we then treat as a metastable ground state, |0⟩. Atoms are then driven globally to the 5s61s 3S1,mJ=0 Rydberg
state, |1⟩ while the traps are briefly blinked off.
Following Hamiltonian evolution, state projection is performed by autoionizing18 the Rydberg atoms, leaving them

dark to our fluorescent imaging, with a fidelity of ∼0.9996 per atom. Atoms in the clock state are pumped into
the imaging cycle, from which we map atomic fluorescence to qubit state18,19 with a detection fidelity ≳0.9995 per
atom13,19. For an initially defect-free array, this results in a series of bitstrings associated with the measured qubit
states in the array; note that we discard any experimental bitstrings for which initial rearrangement failed. As we
load many more atoms than are needed when benchmarking small system sizes, we simultaneously excite and detect
multiple non-interacting subensembles when possible, and accrue several thousand bitstrings per system size and time
(Supp. Fig. 15a, inset).

Supp. Fig. 3 | Description of the experiment. a. We use a Rydberg quantum simulator, based on trapping an array of
single atoms of bosonic strontium-88. We treat the metastable 5s5p 3P0 state as an effective ground state, and consider
dynamics in the Rydberg manifold. State projection is performed by autoionizing the Rydberg state18 (not shown). b. The
Rydberg Hamiltonian is Ising-like, with single particle terms characterized by a detuning, ∆, and Rabi frequency, Ω, between
the two qubit levels. Rydberg atoms are strongly interacting, characterized by the C6 coefficient, and with a strength falling
off approximately as 1/R6, where R is the interatom distance. When two atoms are close enough together, simultaneous
excitation to the Rydberg state is strongly suppressed, causing the so-called Rydberg blockade effect. We operate in a regime
in which the nearest neighbor interaction strength is ∼13× the Rabi frequency, which is strongly blockaded (see also Supp.
Fig. 6d). c. We study one-dimensional chains of atoms (fluorescence image), with the Rydberg excitation laser aligned along
the longitudinal array axis to minimize inhomogeneity. d. A classical control system2 continuously interleaves data-taking
with automated atom-based calibration of Hamiltonian parameters, resulting in highly stable operation over the course of
multiple weeks. For example, the Rabi frequency is held constant with a relative standard deviation of only 0.0023(1). e. A
single run of the experiment takes ∼1.7 s, almost entirely limited by array loading and imaging. The actual time required for
quantum evolution is ∼1 µs. We use dark-state enhanced loading14 to reach the largest array sizes used in this work. f.
Representative per-atom fidelities; the reported per-atom evolution fidelity is defined as in Fig. 5b of the main text.
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A2. The Rydberg Hamiltonian

The Hamiltonian of our system is well approximated by

Ĥ/h = Ω
∑
i

Ŝxi −∆
∑
i

n̂i +
C6

a6

∑
i>j

n̂in̂j
|i− j|6

(1)

describing a set of interacting two-level systems, labeled by site indices i and j, driven by a laser with Rabi frequency
Ω and detuning ∆. The interaction strength is determined by the C6 coefficient and the lattice spacing a. Operators
are Ŝxi = (|1⟩i⟨0|i + |0⟩i⟨1|i)/2 and n̂i = |1⟩i⟨1|i, where |0⟩i and |1⟩i denote the electronic ground and Rydberg
states at site i, respectively. Hamiltonian parameters are summarized in Supp. Fig. 4b, and are chosen to lead to
high-temperature thermalization20,21, and chaotic behavior consistent with previous studies2.
An important feature of our system arises from the Rydberg blockade10 effect (Fig. 2b of the main text). Notably,

the nearest neighbor interaction strength is 13× larger than the next largest energy scale (the Rabi frequency), greatly
reducing the probability to have simultaneous excitation of neighboring atoms to Rydberg states. To first order, this
reduces the Hilbert space dimension from 2N to Fib(N + 2) ≈ 1.62N , where Fib is the Fibonacci function. This
means that for a system size of N atoms, the effective Hilbert space size is only that of ∼0.7N qubits, restricting the
maximum entanglement built-up.
We account for this effect in our benchmarking protocol (discussed below), and, more concretely, in Fig. 4 of the

main text we plot the experimental mixed state entanglement-proxy against the effective system size, Fib(N + 2).

A3. Maximum likelihood estimation of Hamiltonian parameters

Hamiltonian parameters are precalibrated via ab initio measurements, and then refined using maximum likelihood
estimation (MLE) from fidelity measurements at small system sizes (N ≤ 21), as described in Ref.2. MLE estimated
parameters are insensitive to system size, so we believe they are accurate for the larger system sizes we test here.
MLE results are consistent with pre-calibrated values, and tightly optimize the target Hamiltonian used in classical
simulation (Supp. Fig. 4a). Note that the real-space positions of atoms are taken into account when performing MLE
on parameter gradients. For instance, several small islands of atoms are benchmarked over the same spatial extent as
the largest 60-atom array.
The main experimental dataset was taken continuously over the course of 17 days. Parameters such as Rabi frequency,

detuning, beam alignment, state preparation, and others were automatically calibrated via our home-built control
architecture2, resulting in high stability even over such a long data-taking period. The overall duty cycle of our
experiment (the ratio of time spent on ‘science shots’ versus the total wall time) was roughly 36% over that period.

Supp. Fig. 4 | Coherent Hamiltonian parameters. a. We calibrate Hamiltonian parameters using a
maximum-likelihood-estimation (MLE) technique based on varying parameters used during classical simulation, and finding
the point of highest fidelity overlap with the experimental data; for further details, see Ref.2. Fidelities are time-integrated
over all experimental measurements. MLE calibrated values are consistent for system sizes up to N = 21, as is expected as
data taking for all system sizes (and times) is done in a randomized, interleaved fashion. Several smaller arrays are
benchmarked simultaneously over the entire spatial extent of the largest 60-atom array to perform MLE on parameter
gradients. b. Resultant MLE-calibrated Hamiltonian parameters (and gradients) used for all N in the classical simulation.
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A4. Defining the experimental time unit

Throughout this manuscript, we define the time unit in terms of ‘cycles’, given by tcycle = 1/Ω, and thus concretely
tcycle ≈ 145 ns. This timescale was chosen as Ω is the dominant energy-scale in the system (after the blockading nearest
neighbor interaction energy). However, it is instructive to compare cycles versus a more natural timescale, namely
the ‘unit-entanglement-time’, tebit, required to generate 1 ebit of entanglement in the early time linear growth regime
(see Fig. 2c). For our system parameters, we numerically find this timescale is given by tebit ≈ 0.83× tcycle ≈ 121 ns.
This definition is convenient, because it then allows us to directly compare our analog evolution times against the
equivalent depth for digital circuit evolution.
We numerically fit the early time linear entanglement growth for one-dimensional random unitary circuit (RUC)

evolution, and compare against our experiment. For the gate-set of Ref.5, we find that tebit ≈ 1.1 layers, meaning 1
ebit of entanglement is built up in 1.1 layers. While this value is gate-set dependent, the exact numerical values are
not of too much importance, but serve to demonstrate that tcycle used throughout this manuscript can be treated
roughly as 1 circuit depth. For further details on comparing the evolution of analog and digital devices, see Ref.2.
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B. Fidelity estimation with a modified cross-entropy benchmark

We employ a recently developed fidelity estimator3, Fd, to evaluate the many-body fidelity of ergodic quench
dynamics22 producing large entanglement. Importantly, Fd can be efficiently sampled using only a small number of
measurements as

Fd = 2
1
M

∑M
m=1 p(zm)/pavg(zm)∑
z p(z)

2/pavg(z)
− 1, (2)

where M is the number of measurements, zm is the experimentally measured bitstring at the mth repetition, p(z)
is the theoretically calculated probability of measuring z by a classical algorithm, and pavg(z) is the time-averaged
probability of measuring z over a certain time window. The denominator can be efficiently calculated by importance-
sampling from the MPS23 as Ez∼p(z)p(z)/pavg(z). For small system sizes where we accrue bitstrings from multiple
non-interacting subarrays, we calculate Fd for each individual ‘island’ and then average their values, weighting by the
number of measured bitstrings from each. This procedure is summarized schematically in Supp. Fig. 2.

Supp. Fig. 5 | Accuracy of the fidelity estimator. a. Comparing fidelities estimated from experiment against both the
true fidelity and the estimated fidelity for our error model, showing good agreement both between experiment and theory, and
between the estimator Fd and the true fidelity. Fd shows systematic typicality fluctuations around the true fidelity, but these
decrease in amplitude with increasing system size, see Supp. Fig. 15b. b. Fd does exhibit a systematic multiplicative offset
from the true fidelity in the time regime we study due to a time-delay needed for errors to scramble and become visible2,3. We
find that Fd ≈ 1.02F , regardless of system size around t = 15 cycles.

We compute pavg(z) via time-averaging the calculated bitstring probabilities. Specifically, for each time point ti of
the experiment, we estimate pavg(z) as a discrete average of the probability distributions within a window of ti±1.4µs,
with an step size of approximately 28 ns. This means around 100 points are averaged, which limits statistical sampling
fluctuations. Points included in the averaging are weighted to emphasize data with similar values of classical fidelity,

namely using a weight factor of min{Fsvd(ti)
Fsvd(tj)

,
Fsvd(tj)
Fsvd(ti)

}. Here Fsvd is the product of MPS truncation errors24,25, which
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we use to approximate the classical accuracy, and defined as

Fsvd =
∏
i

χ∑
α=1

s2i,α, (3)

where i runs over all MPS steps involving Schmidt value truncations, and si,α are the Schmidt values at truncation step
i. Here, we assume the wave function is normalized where

∑∞
α=1 s

2
i,α = 1. While this estimation is only approximate,

it can be extremely accurate when successive truncations are independent25. We describe this approximation in more
detail in Section J and Supp. Fig. 29. We weight in this way under the hypothesis that averaging classical simulations
of very different accuracies (as typified by Fsvd) will lead to a poorer estimation of pavg(z).
To account for the Rydberg blockade mechanism, we have the option to slightly modify2 the Fd formula. Indexing

the different blockade sectors by the number of blockade violations in that sector, s, we can write an approximator
for Fd to get an estimator for the blockade sector, Fd,s=0, only:

Fd,s=0 = BthyBexp

(
2

1
M ′

∑M ′

m=1 p
′(z′m)/p′avg(z

′
m)∑

z p
′(z)2/p′avg(z)

− 1
)
. (4)

Here Bexp (Bthy) is the total probability for an experimental (simulation) bitstring to be in the blockaded Hilbert
space, s = 0, which further redefines the normalized probabilities, p′(z) = p(z)/Bthy. Note here M ′ is the number of
bitstrings, z′m, measured in the blockaded Hilbert space.
Importantly, we find Fd,s=0 is more robust against the failure of the classical simulation algorithm, as compared

to Fd,s>0. This is because MPS truncations more strongly affect the s > 0 sectors in ways which are not necessarily
visible only by looking at the MPS truncation fidelity (Supp. Fig. 6bc).
For this reason, when estimating the quantum fidelity, we employ a two-pronged approach. Where Fsvd > 0.99

we approximate Fd as Fd,s=0, which from measurements at small system sizes we find is always conservative (Supp.
Fig. 6a). Utilizing Fd,s=0 allows us to more confidently directly measure the fidelity out to intermediate times at
the largest system sizes, and measure the according effective decay rate (Fig. 3c of the main text). However, where
Fsvd < 0.99, we estimate Fd from our Monte Carlo inference procedure (described below), which is trained directly
on the values of Fd.
To be concrete, in the main text, all data shown as markers in Figs. 2 and 3 is Fd,s=0 for χ = 3072. We summarize

all of the data, both Fd,s=0 and the Monte Carlo fidelities, in Supp. Fig. 7.
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Supp. Fig. 6 | Benchmarking in the blockaded Hilbert space. a. Fd versus Fd,s=0 (the fidelity benchmarked in only
the blockaded Hilbert space, see text) for system sizes up to N=30, consistent with correlation with unity slope, but with a
slight ∼0.01 offset. b. For exactly simulatable systems, Fd typically always exceeds Fd,s=0 (left), but for larger systems
(right), Fd systematically begins underestimating Fd,s=0, even before the nominal exact simulation time. c. We understand
this behavior as arising from the MPS preferentially truncating higher blockade subspaces, leading to the non-blockaded
classical fidelity dropping below unity before it is visible in the full Hilbert space fidelity. This implies Fd,s=0 stays a more
accurate estimator slightly longer than Fd. d. Probability to be in the blockaded subspace for both experiment and
simulation. Note the different color-scale axes for the simulation and experiment, as many experimental errors can lead to
apparently non-blockaded measurements.

Supp. Fig. 7 | Fidelity benchmarking for all system sizes and times. Fidelity (quantified by Fd,s=0 with χ = 3072)
as well as Monte Carlo inference for all system sizes. As in the main text, grayscale markers are those for which the classical
fidelity is less than 0.99.
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C. Non-Markovian origins of non-exponential fidelity decay

In Fig. 3 of the main text, we experimentally observe that the many-body fidelity appears to decrease exponentially
at intermediate times, before bending sub-exponentially at late times, a behavior which seems to grow stronger with
increasing system size (also visible in Supp. Fig. 7). We believe this behavior originates from globally-correlated,
non-Markovian Hamiltonian parameter fluctuations, which we note are often found in analog quantum simulators.
In particular, a dominant noise source in our experiment is shot-to-shot variation of the Rabi frequency, for instance
arising from fluctuations of the driving laser intensity, which we measure to be around ∼0.5%, corresponding to a
shot-to-shot variation of σ∼40 kHz (Supp. Fig. 8a). Here, we present analytical and numerical support that such an
error source can induce the observed fidelity decay behavior.

C1. Fidelity response to coherent Hamiltonian errors

We discover a surprising dependence of the fidelity between states subject to coherent Hamiltonian errors.

Theorem 1 (Gaussian fidelity response to coherent errors). Let |Ψ(t, θ)⟩ ≡ exp(−i(Ĥ0 + θV̂ )t)|Ψ0⟩ denote the

initial state |Ψ0⟩ quench-evolved by a translationally-invariant local Hamiltonian Ĥ0 + θV̂ for a time t, where the

perturbation V̂ =
∑
x V̂

x is a sum of local terms and θ quantifies the perturbation strength. We assume the Eigenstate

Thermalization Hypothesis (ETH), i.e. that the expectation values ⟨E|V̂ x|E⟩ of each term V̂ x with respect to the

eigenstates |E⟩ of Ĥ0 are independent random samples from a fixed distribution. Then in the limit of large system size
N and long time t, the fidelity F between two such states |Ψ(t, θ1)⟩ and |Ψ(t, θ2)⟩ is a Gaussian function of (θ1− θ2)t:

F (θ1, θ2) ≡ |⟨Ψ(t, θ1)|Ψ(t, θ2)⟩|2 = exp(−Nλ(θ1 − θ2)
2t2/2) , (5)

for some constant λ defined in Eq. (14).

This result is illustrated in Supp. Fig. 8b and will be instrumental to showing our observed non-exponential fidelity
decay (Corollary 1). This fidelity response is related to the Loschmidt echo, and our result is consistent with existing
numerical observations in e.g. Refs.26–28.

Proof. Without loss of generality, it suffices to let θ1 = 0 and θ2 = θ. We compute the
Taylor series of F (θ) ≡ F (0, θ) and show that for large N , it agrees to all orders with the
Gaussian series

exp

(
−θ

2t2

2σ2

)
= 1− 1

2

(
θt

σ

)2

+
1

8

(
θt

σ

)4

+ · · · (6)

It is instructive to compute the first non-trivial term: the second derivative

∂2θF (θ)|θ=0 =
[

(∂2θ ⟨Ψ(t)|Ψ(t, θ)⟩)⟨Ψ(t, θ)|Ψ(t)⟩ (7)

+ 2(∂θ⟨Ψ(t)|Ψ(t, θ)⟩)(∂θ⟨Ψ(t, θ)|Ψ(t)⟩) (8)

+ ⟨Ψ(t)|Ψ(t, θ)⟩(∂2θ ⟨Ψ(t, θ)|Ψ(t)⟩)
]∣∣∣
θ=0

In order to evaluate these derivatives, we use the relation29:

∂θ exp(i(Ĥ0 + θV̂ )t)|θ=0 =

∫ t

0

dτ exp(iĤ0τ)(iV̂ ) exp(iĤ0(t− τ)) (9)

= it
∑
E

VEE |E⟩⟨E|eiEt + i
∑
E ̸=E′

VEE′ |E⟩⟨E′|e
iE′t − eiEt

i(E′ − E)
,

where |E⟩ are the eigenstates of Ĥ0 with eigenvalues E, and we have defined VEE′ ≡
⟨E′|V̂ |E⟩. For our purposes, Eq. (9) is valid even when Ĥ0 has degeneracies: the initial
state |Ψ0⟩ projects any degenerate subspace onto a single eigenstate |E⟩.
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The first term in Eq. (9) grows linearly with time t, while the summands in the second
term oscillate and are sub-dominant. We subsequently neglect such terms. We obtain a
similar expression for the second derivative:

∂2θ exp(i(Ĥ0 + θV̂ )t) ≈ −t2
∑
E

V 2
EE |E⟩⟨E|eiEt . (10)

This gives:

∂2θF (θ)|θ=0 ≈ −2t2
[∑
E

|cE |2 V 2
EE −

(∑
E

|cE |2 VEE
)2]

≡ −2t2(⟨V̂ 2⟩ − ⟨V̂ ⟩2)
≡ −2t2κ2(V̂ ) , (11)

where |cE | ≡ |⟨E|Ψ0⟩|2 are the populations of |Ψ0⟩ in the energy eigenbasis. We interpret

the quantities
∑
E |cE |2 VEE and

∑
E |cE |2 V 2

EE as averages of the vector VEE and V 2
EE with

respect to the distribution |cE |2: we denote them ⟨V̂ ⟩ and ⟨V̂ 2⟩ respectively; the expression

⟨V̂ 2⟩ − ⟨V̂ ⟩2 is the variance, which we denote κ2 for reasons made clear below.
Within the approximation made in Eq. (9), ∂nθ F (θ)|θ=0 = 0 for all odd n. The next term

can be expressed in terms of the moments ⟨V̂ k⟩ as

∂4θF (θ)|θ=0 ≈ 2t4(⟨V̂ 4⟩ − 4⟨V̂ 3⟩⟨V̂ ⟩+ 3⟨V̂ 2⟩2)
= 2t4

[
κ4(V̂ ) + 6κ2(V̂ )2

]
, (12)

where κ4(V̂ ) ≡ ⟨(V̂ − ⟨V̂ ⟩)4⟩ − 3⟨(V̂ − ⟨V̂ ⟩)2⟩2 is the fourth cumulant of V̂ . Crucially,

V̂ =
∑
x V̂

x is the sum of identical local terms: the Eigenstate Thermalization Hypothesis
(ETH) predicts that their eigenstate overlaps V xEE fluctuate about a smooth function of

energy30. Furthermore, for sufficiently high-temperature states, correlations ⟨V̂ xV̂ y⟩ are

short-ranged, and we can treat each V̂ x as an effectively independent random variable.
We utilize a further property of cumulants: they are additive, obeying κn(

∑
x V̂

x) =∑
x κn(V̂

x). Therefore, all cumulants scale linearly with N . When N is large, κ4(V̂ ) ≪
κ2(V̂ )2 and we can neglect the κ4 term in Eq. (12). This gives the expression

F (θ) ≈ 1− 1

2
2κ2(V̂ )(θt)2 +

1

8
(2κ2(V̂ ))2(θt)4 + · · · , (13)

which agrees with Eq. (6) when we identify

σ−1 = 2κ2(V̂ ) = Nκ2(V̂
x) ≡ Nλ (14)

In fact, all higher cumulants are subleading to the κ2 contribtion. As long as they can be
neglected, the series Eq. (6) and Eq. (13) agree to all orders. For example, the (θt)6 term

of (13) is −2(κ6(V̂ ) + 30κ4(V̂ )κ2(V̂ ) + 60κ2(V̂ ))/6! ≈ −(2κ2(V̂ ))3/48, in agreement with
the sixth-order term of Eq. (6).
We prove this equivalence to all orders using properties of Bell polynomials, Bk (where k

is a polynomial index)31. The n-th derivative of the fidelity can be expressed as

∂nθ F |θ=0 = (−1)n/2(θt)n
n∑
k=0

(−1)k
(
n

k

)
⟨V̂ n−k⟩⟨V̂ k⟩ . (15)

We can rewrite this in terms of the cumulants κ1, . . . , κk with the cumulant-moment rela-
tion32

⟨V̂ k⟩ = Bk(κ1, κ2, · · · , κk) . (16)

While the full expression is challenging, we are only interested in the coefficient of the
κ2(V̂ )n/2 term in Eq. (15). We first note that ⟨V̂ k⟩ contains a κ2(V̂ )k/2 term only for even
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k. To determine its coefficient, we use the recursion relation31 ∂κ2
Bk =

(
k
2

)
Bk−2 to conclude

that ⟨V̂ k⟩ = · · ·+(k!/k!!)κ2(V̂ )k/2 + · · · , where k!! = k(k− 2) · · · 2 is the double factorial of

k. Returning to Eq. (15), we conclude that ∂nθ F |θ=0 = · · ·+ anκ2(V̂ )n/2(θt)n + · · · , where

an = (−1)n/2
∑
k even

(
n

k

)
k!(n− k)!

k!!(n− k)!!
κ
n/2
2

= (−2)n/2
n!

n!!
κ
n/2
2 , (17)

which is equal to the n-th derivative ∂nθ exp(−θ2/(2σ2))|θ=0 = (−1)n/2 n!n!!σ
−n, thus con-

cluding our derivation of the Gaussian fidelity response [Eq. (5)].

C2. Non-exponential decay for Rydberg quantum simulators

The non-exponential fidelity decay immediately follows from Theorem 1.

Corollary 1. When the parameter value θ follows a Gaussian probability distribution P (θ) with mean θ′ and standard
deviation σ

P (θ) =
1√
2πσ

exp
(
− (θ − θ′)2

2σ2

)
, (18)

Theorem 1 and a straightforward integration give a universal form for the fidelity of the target state |Ψ(t, θ0)⟩ to the
mixed state ρ(t) ≡

∫
dθP (θ)|Ψ(t, θ)⟩⟨Ψ(t, θ)|.

F =

∫
dθP (θ)F (θ0, θ) =

1√
1 + Λ

exp
(
− δ2

2

Λ

1 + Λ

)
, (19)

where Λ ≡ Nt2λσ2 and δ = (θ′ − θ0)/σ is the overall relative parameter miscalibration.

This functional form leads to markedly different behavior as compared to simple exponential decay, as it becomes
essentially like a power-law at late times (Supp. Fig. 8d). In simulation, we benchmark an N = 16 atom system
experiencing only global intensity fluctuations – but otherwise no noise – and see an excellent agreement between the
simulated fidelity, and a fit to Eq. (19) with free λ. Notably, we see Eq. (19) exhibits three distinct regimes: super-
exponential behavior at very early time, effectively simple-exponential behavior at intermediate times, and finally
sub-exponential behavior at late times. Notably, by studying multiple system sizes, we find the divergence between
Eq. (19) and an effective exponential decay model is mainly a function of fidelity, not time, and becomes visible when
the fidelity reaches F∼0.2, which in our dataset is only the case for the highest N (Fig. 3 of the main text).
As a quantitative comparison, we define an effective model of the fidelity as

F ≈ F0 exp(−γt)
1√

1 + λ′t2
exp

(
− δ2

2

λ′t2

1 + λ′t2

)
, (20)

that is, Eq. (19) multiplied by an exponential decay factor to account for the other noise sources, where we have
redefined the free parameter λ′ ≡ λNσ2. We perform error model simulations from 7 < N < 21 for two cases: 1)
for only global, shot-to-shot Rabi and detuning noise, 2) for all other noise sources. Then, assuming multiplicativity
of the error sources (Supp. Fig. 32a), from case (1) we fit the expected behavior of λ′, and from case (2) we fit the
expected behavior of γ. We extrapolate the observed parameters all the way to N = 60, and compare against the
experiment (inset of Supp. Fig. 8d). Even assuming perfect calibration (δ = 0) we see general agreement between the
fidelity decay curve of the error model prediction and the experiment.
However, the relative proportion of exponential decay versus non-exponential decay is difficult to calibrate versus

experimental data at small system sizes, as this requires evolving out to very late times when other error sources (such
as finite recapture probability of atoms in their traps) become noticeable. In addition, we expect that Hamiltonian
parameter calibration is likely imperfect, at the very least up to our uncertainty in the Hamiltonian parameters. As
a general sanity check then, we fit with γ, λ′, and δ free. Fitting N = 60 (with F0 fixed by the separately calibrated
single-atom preparation fidelity), we find δ ≈ 0.2, γ ≈ 1/4× γ0 and λ′ ≈ 4×λ′0, where γ0 and λ′0 are the extrapolated
predictions from error model. We note δ ≈ 0.2 corresponds to a potential error of ≈10 kHz in the calibrated Rabi
frequency, which is within our measured error bar (Supp. Fig. 4b).
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We also note that other error sources, in particular atomic position fluctuations, also likely have some contribution
to the non-exponential decay behavior, which may improve the agreement above. However, the analytical expression
for their effect becomes quite involved, and so we disregard them here for simplicity, and leave a more in-depth analytic
and numerical study of the various error sources to future work.

Supp. Fig. 8 | Origins of the non-exponential fidelity decay. a. A major noise source for our platform is Rabi
frequency fluctuations (for instance arising from variation in the driving laser intensity), which have a shot-to-shot standard
deviation of ∼0.5% (∼40 kHz). b. For global, correlated intensity noise, the fidelity is Gaussian with respect to error in the

Rabi frequency. c. The standard deviation of this Gaussian dependence decreases as 1/t
√
N . d. This behavior leads to an

analytic solution for the fidelity decay of F∼(1 + λNt2)−1/2, for free parameter λ. This decay is characterized by
super-exponential curvature at early times, and sub-exponential curvature at late times. In the inset, we use our error model
with all error sources enabled, and extrapolate to the expected fidelity behavior at N = 60, seeing generally good agreement
with the experiment, which is improved by directly fitting and allowing unity-level changes in the extrapolated error model
parameters.
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D. Fidelity extrapolation through Monte Carlo inference

To extrapolate fidelities into the high-entanglement (i.e. late-time, large system-size) regime, we use a Monte Carlo
inference approach. More specifically, we train an ensemble33 of fully-connected regression neural networks, imple-
mented in MATLAB, with three inputs (system size, evolution time, and bond dimension), and one output (estimated
fidelity). The neural networks are instantiated with randomized hyperparameters (including the initial seed for the
weights and biases). We emphasize that this approach is not trying to learn directly from experimental observa-
tions34–37, and instead we are simply extrapolating a smoothly varying 3-to-1 function. Fundamentally, the goal of
this approach is to utilize all aspects of the data simultaneously, rather than extrapolating along only a single axis at
a time, for instance either via time-extrapolation or system-size scaling alone.

D1. Method description

For training data, we use the fidelities from all combinations of the 14 system sizes, 18 evolution times, and 91
simulated bond dimensions (from χ = 2 to 3072), resulting in a total dataset of ∼23000 points (Supp. Fig. 9a). The
network is then trained to learn the functional dependence of F (N,χ, t).
To improve generalization and avoid fine-tuning, we employ a Monte Carlo approach through ensemble learning33,

where the training is repeated 1500 times. Each iteration is instantiated with a randomized seed, and every three
iterations we randomly select from a range of hyperparameters, the domain of which are specified in Supp. Fig. 9c.
The fidelity for a given set of inputs is then taken to be the unweighted ensemble average, while the error bar is taken
as the ensemble standard error of the mean added in quadrature with the sampling error at a given time.
To preprocess the data, we log-normalize the bond dimensions as χ̃ = log(χ)/ log(χ0), where χ0 is the size- and

time-dependent saturation bond dimension required for the simulation to be exact (Supp. Fig. 10e). This makes the
learned function have a more consistent domain for different system sizes and evolution times. We also test if we train
using simply log(χ). We stress that in doing so, the largest trained log(χ) ≈ 8, but for instance for N = 60 we predict
the fidelity at log(χ) ≈ 14.5, with no training data in the interim regime. We find consistent mean predictions between
the two methods, but the standard deviation of Monte Carlo instances is reduced by training on χ̃.

Supp. Fig. 9 | Monte Carlo fidelity inference. a. All the data in this study, mapping the three inputs (system size, N ,
evolution time, t, and log-normalized bond dimension, χ̃ = log(χ)/ log(χ0)) to an estimated fidelity. Here χ0 is the time- and
size-dependent saturation bond dimension (Supp. Fig. 10e). b. To improve generalization into the unknown regime, we use a
Monte Carlo inference approach. We train an ensemble of 1500 fully-connected neural networks, each instantiated and trained
with random choices of parameters within reasonably specified ranges (defined in c); the Monte Carlo predicted fidelity is
then taken as the ensemble average for a given input. d. Monte Carlo prediction for the fidelity of the N = 60 system at the
entanglement saturation time. Over ∼98% of the individual Monte Carlo instance predictions exceed the expectation from the
early time exponential decay (see Fig. 3 of the main text), resulting in an average of 0.095(11), where the error bar represents
the standard error on the mean, added in quadrature with the intrinsic sampling error of the underlying data. e. Maximum
log-normalized bond dimension available for training as a function of system size and time, for χ = 3072.
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Supp. Fig. 10 | Determining the log-normalized bond dimension. a, b. As a function of bond dimension, the
classical simulation fidelity rises before saturating to 1; we define χ0 (the saturation bond dimension), as the minimum value
for which the classical fidelity is greater than 0.999. c, d. By χ0, the experimentally benchmarked fidelities have also
saturated. e. We fit the dependence of χ0 as a function of system size and time (solid lines) in order to extrapolate beyond
the range of χ values which we directly simulate in this work.

We determine χ0 by finding the minimum χ, at a given system size and evolution time, where the MPS fidelity is
greater than 0.999. We extrapolate the behavior of χ0 into the high-entanglement regime of large system sizes and
late evolution times (Supp. Fig. 10e). We further normalize the input (subtracting off the mean and dividing by the
standard deviation) to improve learnability.
To avoid overfitting, we randomly select a few N from 21 to 30, for which we excise from the training any data

with χ̃ > 2/3 and t > 6.6 cycles. We then use the data for these system sizes and times with χ̃ ∼ 1 as the validation
dataset, and stop the training when the validation loss – defined by the prediction root mean square error (RMSE) –
does not decrease for 50 epochs in a row (see for instance Supp. Fig. 12b).
We summarize a partial subset of the data showing the Monte Carlo inference as a function of N , t, and χ in Supp.

Fig. 11.

D2. Consistency checks

In order to test that this approach is accurate in estimating the fidelity, we perform several consistency checks,
ranging from varying the number of learnable parameters, testing the result as a function of the amount of experi-
mental training data, checking against small system sizes in experiment and error model where we have exact ground
truth data, and more. Several of these tests are described below.

Small system sizes, experimental— For the largest system sizes we do not have ground truth data for Fd in the
late-time regime, and so cannot directly verify our model’s efficacy. However, we can emulate the effect in this regime
at smaller system sizes where we do have ground truth data in all regimes.
We employ the same training methodology as on the full dataset, but only consider N ≤ 30 where we have the full

ground truth. For t > 6.6 cycles and N ≥ 24, we excise from the training data all bond dimensions for which χ̃ > 2/3.
This value is chosen as it is approximately the maximum normalized bond dimension available at N = 60 (Supp.
Fig. 9e). Concretely, this approach is essentially pretending as if N ≥ 24 is beyond the exactly simulable regime. In
reality, of course, we have the ground truth data to compare against, and can for instance use it to study the behavior
of the loss functions (Supp. Fig. 12ab).
Averaging over all Monte Carlo instantiations, we find the training loss decreases consistently as a function of

training epoch, but the validation loss (where the ground truth N ≥24 results are used as the validation data set)
reaches a minimum after ∼50 epochs, after which it proceeds into an overfitting regime. As with the full dataset, we
thus stop the training for each instantiation at the point where the validation loss is non-decreasing for ∼50 epochs
in a row, and then take the result from the best epoch. We note that both losses drop most dramatically after only a
single epoch of training from initially randomized configurations, meaning the gradient descent quickly finds a nearly
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Supp. Fig. 11 | Monte Carlo inference for all data. a. Fidelity-estimator, Fd, for various system sizes and evolution
times as a function of the log-normalized bond dimension, χ̃ = log(χ)/ log(χ0). The fidelity is estimated at χ̃ = 1. A key
feature to note is that as system size or evolution time increases (i.e. as χ0 increases), the data points shift left: the classical
simulation breakdown regime is when no data is available at χ̃ = 1.
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optimal regime, implying that the loss function is both smooth and non-flat.
We then compare directly between the Monte Carlo predicted Fd and the ground truth value for N = 30 across

all times. We see good agreement even in the emulated breakdown regime at long times (Supp. Fig. 12c), with no
indication that the learned fidelities are misestimating the true values, despite not having access to the underlying
ground truth data at large bond dimensions.

Small system sizes, error model— As described, we can check our model’s efficacy at small system sizes directly
on experimental data, but the non-exponential fidelity decay behavior is not yet strongly visible. In the main text, we
reach this regime using Monte Carlo fidelity inference on error model simulations (Fig. 3 of the main text). Here we
further describe this analysis.
We perform error model simulations for N = 8− 18 up to the maximum experimental time, but artificially increase

the shot-to-shot Rabi frequency variation by a factor of 4 in order to roughly emulate the predicted experimental
fidelities at large N . We choose to do this, rather than simulate for much longer timescales where the behavior would
become naturally evident (Supp. Fig. 8d), because we want to replicate as much as possible the fact that for the
experimental dataset the entanglement is still growing for most times for the largest system sizes. Performing error
model simulations out to ∼100 cycles would dominate the training by a regime where the entanglement had already
saturated for these small system sizes.
We perform MPS simulations for all bond dimensions up to χ0(N = 18, t → ∞) = 89, and benchmark the error

model with each. Though we run the error model with a finer timestep of ∼10 ns, we only select data at the exper-
imentally measured times for training. We then emulate the experimental dataset by treating all N < 16 as “small
N” where we have full ground truth data. We excise from the training any data for which χ̃ > 2/3, N > 15, and
t > 6.6 cycles, to emulate the available data for the full experimental dataset. We use N = 13− 15 as the validation
dataset to prevent overfitting. We then train in the same way as for the experiment, and compare Monte Carlo
predictions versus ground truth output (Supp. Fig. 12d). We find the two are consistent, both in terms of the val-
ues obtained, and the non-exponential fidelity decay, indicating the Monte Carlo inference is able to learn this behavior.

Number of learnable parameters— For the full dataset, a total of ∼23000 training data points are generated, while
depending on the choice of hyperparameters, the number of learnable parameters can vary from ∼350 − 83000. For

Supp. Fig. 12 | Evaluating the Monte Carlo inference at small system sizes. a, b. As a cross-check of our approach,
we use the same training methodology employed on the full dataset, but truncate to only include N ≤ 30 where we have the
full ground truth. We bipartition the data (inset), and for the large system sizes and late evolution times we only directly train
with χ̃ < 2/3. Averaging over 1500 instantiations, we find the training loss decreases consistently, but validation loss at χ̃∼1
reaches a minimum after ∼50 epochs, and as expected proceeds into an over-fitting regime after. c. Model predictions show
the Monte Carlo inference accurately predicts fidelities at late times, despite not having access to the underlying ground truth
data at large bond dimensions in this regime. d. We perform a similar test using error model simulations of our experiment,
as for instance shown in Fig. 3b of the main text. We train with N = 8 to 18, excising χ̃ > 2/3 for N > 15 and t > 6.6 cycles.
The resultant Monte Carlo inference predictions are well correlated with the ground truth, across the whole range of fidelities.
X-error bars represent estimated typicality fluctuations, y-error bars represent the Monte Carlo inference standard deviation.
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∼70% of the Monte Carlo instances, the number of learnable parameters is lower than the number of training points
(Supp. Fig. 13ab). Further we do not see any strong correlation between the predicted fidelity and the number of
learnable parameters, or more generally between the fidelity and either network depth or width.

Reducing the experimental dataset— We perform the same training procedure on several variants of reduced
experimental datasets, where we excise from the training half of the bond dimensions, system sizes, or evolution
times used. We find the resulting Monte Carlo mean is always consistent with the prediction from training on the full
dataset (Supp. Fig. 13c).

Maximum bond dimension used— The maximum bond dimension used in the training is constrained by our com-
putational resources, but we can still study if the Monte Carlo prediction appears to be converged as a function of the
bond dimension. In Supp. Fig. 13d we systematically scale the training bond dimension used in the breakdown regime
of large system sizes and long evolution times, and find that the results appear converged with a bond dimension
of ∼1500, about a factor of 2 lower than the maximum bond dimension we consider in this work. However, we note
that by supplementing the experimental data with numerical data obtained from our error model simulations, this
required bond dimension is dramatically reduced (see Section G, Supp. Fig. 14).

Supp. Fig. 13 | Robustness of Monte Carlo inference. a, b. For the majority (∼70%) of hyperparameter combinations
sampled during the Monte Carlo inference (Supp. Fig. 9c), the number of learnable parameters is smaller than the number of
training points (∼23000). Further, we see no correlation between number of learnable parameters (nor any individual specific
choice of hyperparameter) with the predicted fidelity. c. The Monte Carlo mean prediction is insensitive to the choice of data:
removing half of the data along any axis leads to the same predicted fidelity. Note that while the “Full training” is composed
of 1500 models, the “excised” ensembles only feature 192 trained models. Markers show mean and standard deviation for each
distribution. d. To check the convergence of our protocol, we repeat the Monte Carlo inference procedure with varying
maximum bond dimension allowed in the breakdown regime of large system sizes and long evolution times. We find the
fidelity (at N = 60 and the latest experimental time) is generally consistent over the entire range, with convergence achieved
around a bond dimension of 1500.
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E. Scalability of fidelity estimation

E1. Fidelity estimation with approximate algorithms for Markovian noise

A major advantage of the fidelity estimator which we use, Fd, is its accuracy at early times2,3. This is in contrast
to the original linear cross-entropy which only becomes accurate for deep circuits5. As we establish in the main text,
using tensor network simulation methods such as MPS, we are able to compute exact classical simulation references for
essentially arbitrarily large systems up to constant time. Assuming the noise affecting the system is purely Markovian
(i.e. the fidelity decays exponentially38), then to estimate the fidelity in the late-time, high-entanglement regime it is
sufficient to measure the fidelity with high-precision at early times, and then fit the resulting exponential decay rate.
This gives another axis for fidelity extrapolation which may be particularly useful for digital quantum devices

implementing random unitary circuits, which typically use a form of system size scaling to estimate the fidelity in the
high-entanglement regime8. Such an approach should work for fidelity estimation of systems with largely arbitrary size
and dimension, but does require the exact functional form of the fidelity decay be assumed a priori, and thus would
not apply for systems with more non-trivial noise sources like those affecting our present experiment (or potentially
also some digital quantum computers5).

E2. Scalability of Monte Carlo inference for non-Markovian noise sources

In Supp. Fig. 13d, we investigated the minimum bond dimension of the classical (approximate) simulation, χextrap,
required for the Monte Carlo inference procedure to reach a reliable, saturated prediction for the fidelity at N = 60 at
the latest experimental time (14.5 cycles). There. we found χextrap saturated for a bond dimension around χ ∼ 1500.
However, an important question concerns the applicability at the Monte Carlo inference technique at larger system
sizes, i.e. the scaling of χextrap with N . If the required bond dimension scales poorly with system size then it becomes
difficult to trust the Monte Carlo inference results at larger system sizes, assuming there is a cap in the maximum
bond dimension usable by the classical simulation.

Supp. Fig. 14 | Scalability of Monte Carlo inference. a. In order to improve scalability of our Monte Carlo inference
protocol, we supplement training with error model data evaluated out to late evolution times for system sizes from N = 8 and
N = 17. b. Error model and experimental Fd values are in good agreement at early times where we have data (see also Ext
Data. Fig. 5). Error bars in the late time regime are due to typicality error which reduces with increasing system size (see
Supp. Fig. 15). c. We plot the predicted fidelity for N = 36 and N = 60 at the latest experimental time for two possible sets
of training data: 1) considering only the experimental data (from N = 6 to N = 60 up to 15 cycles), and 2) supplementing
with error model data out to late times (75 cycles). In both cases we vary the maximum bond dimension used during training,
and then fit to find the bond dimension where predictions saturate, χextrap. Fits are proportional to log(χ) and then constant
after χextrap (dashed lines). d. χextrap as a function of system size for the predicted fidelity to saturate at the latest
experimental time. The χextrap is improved by roughly an order of magnitude by supplementing with error model data.
Conservatively extrapolating with χextrap ∝ exp(N) (grey lines) and setting a maximum χ = 3072 shows maximum system
sizes of ∼500 and ∼90 with and without the error model supplement.

We consider two versions of the training procedure (Supp. Fig. 14). In the first, we perform Monte Carlo inference
using just the experimental data, as done previously. In the second approach we replace the training data from N = 8
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to 17 with data obtained from error model simulations up to 75 evolution cycles (sampled every 1 cycle). Fd values are
calculated for error model data for χ ranging from 1 to 90. We replace with error model results, rather than simply
augmenting, so that the training data does not have multiple outputs defined for the same set of inputs.
We have extensively checked the validity of our error model both in terms of fidelity and KL divergence (also see

Refs.2,13 and Supp. Fig. 5), and using error model allows us to generate training data for Fd as a function of bond
dimension in the low-N , long-time regime where the non-exponential fidelity decay becomes more clearly visible. We
emphasize that access to an error model is not a general requirement, but is instead simply a tool we are employing
in this case as the original experimental dataset was planned and taken without accounting for the non-exponential
fidelity decay, as it was a novel observation of our present analysis. Using the error model alone (with no experimental
data) for inference is not expected to give good fidelity extrapolation at large system sizes given the large difference
between the largest simulable error model size (N ≈ 20) and the largest experimental size.
In both cases (purely experimental data, or supplemented with error model data), we plot χextrap as a function

of system size. Here χextrap is found from a phenomenological fit of the predicted fidelity, Fp, as a function of the
maximum bond dimension used in training, χ,

Fp =

{
F +A log(χ) χ < χextrap

F χ ≥ χextrap,
(21)

where F and A are free fit parameters (Supp. Fig. 14c). In general, we see that supplementing with error model
data produces consistent fidelity predictions as our original, all-experimental inferences, but saturates far earlier. This
builds additional confidence in both the error model and the Monte Carlo inference procedure.
We then study how χextrap scales as a function of N , and set a cap of χ ∼ 3072, which represents a significant, but

still achievable bond dimension. We choose a conservative phenomological fit model of

χextrap = A exp(BN), (22)

where A and B are fit constants.
We find the all-experimental inference exceeds this cap for N ∼ 90, but the supplemented dataset goes as high as

N ∼ 500. We emphasize that this value represents a lower bound that could be improved either through use of larger
classical resources, or possibly through an improved classical algorithm. This indicates that as long as care is taken
to acquire experimental data in a diverse regime of system sizes and evolution times, we conservatively believe the
Monte Carlo inference procedure we show here should provide scalable predictions for an order of magnitude more
atoms than we currently study.

E3. Sample complexity

To estimate error bars on the raw data, σF , we propagate from separately calculating the sampling error of the
numerator and denominator of Fd as

σ =
√
(E(p̃(z)2)− E(p̃(z))2) /M, (23)

where p̃ is the rescaled bitstring probability distribution obtained from MPS simulation, M is the number of samples,
and the expectation value is taken over the set of experimentally (numerically) sampled bitstrings for the numerator
(denominator). Enough samples are taken numerically that the dominant overall sampling error is from the experiment.
See Section B for more details.
We expect the statistical error of our benchmarking protocol2,3 to scale as A/

√
M , where A is the sample complexity

which scales exponentially in system size with a base which depends on the fidelity3. We measure A at an approximately
fixed fidelity of Fd = 0.5 by performing an average of all the experimentally measured error bars from Eq. (23), weighted
by their inverse distance from Fd = 0.5, such that

A(N) =

∑
t σF (N, t)

√
M(N, t)w(N, t)∑

t w(N, t)
, (24)

with w(N, t) = 1/|Fd(N, t)− 0.5|. With this approach, we find A = 1.0083(4)N (Supp. Fig. 15a).
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Supp. Fig. 15 | Uncertainty sources of the benchmarking protocol. There are two fundamental sources of noise in
calculating Fd: statistical error, and systematic error arising from so-called typicality fluctuations2. a. We first evaluate the
statistical error behavior. At a fixed fidelity, the statistical error bars of our protocol are given3 by A/

√
M , where M is the

number of samples and A is the sample complexity. At approximately a fixed fidelity of Fd = 0.5 (see text), we find A grows
weakly with system size, indicating favorable scalability of our protocol from a statistical perspective. For this work,
M∼40000 for all system sizes, summing over all times (inset). b. Typicality error manifests as temporal fluctuations of the
estimator Fd, with respect to the true fidelity F , due to benchmarking in a finite-sized Hilbert space. The standard deviation
of these fluctuations scales2 as 1/

√
D, where D is the Hilbert space dimension. From error model simulations, we calculate the

standard deviation of temporal fluctuations of Fd in a 1-cycle period at late times, which we find decreases as 1.23−N (or

∼1.2/
√
D), implying a negligible typicality error of ∼10−6 at N = 60.
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F. Extrapolating pure state entanglement growth

We target the generation of high entanglement entropy states through effectively infinite-temperature quench dy-
namics. In order to estimate the mixed state negativity, we first must estimate the pure state entanglement, even for
system sizes for which we can no longer exactly simulate the dynamics. To do this, we extrapolate the scaling behavior
from small system sizes. Specifically, we fit entanglement growth, S, with the following functional form as a function
of time and system size:

S = S0 +m1t+
(m2 −m1)(t− tent − σ)

1 + exp(− t−tent
σ )

. (25)

To respect the physical constraints of the entanglement growth, we fixm1 – the early time linear entanglement growth
– to be system size independent. The Rydberg Hamiltonian induces fast entanglement growth over the first ∼0.5 cycles
of evolution which makes fitting the linear growth erroneous without also including a system-size independent offset,
S0. We then expect tent, which we identify with the approximate entanglement saturation time, to scale linearly with
N , which we empirically find is true also for σ (a smoothness parameter). We further empirically find that m2 (the
shallow entanglement growth slope after tent) scales approximately quadratically with N .
We show the results of these fits in Supp. Fig. 16, where markers are measured directly from simulation, and lines

are fits. Though here we show log negativity, the von Neumann entropy scales and acts in the same way.
It is important to note that as system size increases, we gradually reach relatively less entangled states at tent as

compared to the expectation for a Haar random state (dashed lines in Supp. Fig. 16). Given the Rydberg blockade
constraint, we define the Haar random prediction as SHaar ≈ log2(D0)−0.47, where D0 is the blockaded Hilbert space
dimension of the half-cut chain, and the numerical offset of -0.47 is a type of Page correction1, which is actually39,40

≈ log2(
64
9π2 ), as explained further below.

Supp. Fig. 16 | Pure state entanglement growth dynamics for the Rydberg Hamiltonian. We directly calculate
the entanglement (here log negativity) for system sizes up to N = 60, and fit the resulting data (see text) to extrapolate the
entanglement dynamics for large N at late times. We also compare against the prediction for Haar random states at various
system sizes (black dashed lines), and find that as system size increases we gradually undershoot this expectation more, which
we attribute potentially to imperfect parameter selection making the dynamics effectively less than infinite temperature at
large N .
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G. Bounds on the mixed state entanglement proxy

In this work, we have introduced the entanglement-proxy, EP , which estimates the mixed state entanglement, EN (ρ̂),
in terms of the pure state entanglement, EN (|ψ⟩), and the fidelity, F ≡ ⟨ψ|ρ̂|ψ⟩ (see Eq. (2) of the main text).
Explicitly, consider a system bipartitioned into two subsystems, A and B, and described by density matrix, ρ̂AB .

The log negativity41 is given by

EN = log2 ||ρ̂
TA

AB ||1,

where ρ̂TA

AB is the partially transposed density matrix, and || · ||1 is the trace norm. More plainly, the log negativity

measures the log absolute sum of all eigenvalues of ρ̂TA

AB . If ρ̂AB is separable, the log negativity is zero, but for
entangled states it generically serves as an upper bound to the distillable entanglement of the system42, and is an
entanglement monotone42. For pure states the log negativity is equivalent to the Rényi-1/2 entropy.

The following discussion is generally split into three subsections:
In the first, we study lower bounds and estimators of the mixed state entanglement. We prove the validity of our

entanglement-proxy, EP , for the case when the target pure state, |ψ⟩ is an eigenstate of the mixed state, ρ̂, as for
instance is the case if |ψ⟩ is the highest fidelity pure state to ρ̂. We further improve our result for the case where
|ψ⟩ is a Haar-random state. Finally, we prove more general unconditional upper and lower bounds to argue that our
entanglement-proxy becomes exponentially tighter as the system size increases.
Next, we discuss possible violations of the lower bound given by EP , if we allow |ψ⟩ to no longer be an eigenstate

of ρ̂. We consider two physically realistic possibilities: 1) globally correlated coherent errors, and 2) incoherent local
errors. For each case we provide numeric or analytic evidence showing that at worst our entanglement-proxy lower
bound is potentially violated by an O(1) amount.
Finally, we make a specific connection between the entanglement content of an erroneous mixed state, and of a

truncated MPS state. We show that at equal fidelity, the truncated MPS is less entangled than the depolarized Haar
random state, which explains an observed discrepancy between the experimental mixed state entanglement and χ∗

found in the main text.
As a brief aside, we note an important point, arising from the fact that in the main text we have used either Fd as the

fidelity for experiment, or the linear cross-entropy, FXEB, as the fidelity for the literature examples. However, Fd and
FXEB are both lowered by measurement error, which strictly speaking does not affect the mixed state entanglement.
However, both Fd and FXEB are expected to decrease due to measurement errors, and so this only serves to make our

Supp. Fig. 17 | Estimation of log negativity from fidelity. a. We demonstrate the validity of the lower bound Eq. (2)
of the main text, by plotting the difference EN (ρ̂)− EP , with |ψ⟩ the pure state with highest fidelity to ρ̂. Here, we generate
1000 random two-qubit mixed states as uniform incoherent mixtures of two Haar random states. The difference is always
above zero, indicating the validity of the lower bound. b. Dependence between log negativity EN (ρ̂) and fidelity F for globally
depolarized Haar random states, Eq. (34). For small values of F , the negativity EN (ρ̂) (black dashed) deviates from the lower
bound EP (red), illustrated here for the half-chain negativity of six-qubit depolarized Haar random states. Remarkably, for
such states, EN (ρ̂) is uniquely determined by the fidelity F and Hilbert space dimension D. We find an analytic series
expression for this dependence, Eq. (36), with first-order correction illustrated in blue. We also illustrate general lower and
upper bounds for the log negativity, Eq. (41), in light blue. Inset: The lower bound (red) improves exponentially as a function
of system size, quantified here as the minimum fidelity for which the lower bound is 90% of the actual value.
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lower bound less tight. In principle the mixed state entanglement-proxy could be measurement-corrected to account
for this effect, but we choose to include measurement errors as a more general quality-factor of the experiments.

G1. Negativity lower bounds and estimators

The validity of our entanglement-proxy has been shown in the past43 for the case of isotropic states; here we extend
this result and validate our entanglement-proxy when the target pure state, |ψ⟩, is an eigenstate of the mixed state, ρ̂
(Theorem 2). We then improve our result for the case of depolarized Haar-random pure states (Lemma 1), and then
show more general lower bounds which allow us to argue our entanglement-proxy should tighten exponentially with
system size (Lemma 2). Numerical support of these analytical claims is shown in Supp. Fig. 17.
We begin with the case of |ψ⟩ being an eigenstate of ρ̂

Theorem 2. For any mixed state ρ̂ and pure state |ψ⟩ which is an eigenstate of ρ̂, the logarithmic negativities EN (ρ̂)
and EN (|ψ⟩) are related by

EN (ρ̂) ≥ EP ≡ EN (|ψ⟩) + log2(F ) , (26)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is their fidelity.

Proof. The proof of this Theorem follows in three steps. It is equivalent to derive the bound

∥ρ̂TA∥1 ≥ F∥|ψ⟩⟨ψ|TA∥1 . (27)

First, we express the state

ρ̂ = F |ψ⟩⟨ψ|+ (1− F )ρ̂⊥ (28)

for some positive semi-definite state ρ̂⊥, which is guaranteed because |ψ⟩ is an eigenstate of
ρ̂.
Next, we use the variational definition of the trace-norm as a maximum over projectors

P̂ , i.e. operators with eigenvalues either 0 or 1.

∥ρ̂TA∥1 = 2max
P

tr(P̂ ρ̂TA)− 1 . (29)

This maximum is attained when P̂ is the projector onto the positive-eigenvalue subspace of
ρ̂TA . This variational definition gives the lower bound:

∥ρ̂TA∥1 ≥ F∥|ψ⟩⟨ψ|TA∥1 + (1− F )(2tr(P̂ψρ̂
TA

⊥ )− 1) , (30)

where P̂ψ is the projector onto the positive-eigenvalue subspace of |ψ⟩⟨ψ|TA .

Finally, we utilize an explicit construction of P̂ψ to show that tr(P̂ψρ̂
TA

⊥ ) ≥ 1/2, giving
the desired bound Eq. (27). This step is the most involved, which we show below.
The eigenvalues λ and eigenvectors |v⟩ of |ψ⟩⟨ψ|TA can be expressed in terms of the

Schmidt values sj and Schmidt basis |aj⟩, |bj⟩ of |ψ⟩, with respect to the same bipartition43.
With |ψ⟩ =

∑
j sj |aj⟩|bj⟩, the eigenvalues λ are s2j or ±sisj (for i ̸= j), and their cor-

responding eigenvectors are respectively |vjj⟩ ≡ |aj⟩|bj⟩ and |v±ij⟩ ≡ 1
2 (|ai⟩|bj⟩ ± |aj⟩|bi⟩).

Then P̂ψ has explicit expression:

P̂ψ =
∑
j

|vjj⟩⟨vjj |+
∑
i<j

|v+ij⟩⟨v
+
ij | . (31)

Next, we use the relation tr(M̂TAN̂TA) = tr(M̂N̂), valid for all operators M̂ and N̂ defined

on AB. Thus tr(P̂ψρ̂
TA

⊥ ) = tr(P̂TA

ψ ρ̂⊥). P̂
TA

ψ can be expressed as

P̂TA

ψ =
1

2
(I + |Φ⟩⟨Φ|) , (32)
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where |Φ⟩ ≡
∑
j |aj⟩|bj⟩ is the unnormalized maximally entangled state in the Schmidt

bases {|aj⟩} and {|bj⟩}. Since ρ̂⊥ is a positive semidefinite state, we have

tr(P̂TA

ψ ρ̂⊥) =
1

2
tr(ρ̂⊥) +

1

2
⟨Φ|ρ̂⊥|Φ⟩ ≥

1

2
. (33)

This proves the desired bound Eq. (27).

This Theorem validates the entanglement proxy in the simplest case. We next move to improve it, first specifically
in the case where |ψ⟩ is taken to be a Haar random state, |ψHaar⟩.
Lemma 1. For depolarized Haar random states, i.e. states of the form

ρ̂ = F ′|ψHaar⟩⟨ψHaar|+ (1− F ′)
I

D
, (34)

where F ′ = F − (1− F )/(D − 1) (chosen so the fidelity ⟨ψHaar|ρ̂|ψHaar⟩ equals F ), the mixed state entanglement has
the form

EN (ρ̂) ≈ EN (|ψ⟩) + log2(f(F )) , (35)

where the more general function f can be expressed to low order as

f(F ) = F ′ +
9

64
(F ′DA)

−1 (2 ln(F ′DA) + 8 ln 2− 1) +O((F ′DA)
−3) , (36)

where DA is the Hilbert space dimension of subsystem A, here assumed to be for a half-chain bipartitions.

Proof. Here, we restrict our discussion to equal bipartitions, although our results can be
generalized to any bipartition.
First, with Haar random pure states, with high probability we have39,40

EN (|ψ⟩) = N

2
+ log2

64

9π2
≈ N

2
− 0.472 (37)

This expression follows from random matrix theory (RMT), which states that the Schmidt
values sj of a Haar random state follow the quarter-circle law, while s2j follow theMarchenko-
Pastur distribution.
This enables us to compute the distribution of eigenvalues λ of |ψ⟩⟨ψ|TA . The eigenvalues

of the form λ = s2j contribute a constant amount to ∥ρ̂TA∥1. The dominant (exponentially
larger) contribution to the log negativity comes from the eigenvalues of the form λ = ±sisj
which follow the distribution44

P (λ̃) =
2

π2

[(
1 +

λ̃2

16

)
K

(
1− λ̃2

16

)
− 2E

(
1− λ̃2

16

)]
, (38)

where λ̃ ≡ DAλ, P (λ̃) is supported in λ̃ ∈ [−4, 4], and K and E are complete elliptic
integrals.
The negativity of the depolarized state ρ̂ can be calculated using this distribution: the

eigenvalues λ′ of ρ̂TA are given by λ′ = F ′λ+(1−F ′)/D. Therefore, the trace norm can be

calculated from P (λ̃) as

∥ρ̂TA∥1 ≈ 2F ′DA

∫ ∞

0

λ̃P (λ̃)dλ̃+ 2F ′DA

∫ (F ′DA)−1

0

[
(F ′DA)

−1 − λ̃
]
P (λ̃)dλ̃ (39)

The first term evaluates to 64
9π2F

′DA, while the second term can be systematically computed

by using the expansion P (λ̃) ≈ − 2
π2 ln |λ̃|+ 8 ln 2−4

π2 , valid for small λ̃, giving Eq. (36).

Importantly, if more terms are added in the expansion of Eq. (36) Lemma 1 is an exact estimator of the mixed state
entanglement. Further, if DA is large, as is the case for large system sizes, then the original simple proxy is restored
as f ∼ F ′ ∼ F . We show the efficacy of this estimator, with f(F ) evaluated to first order, in Supp. Fig. 17b.
Finally we prove an even more general set of upper and lower bounds. While not amenable to be computed ex-

perimentally, they allow us to argue our entanglement-proxy likely becomes exponentially tight as the system size
increases.
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Lemma 2. For any state pure state |ψ⟩ and mixed state ρ̂ with decomposition

ρ̂ = F |ψ⟩⟨ψ|+ (1− F )ρ̂⊥ , (40)

where ρ̂⊥ is the (not necessarily positive semi-definite) remainder of the noisy state, we can bound the mixed state log
negativity by

EN (ρ̂) ≥ log2

(
F2EN (|ψ⟩) − (1− F )∥ρ̂TA

⊥ ∥1
)

(41)

EN (ρ̂) ≤ log2

(
F2EN (|ψ⟩) + (1− F )∥ρ̂TA

⊥ ∥1
)
,

where F is a lower bound for the fidelity ⟨ψ|ρ̂|ψ⟩.

Proof. Unlike above, ρ̂⊥ does not necessarily commute with |ψ⟩⟨ψ|.
To bound the negativity for such a state, we simply apply the triangle inequality on the

trace norm ∥ · ∥1, yielding Eqs. (41).

This bound is particularly useful in settings such as ours. Here, we can expect the noisy state to be weakly entangled,
i.e. ∥ρ̂TA

⊥ ∥1 = O(1), while the pure state is highly entangled: ∥|ψ⟩⟨ψ|TA∥1 = O(exp(N)), where N is the system size.
Then the above bounds imply that our entanglement-proxy is in fact exponentially close to the true mixed state
negativity: EN (ρ̂) = EP +O(exp(−N)), as observed in the inset of Ext. Data Fig. 17b.

G2. Robustness of our bounds to realistic experimental errors

In the above section, we showed several proofs which let us argue our entanglement-proxy, EP is a tight lower bound
for the mixed state entanglement under specific assumptions. Here, we relax these assumptions, but show that under
realistic noise sources, maximum possible violations of our bound are at most O(1).

Error model simulations– To start, we reiterate and emphasize the results of Fig. 4a of the main text. There, we
showed numerically that the entanglement-proxy appears to be a genuine lower bound of the mixed state entanglement
either for a random unitary circuit (RUC) undergoing incoherent local noise, or for our experiment undergoing the
full set of error sources (Supp. Fig. 32).
Now, our aim is to provide further analytical and numerical evidence for the robustness of the entanglement-proxy

under: 1) global coherent errors, or 2) incoherent local errors.

Global coherent errors– In this section, we consider potential violations of our bound due to global coherent errors.
To study this, we first prove a Theorem for a more general bound of the mixed state entanglement, based on studying
the norm of the commutator between the mixed state ρ̂ and pure state |ψ⟩. This bound is equivalent to our original
entanglement-proxy up to a correction term, which we then show analytically is small if the normalized entanglement
of the target state is large. Finally, we present numerical support of this discussion.

Theorem 3 (Commutator based bound of the mixed state entanglement). For any mixed state ρ̂ and pure state |ψ⟩
whose commutator has Frobenius norm C ≡ ∥ [ρ̂, |ψ⟩⟨ψ|] ∥F , the logarithmic negativities EN (ρ̂) and EN (|ψ⟩) are related
by

EN (ρ̂) ≥ EN (|ψ⟩) + log2(F ) + 2 log2(1− (C/F )
√

(1− α)/(2α)) . (42)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is the fidelity, α ≡ 2EN (|ψ⟩)/DA ∈ [0, 1] is a normalized entanglement of |ψ⟩, and DA is the Hilbert
space dimension of the subsystem A (assumed to be smaller than its complement).

Proof. We write ρ̂ in a suitable basis as:

ρ̂ =

(
F B†

B ρ̂′

)
, (43)

where the first row/column denotes the basis vector |ψ⟩, and the second denotes the subspace
perpendicular to |ψ⟩. With P⊥ the projector onto this subspace, the matrix ρ̂′ ≡ P⊥ρ̂P⊥ is
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positive semi-definite. The off-diagonal element B ≡ P⊥ρ̂|ψ⟩ is a (d− 1)× 1 vector, which
we take to be an unnormalized vector |B⟩ in the full Hilbert space (with first entry equal
to zero).
Using the variational definition of the trace-norm used in the proof of Theorem 2, we write

∥ρ̂TA∥1 ≥ tr(P̂ψρ̂
TA) = ⟨Φ|ρ̂|Φ⟩ (44)

= F |⟨ψ|Φ⟩|2 + ⟨Φ|ρ̂′|Φ⟩+ ⟨Φ|ψ⟩⟨B|Φ⟩+ ⟨Φ|B⟩⟨ψ|Φ⟩, (45)

where |Φ⟩ is the unnormalized maximally entangled state in the full Hilbert space, in the
Schmidt bases {|aj⟩} and {|bj⟩} of |ψ⟩. We then bound the terms of this expression.
First, the Frobenius norm of the commutator C = ∥[ρ̂, |ψ⟩⟨ψ|]∥F has the expression

C2 = 2⟨ψ|ρ̂2|ψ⟩ − 2⟨ψ|ρ̂|ψ⟩2 = 2⟨B|B⟩ . (46)

Therefore, ⟨B|B⟩ ≤ C2/2. We then use the Schur complement condition for positive semi-
definite matrices. With our decomposition, the fact that ρ̂ is positive semi-definite implies
that the Schur complement ρ̂′ − F−1|B⟩⟨B| is positive semi-definite. We conclude that

⟨Φ|B⟩⟨B|Φ⟩ ≤ F ⟨Φ|ρ̂′|Φ⟩ , (47)

Using the fact that, |B⟩ ⊥ |ψ⟩ and that |Φ⟩ is an unnormalized state with norm DA

and overlap |⟨Φ|ψ⟩|2 ≡ αDA, then accounting for the norms of |Φ⟩ and |B⟩, the maxi-

mum possible value of |⟨B|Φ⟩| is |⟨B|Φ⟩| ≤
√
(1− α)DAC/

√
2. Eq. (47) also implies that

⟨Φ|ρ̂′|Φ⟩ ≥ (1− α)DAC2/(2F ).
Combining these ingredients with Eq. (45), we then have

∥ρ̂TA∥1 ≥ ⟨Φ|ρ̂|Φ⟩ ≥ FαDA + (1− α)DAC2/(2F )− 2
√
αD2

A(1− α)C2/2 (48)

=
(√

Fα−
√

(1− α)C2/(2F )
)2
DA (49)

= FαDA

(
1− (C/F )

√
(1− α)/(2α)

)2
(50)

Taking the logarithm of both sides, we arrive at Theorem 3.

With this Theorem 3 in hand, to validate our entanglement proxy we need only bound the size of the quantity C/F ,
and show it is O(1). Here, we show this is the case under the physically realistic scenario of the system undergoing
coherent global errors. which are a dominant error source in our experiment (Supp. Fig. 32). First, we prove a useful
Lemma rewriting the coefficient to the correction term, C/F , in terms of only F .

Lemma 3. For normally distributed global coherent quasistatic parameter errors, the coefficient to the correction term
in Theorem 3, C/F , can be written entirely in terms of the fidelity as

C
F
√
2
=

√
2√

3 + 2F 2 − F 4
− 1 . (51)

Proof. To begin, consider evolution under a fixed parameter value, which results in the pure

state |Ψ(t, θ)⟩ ≡ e−i(Ĥ0+θV̂ )t|Ψ0⟩. In Theorem 1, we found a Gaussian fidelity dependence
between states corresponding to any two parameter values θ1 and θ2:

F (θ1, θ2) ≡ |⟨Ψ(t, θ1)|Ψ(t, θ2)⟩|2 = exp

(
−Nλt2 (θ1 − θ2)

2

2

)
, (52)

For some constant λ [Eq. (5)]. Assuming a normal distribution P (θ) of parameter values θ
with mean θ0 and standard deviation σ, we obtain the mixed state ρ̂(t) =

∫
dθP (θ)|Ψ(t, θ)⟩⟨Ψ(t, θ)|.

In Eq. (19), we computed the fidelity of ρ(t) to the pure state |Ψ(t, θ0)⟩ and found it to be
F = 1/

√
Λ + 1, where Λ ≡ Nt2λσ2.
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The Frobenius norm of the commutator, C, then has expression

C2 = ∥ [ρ̂(t), |Ψ(t, θ0)⟩⟨Ψ(t, θ0)|] ∥2F (53)

= 2⟨Ψ(t, θ0)|ρ̂(t)2|Ψ(t, θ0)⟩ − 2⟨Ψ(t, θ0)|ρ̂(t)|Ψ(t, θ0)⟩2 (54)

= 2

∫
dθ1P (θ1)

∫
dθ2P (θ2)⟨Ψ(t, θ0)|Ψ(t, θ1)⟩⟨Ψ(t, θ1)|Ψ(t, θ2)⟩⟨Ψ(t, θ2)|Ψ(t, θ0)⟩ − 2F 2

(55)

=
4√

3Λ2 + 8Λ + 4
− 2

Λ + 1
. (56)

In this computation, the unknown phases of the inner products ⟨Ψ(t, θi)|Ψ(t, θj)⟩ cancel,
allowing the use of Theorem 1. Rearranging, it is straightforward to then arrive at Eq. (51).

We can then combine Theorem 3 and Lemma 3, to arrive at the simplified result

EN (ρ̂) ≥ EN (|ψ⟩) + log2(F ) + 2 log2

(
1−

√(
2√

3 + 2F 2 − F 4
− 1

)
1− α

α

)
(57)

≈

{
EN (|ψ⟩) + log2(F ) F ≈ 1

EN (|ψ⟩) + log2(F ) + 2 log2

(
1− 0.39

√
1−α
α

)
F ≪ 1

(58)

which shows that our entanglement-proxy is robust in the presence of quasistatic parameter fluctuations, up to a O(1)
deviation which decreases with the normalized entanglement α ≡ 2EN (|ψ⟩)/DA.
More concretely, let us assume a normalized entanglement of α = 0.8 (as is approximately the expectation at N = 60

and t = 14.3 cycles, see Supp. Fig. 16). In that case, Eq. (58) reduces to

EN (ρ̂) ⪆ EP (ρ̂)− 0.6. (59)

Supp. Fig. 18 | Bounding the entanglement-proxy in the presence of errors. a. We consider full error model
simulations of the Rydberg dynamics studied in the main text, i.e. simultaneously under both global and local errors which
each can be either Markovian or non-Markovian. We study the ratio of the commutator norm to the fidelity versus fidelity,
truncating to only show data for which F > 1/DA, where DA is the half chain Hilbert space dimension. The data appears to
converge as a function of system size, approaching the theory prediction obtained for the case of purely global, coherent
Hamiltonian fluctuations, see Eq. (57). b. Here we plot the expected maximum violation of our entanglement-proxy lower
bound as a function of the fidelity and the normalized entanglement; more specifically, we plot the correction term from
Eq. (57). We find that in the reasonable parameter regime shown, the violation is always ≲ 1 ebit. From analysis shown in
Supp. Fig. 16, we plot the expected experimental values from N = 12 to 60, and find the maximum violation appears to
saturate around ≈0.6 ebits. Together these results imply that our entanglement-proxy is robust up to O(1) corrections in the
face of realistic noise.
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In other words, we expect the maximum possible violation of our bound is at most around half an ebit of entanglement.
We emphasize that this does not mean the bound is in fact violated by this amount - only that it potentially could be.
In order to validate that the coefficient to the correction term is small, in Supp. Fig. 18a we show C/(F

√
2) as a

function of F for various system sizes, calculated with our full Rydberg error model (which includes both Markovian
and non-Markovian terms, and both global and local errors). Despite the error model including more noise terms
than just global parameter fluctuations, we see curves as a function of N increase but appear to converge near the
prediction of Eq. (51). Then, assuming the prediction of Eq. (51), we show the maximum possible violation of the
lower bound provided by EP (i.e. the correction term in Eq. (57)) as a function of normalized entanglement and
fidelity. We further include estimated experimental values up to N = 60 (Supp. Fig. 18b). We find the experimental
values appears to saturate around a maximum possible violation of ≈0.6 ebits.

Systematic miscalibration errors– Next, we comment on the case where the target state |ψ⟩ is set incorrectly, for
instance because of a miscalibration of the Hamiltonian parameters. While this type of error can lead to a violation of
our lower bound, the violation is small and the period for which it occurs is ephemeral, because the incorrect choice
of |ψ⟩ will lead to a fidelity decay which is stronger than any typical increase in pure state entanglement. To showcase
this, we consider quench dynamics resulting in linear growth of negativity followed by saturation (Supp. Fig. 19). We
study the two entanglement regimes (saturated or growing linearly) separately.

Supp. Fig. 19 | Sensitivity to incorrect pure state. a. We study a possible error source in our entanglement proxy, that
the pure state negativity could be assumed incorrectly, for instance if the wrong Hamiltonian parameters are chosen in
simulation. We consider error-free quench evolution with Ω/2π = 6.9 MHz, leading to normal linear growth and then
saturation of pure state negativity (which is equal to the entanglement proxy, as F = 1). If we calculated the entanglement
proxy assuming the Rabi frequency was instead Ω/2π = 7.2 MHz, then at very early times the calculated entanglement proxy
can actual slightly exceed the true entanglement, showcasing an adversarial example where our entanglement proxy fails to be
a lower bound (inset). However, loss of fidelity due to the Hamiltonian parameter mismatch will eventually dominate (top),
restoring the validity of the lower bound for large system sizes or late evolution times. b. Even for a wide range of possible
Rabi frequency miscalibrations (represented by the ratio of the miscalibrated Rabi frequency to the actual Rabi frequency),
the maximum possible violation of the proxy lower bound is only ∼ 0.02 ebits.

First, we consider the case where the entanglement has saturated. We imagine the true evolution was performed
with a Rabi frequency Ω0, resulting in a state |ψ0⟩ at time t. However, we consider the situation where the parameters
in the Hamiltonian have been mischosen, for instance with Rabi frequency Ω1 = Ω0 + ω. From Theorem 1 we know
the resulting fidelity overlap between the two states is given by

F = |⟨ψ0|ψ1⟩|2 = 2−Nλω
2t2/2. (60)

Because we are studying the entanglement saturated regime, the pure state negativities of |ψ0⟩ and |ψ1⟩ are approxi-
mately equal, but the mixed state negativity will now be calculated as

EP (|ψ1⟩) = EN (|ψ1⟩) + log2(F ) (61)

≈ EP (|ψ0⟩)−Nλω2t2/2. (62)

Therefore, any change in the assumed Rabi frequency will lead to a quadratic loss in the mixed state entanglement
proxy, and the proxy will remain a lower bound.
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The situation is largely the same if we now work in the linear growth regime, where we assume the pure state
entanglement grows as E(|ψ0⟩) = αΩ0t, and E(|ψ1⟩) = αΩ1t, where α is the entanglement velocity related to Lieb-
Robinson bounds. In this case, the entanglement proxy can be written as

EP (|ψ1⟩) = EN (|ψ1⟩) + log2(F ) (63)

= αΩ1t−Nλω2t2/2 (64)

= EP (|ψ0⟩) + αωt−Nλω2t2/2 (65)

= EP (|ψ0⟩) + ωt(α−Nλωt/2). (66)

Thus, as long as Nλωt/2 > α, the erroneous choice of target state will still result in a lower overall mixed state
entanglement proxy, thus maintaining the lower bound. This will then become increasingly tight for larger system
sizes and later evolution times. In Supp. Fig. 19 we show simulations demonstrating this, indicating that Hamiltonian
parameter miscalibration should not substantially affect the veracity of our mixed state entanglement lower bound
past very early times.

Incoherent local errors– Next, we turn to prove our entanglement proxy is a valid lower bound for the case
of random unitary circuits (RUCs) undergoing realistic noise, namely local depolarization error. To do so, we will
introduce a new theorem, which bounds the violation in our entanglement proxy by a value related to the fidelity
overlap with eigenstates of ρ̂, and then will show that this correction term is small.
We proceed first by proving a more general Lemma which will assist us; the proof has similarities to the proof of

Theorem 3, but we will present it again here for completeness.

Lemma 4. For any mixed state ρ̂ and pure state |ψ⟩

EN (ρ̂) ≥ EN (|ψ⟩) + log2(F ) + 2 log2(1−
√
(1− F )(1− α)/(Fα)) , (67)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is their fidelity, α ≡ 2EN (|ψ⟩)/DA ∈ [0, 1] is a normalized entanglement of |ψ⟩, and DA is the
Hilbert space dimension of the subsystem A (assumed to be smaller than its complement).

Proof. In deriving Theorem 2, we utilized the fact that when |ψ⟩ is an eigenstate of ρ̂, the
remainder state ρ̂⊥ is positive semi-definite, which allowed us to bound ⟨Φ|ρ̂⊥|Φ⟩ ≥ 0. To
show Lemma 4, we use constraints that arise from the fact that ρ̂ is positive semidefinite.
We write ρ̂ in a suitable basis as:

ρ̂ =

(
F B†

B ρ̂′

)
, (68)

where the first row/column denotes the basis vector |ψ⟩, and the second denotes the subspace
perpendicular to |ψ⟩. With P⊥ the projector onto this subspace, the matrix ρ̂′ ≡ P⊥ρ̂P⊥ is
positive semi-definite. The off-diagonal element B ≡ P⊥ρ̂|ψ⟩ is a (d− 1)× 1 vector, which
we take to be an unnormalized vector |B⟩ in the full Hilbert space (with first entry equal
to zero).
Using Eq. (30), the negativity can be obtained from

∥ρ̂TA∥1 ≥ ⟨Φ|ρ̂|Φ⟩ = F |⟨ψ|Φ⟩|2 + ⟨Φ|ρ̂′|Φ⟩+ ⟨Φ|ψ⟩⟨B|Φ⟩+ ⟨Φ|B⟩⟨ψ|Φ⟩ . (69)

Only the last two terms above may be negative. We bound their magnitude using the Schur
complement condition for positive semi-definite matrices. With our decomposition, the fact
that ρ is positive semi-definite implies that the Schur complement ρ̂′−F−1|B⟩⟨B| is positive
semi-definite. We conclude that

⟨Φ|B⟩⟨B|Φ⟩ ≤ F ⟨Φ|ρ̂′|Φ⟩ , (70)

which allows us to further conclude that

⟨Φ|ρ̂|Φ⟩ ≥ (
√
F |⟨Φ|ψ⟩| −

√
⟨Φ|ρ̂′|Φ⟩)2 . (71)

We then use the fact that |Φ⟩/
√
DA is a normalized state. Since |⟨Φ|ψ⟩|2 = αDA =

∥|ψ⟩⟨ψ|TA∥1, trρ̂′ = 1− F and ⟨ψ|ρ̂′|ψ⟩ = 0, we conclude that

⟨Φ|ρ̂′|Φ⟩ ≤ (1− F )(1− α)DA . (72)
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Then when F ≥ 1− α, we obtain the claimed Eq. (67).

We then simply generalize Lemma 4 to the case where |ψ⟩ has fidelity overlap with a particular eigenstate of ρ̂

Theorem 4 (Eigenstate-fidelity based bound). For any mixed state ρ̂ and pure state |ψ⟩ which has a fidelity f ≡
|⟨ψ|λ⟩|2 with an eigenstate |λ⟩ of ρ̂, the logarithmic negativities EN (ρ̂) and EN (|ψ⟩) are related by

EN (ρ̂) ≥ EN (|ψ⟩) + log2(F ) + 2 log2(1−
√

(1− f)(1− α)/(fα)) , (73)

where F ≡ ⟨ψ|ρ̂|ψ⟩ is the fidelity, α ≡ 2EN (|ψ⟩)/DA ∈ [0, 1] is a normalized entanglement of |ψ⟩, and DA is the Hilbert
space dimension of the subsystem A (assumed to be smaller than its complement).

Proof. We first write ρ̂ = Ft|v⟩⟨v|+(1−Ft)ρ̂⊥, where |v⟩ is an eigenstate of ρ̂ with eigenvalue
Ft, and ρ̂⊥ is the state projected onto the orthogonal subspace to |v⟩. We write the state
|ψ⟩ that we benchmark against ρ̂ in terms of |v⟩ as |ψ⟩ =

√
f |v⟩+

√
1− f |ψ⊥⟩. Then writing

ρ̂ in the same basis as Eq. (68) gives

ρ̂ =

(
Ftf Ft

√
f(1− f)|ψ⟩⟨ψ⊥|

Ft
√
f(1− f)|ψ⊥⟩⟨ψ| ρ̂⊥ + Ft(1− f)|ψ⊥⟩⟨ψ⊥|

)
, (74)

As with the above, the only negative contribution to ⟨Φ|ρ̂|Φ⟩ arises from the off-diagonal
terms of Eq. (74). This allows us to improve our bound to the claimed Theorem 4.

We now show that under incoherent local errors, the correction term presented in Theorem 4 is small. We study
the case of random unitary circuits (RUCs) in the presence of local depolarization in order to treat the problem
analytically and make connection to the digital quantum circuits we compare against in the main text.
We study the fidelity and purity and bound the fidelity f ≡ |⟨ψ(t)|v⟩|2 between the ideal evolved state |ψ(t)⟩ with

the largest eigenstate |v⟩ of the noisy evolved state ρ̂(t), by computing both the purity and fidelity of |ψ(t)⟩ and ρ̂(t).
The relationship between these quantities in fact bounds the fidelity of |ψ(t)⟩ to the largest eigenstate of ρ̂, allowing
us to apply Theorem 4 to evaluate the robustness of our negativity proxy.
Physically, our result means that the state ρ̂ is a mixture of a particular pure state |v1⟩ with large population

F = λ1 and many other orthogonal states with smaller populations. For a circuit with spacetime volume V = Nt, the
largest eigenvalue decays exponentially λ1 ≈ (1− p)V , yet remains larger than all other eigenvalues. The other states
correspond to trajectories with errors. The average number of errors is k = pV , and there are roughly V !

k!(V−k)! different

spacetime locations of k errors. When the number of trajectories are much less than the Hilbert space dimension D,
we expect the resultant wavefunctions resultant to be orthogonal to one another. This is true if the k errors are
sparsely spread over the system in spacetime (such that their separations are sufficiently large) and the effects of
errors are scrambled quickly. When p is sufficiently small and when the quantum dynamics is sufficiently chaotic,
these assumptions are expected to hold.
We proceed to justify this intuition by averaging over random circuits. At every time step, we apply random unitary

two-qubit gates in a brickwork circuit geometry, and subject it to local depolarization, which locally depolarizes the
state ρ at every site with probability p, equivalent to applying the local channel ρ 7→ (1 − p)ρ + p(Ij/d) ⊗ trj(ρ)
independently to every site j, where d = 2 is the local Hilbert space dimension (Supp. Fig. 20a). For simplicity, we
also take the initial state |ψ0⟩ to be the product state |0⟩⊗N . After averaging over RUCs, the purity P ≡ tr[ρ(t)2] and
fidelity F ≡ ⟨ψ(t)|ρ(t)|ψ(t)⟩ can be expressed as the partition functions of two different Ising ferromagnets, with the
Ising spins σ = ±1 respectively denoting the local identity and swap permutations (Supp. Fig. 20b).
The derivation of the mapping between RUCs and classical spin models is described in detail in many works including

Refs.45,46. Here we simply quote the result:

P =
∑
{σ}

∏
▽

WP (σ1, σ2, σ3; p) , (75)

F =
∑
{σ}

∏
▽

WF (σ1, σ2, σ3; p), (76)

where the summation is over all possible Ising configurations of classical spin variables σ = ±1 and the product is
over all downward-facing triangles in the resulting triangular lattice (Supp. Fig. 20c). WP/F (σ1, σ2, σ3; p) act as local
“Boltzmann weights,” parameterized by the error probability p. Their values are enumerated in Supp. Table II. The
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σ1, σ2, σ2 WP (σ1, σ2, σ3; p) WF (σ1, σ2, σ3; p)

+,+,+ 1 1
+,+,− 0 0
+,−,+ d

d2+1
+ 2d

d4−1
p+ 4d

3(d4−1)
p2 d

d2+1
+ d

d4−1
p

+,−,− d
d2+1

+ −2d3

d4−1
p+ 4d3

3(d4−1)
p2 d

d2+1
+ −d3

d4−1
p

−,+,+ d
d2+1

+ 2d
d4−1

p+ 4d
3(d4−1)

p2 d
d2+1

+ d
d4−1

p

−,+,− d
d2+1

+ −2d3

d4−1
p+ 4d3

3(d4−1)
p2 d

d2+1
+ −d3

d4−1
p

−,−,+ 4d2

d4−1
p+ −20d2

3(d4−1)
p2 + 16d2

3(d4−1)
p3 + −16d2

9(d4−1)
p4 2d2

d4−1
p+ −d2

d4−1
p2

−,−,− 1 + −4d4

d4−1
p+ 20d4

3(d4−1)
p2 + −16d4

3(d4−1)
p3 + 16d4

9(d4−1)
p4 1 + −2d4

d4−1
p+ d4

d4−1
p2

Supp. Table II | Ising Boltzmann weights of local downward-facing triangle configurations for the effective statistical
mechanical models. Their partition functions equal the purity P [Eq. (75)] and fidelity F [Eq. (76)] of random unitary circuits
(RUCs) with local depolarization. The geometric arrangement of σ1, σ2, σ3 is indicated in Fig. 20c. In this work, we consider
RUCs of qubits, with local Hilbert space dimension d = 2, and only consider the O(1) and O(p) terms. In this table, however,
we state the full expressions in terms of general d for future reference.

Supp. Fig. 20 | Purity and fidelity in random unitary circuits (RUCs) with local depolarization. a. We consider
a brickwork RUC, where local depolarization with strength p is applied after every layer and at every site (red dots). b.
Typical values of purity or fidelity can be computed by random circuit averages. In both quantities, swap boundary conditions
are applied on four copies of the circuit, representing two copies of the states. For purity, dephasing is applied to both copies
(depicted here), while for fidelity, dephasing is only applied to one copy. c. After averaging over random circuits, the purity
and fidelity can be expressed as the partition functions of effective statistical mechanical Ising models, with three-spin
Boltzmann weights on every downward-facing triangle (listed in Table II), the top boundary fixed to be ‘-’ (blue circles) and
the bottom boundary free. d. The dominant Ising spin configuration for both quantities is where all Ising spins are in the ‘-’
(swap) state (blue circles). e. Subleading corrections arise from configurations with sparse, isolated “bubbles” of ‘+’ Ising
spins (red circles). f. For sufficiently deep circuits, the dominant configurations are those with a boundary domain of ‘-’ spins
and a bulk domain of ‘+’ spins. However, this is only relevant in a regime where the fidelity is trivially small.

Ising spins at the bottom are determined by the initial condition and are effectively unconstrained (open boundary
condition), while the purity and fidelity expressions result in an additional layer of Ising spins at the top, which are
pinned to be the swap permutation ‘−’.
When p = 0, notice that WP/F (−,−,+) = 0. Combined with the fact that all top boundary spins have σ = −,

the only non-vanishing contribution to P or F is the one where all σ = − (Supp. Fig. 20d). In this case, P =∏
▽WP (−,−,−) = 1 and similarly F = 1. This is expected since in the absence of errors, ρ is a pure state with

perfect fidelity.
Now consider small, nonzero p. P and F have contributions from configurations where some of the spin variables are

flipped to the ‘+’ state, with weight O(p) (Supp. Fig. 20e). We call such spin flips “bubbles,” because such bubbles
are penalized from growing by an effective line-tension term, which weights larger bubbles by a factor of (2/5)l, where
l is the length of the boundary of the bubble. These small bubbles will effectively have renormalized weights, but
will remain O(p) and whose precise values are not consequential to our conclusions. Therefore, in this regime, the
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Supp. Fig. 21 | Bounding the entanglement-proxy in the presence of errors. We consider the case of incoherent
local errors, specifically for random unitary circuits undergoing local depolarization. The overlap, f , between the target pure
state and the highest fidelity state to ρ̂ remains near unity. Further, 1− f is linearly bounded by the quantity log(F )2/Nt
with a small proportionality constant 0.03 (inset), consistent with our RUC analysis leading up to Eq. (82), and giving the
overall bound Eq. (83).

number of such spin flips will be rare and sparse. To this end, we approximate P and F by simply summing over the
contributions from sparse, disjoint bubbles. However, this approximation breaks down at larger values of p, discussed
below. Within this approximation,

P ≈
(
1− 4d2

d4 − 1
p+O(p2)

)V
exp(APV ) ≡ exp(−BPV ) , (77)

F ≈
(
1− 2d2

d4 − 1
p+O(p2)

)V
exp(AFV ) ≡ exp(−BFV ) , (78)

where V is the spacetime volume (number of Ising spins) and AF and AP are the renormalized relative weights of a
single bubble.
We are interested in the ratio P/F 2 ≈ e(2BF−BP )V ≥ 1. When p≪ 1,

2BF −BP = −2AF +AP − 2 ln

(
1− 2d2

d4 − 1
p+O(p2)

)
+ ln

(
1− 4d2

d4 − 1
p+O(p2)

)
= AP − 2AF +O(p2). (79)

Because each bubble already has O(p) weight, the leading order contribution to AP − 2AF is determined by that of
WP (−,−,+) and WF (−,−,+), which have ratio precisely 2. Therefore, we conclude that all O(p) terms vanish and

P/F 2 = eCp
2V , (80)

for some O(1) constant C.
In order to translate this into a bound on the eigenstate-fidelity f , we denote the fidelities between |ψ⟩ and the

eigenstates |vi⟩ of ρ̂ as µi ≡ |⟨vi|ψ⟩|2, with f ≡ µ1. With λi the eigenvalues of ρ̂, we have F =
∑
i λiµi and P =

∑
i λ

2
i .

The Cauchy-Schwarz inequality implies that

µ2
1 + (1− µ1)

2 ≥
∑
i

µ2
i ≥ F 2/P ⇒ 1− µ1 ≤ P/F 2 − 1

2P/F 2
. (81)

Using Eq. (80), we obtain

1− f ≡ 1− µ1 ≤ (1− exp(−Cp2V ))/2 = O(p2V ). (82)

Using Theorem 4, we obtain

EN (ρ̂) ⪆ EN (|ψ⟩) + log2(F ) + 2 log2

(
1−

√
1− α

α
C2

ln(F )2

V

)
, (83)
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for another O(1) constant C2, indicating that the entanglement-proxy EP is valid up to a small correction which

is negligible as long as F ≫ exp(−
√
V ) = exp(−

√
Nt) ∼ exp(−N), i.e. F is not trivially small. We give numerical

support for this in Supp. Fig. 21.
Finally, we remark that additional configurations may come to dominate the partition function sums Eqs. (75), (76)

when the circuit is sufficiently deep. This is easiest to understand in the statistical mechanical picture. For both the
purity and fidelity, the bulk has a small preference for the ‘+’ state, because depolarization breaks the Ising symmetry
and favors the identity element. Meanwhile, the boundary condition (associated with evaluating purity or fidelity)
pins the boundary to the ‘-’ state, acting as a strong boundary field. When the circuit is shallow, the boundary
term dominates, giving rise to the global ‘-’ domain assumed above. However, when the circuit is sufficiently deep, it
becomes energetically favorable for a large domain wall to form, dividing the spins into a ‘-’ domain near the boundary,
and a ‘+’ domain in the bulk (Supp. Fig. 20f), at the expense of a domain wall with free-energy scaling with the
spatial size. In our above calculations, we neglect this phenomenon because it is only relevant when the fidelity is
trivially small, O(D−1), where D is the total Hilbert space dimension. In this regime, the purity and fidelity decouple
from the bulk dynamics and assume this constant value which arises from the boundary Ising ‘-’ domain.

G3. Negativity of truncated MPS states

Finally, we investigate an interesting observation in the main text, that at N = 60 the entanglement-proxy found
for the experiment in Fig. 4 is ∼3 ebits higher than log2(χ

∗) in Fig. 5. In other words, the fidelity-equivalent MPS
simulation is less entangled than the experiment. Here we study the fidelity and entanglement (negativity) of truncated
pure state MPS representations to explain this behavior.
For a theoretical treatment, we consider a simplified setup where we start with an ideal pure state and its equal

bipartite Schmidt decomposition |ψ⟩ =
∑DA

j=1 sj |aj⟩|bj⟩ where DA is the Hilbert space dimension of the half system
and the Schmidt values sj are assumed to be in descending order. Then the Schmidt rank is truncated to a maximum
bond dimension χ ≤ DA. Denote the truncated state and its Schmidt decomposition as |ψχ⟩ =

∑χ
j=1 s

′
j |aj⟩|bj⟩, with

s′j = sj/
√∑χ

k=1 s
2
k (normalization condition). It is straightforward to see that

F = |⟨ψχ|ψ⟩|2 =

χ∑
j=1

s2j . (84)

To derive the entanglement negativity, the eigenvalues λ of the partial transposed state |ψ⟩⟨ψ|TA is given by s2j or
±sisj as mentioned above. This gives

|||ψχ⟩⟨ψχ|TA ||1 =

(∑χ
j=1 sj

)2
∑χ
j=1 s

2
j

, (85)

and therefore

E(|ψχ⟩) = log2 |||ψχ⟩⟨ψχ|TA ||1 = 2 log2

χ∑
j=1

sj − log2

χ∑
j=1

s2j . (86)

For generic states with unknown sj , it is hard to draw any meaningful relationship between fidelity and entanglement
negativity. Therefore, we consider two cases: maximally entangled states and Haar random states.

Maximally entangled states—For a maximally entangled state, the Schmidt values are given by sj = 1/
√
DA. It

follows directly that

F =
χ

DA
; (87)

E(|ψχ⟩) = log2 χ = log2DA + log2 F, (88)

with log2DA the log negativity of the ideal maximally entangled pure state. Thus, the log negativity for a fidelity-
equivalent truncated maximally entangled state is equal to that of an isotropic mixed state.
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Haar random states—The case for Haar random states is more interesting, as such states arise from random
unitary circuit evolution, and are closer to the output of our Rydberg experiment as well. As mentioned previously,
the Schmidt values of Haar random states follow the quarter-circle law as

P (s̃) =
1

π

√
4− s̃2, (89)

where s̃ ≡
√
DAs. Setting a maximum Schmidt rank can be translated to setting a minimum cutoff smin (and the

corresponding 0 ≤ s̃min ≤ 2) of the Schmidt values (keeping only Schmidt values above smin), where the relation
between χ and s̃min is given by

χ = DA

∫ 2

s̃min

P (s̃)ds̃ = DA

[
4

π
sin−1

(√
2− s̃min

2

)
− 1

2π
s̃min

√
4− s̃2min

]
. (90)

Depending on the cutoff,

χ(s̃min)∑
j=1

sj =
√
DA

∫ 2

s̃min

s̃P (s̃)ds̃ =

√
DA

3π

(
4− s̃2min

) 3
2 ; (91)

χ(s̃min)∑
j=1

s2j =

∫ 2

s̃min

s̃2P (s̃)ds̃ =
4

π
sin−1

(√
2− s̃min

2

)
+

1

4π
s̃min(2− s̃2min)

√
4− s̃2min. (92)

Therefore, the fidelity and log negativity can be written in parametric forms as

F (s̃min) =
4

π
sin−1

(√
2− s̃min

2

)
+

1

4π
s̃min(2− s̃2min)

√
4− s̃2min; (93)

E(|ψχ(s̃min)⟩) = log2DA + log2
(4− s̃2min)

3

9π2
− log2 F (s̃min). (94)

It is easy to verify that when s̃min = 0, the equations reduce to the case of ideal Haar random states, with χ = DA,
F = 1, and E = log2DA + log2 64/9π

2, where 64/9π2 ≈ 0.72 is the Page correction1.
Importantly, we can then compare this prediction against the prediction for a depolarized Haar random state, where

we use the first-order approximation from Eq. (36), in other words taking DA → ∞. At a given fidelity for each, the
difference in estimated entanglement, δ, is given as

δ = EN (ρ̂Haar)− EN (|ψχ(s̃min)⟩) (95)

= 3 log2

(
4

4− s̃2min

)
+ 2 log2(F ) (96)

≈
(
2 + log2

(
64

9π2

))
(1− F )2/3 ≈ 3

2
(1− F )2/3 (97)

In the last line we have performed series expansions of both F and δ in terms of s̃min to arrive at a non-parametric
form. In Supp. Fig. 22 we plot δ (as well as the non-parametric approximation) as a function of F , which is always
positive, indicating that for all F , the MPS representation of a truncated Haar random state is less entangled (by O(1)
ebits) than a equivalent-fidelity depolarized Haar random mixed state. Given that the experiment does not produce
a perfect Haar random state, as well as the fact that a real MPS simulation performs many truncations between
potentially correlated timesteps, these results are in good agreement with the experimentally found discrepancy of
∼3 ebits.
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Supp. Fig. 22 | Entanglement difference between truncated and depolarized Haar random states. At fixed
fidelity, MPS truncation and depolarization affect the entanglement content of a pure state differently. For a Haar random
state, we can solve this relation analytically, finding the depolarized state has a higher entanglement (log negativity) content
than the MPS-truncated stated at equal fidelity.
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H. Mixed state entanglement estimation for quasi-adiabatic state preparation

The mixed state entanglement proxy we have introduced (Eq. 2 of the main text) is a general lower bound in
generic situations for any target pure state of interest (see Section F). We have demonstrated its applicability in
quantum quench dynamics, and we anticipate its direct applicability in a much broader range of quantum simulation
experiments. To exemplify this, we consider in this section the estimation of mixed state entanglement during quasi-
adiabatic state preparation and at quantum critical points.
To estimate the mixed state entanglement with our proxy, we require knowledge of the entanglement of the pure

target state and the fidelity of experimental state to the pure target state. At quantum critical points, the scaling of
entanglement is well studied47, and the pure state entanglement can be extrapolated from exact simulations at small
system size.
It remains then to estimate the fidelity, for which we identify two possible methods (Supp. Fig. 23a):
Method A) For particular states of interest, Fd may not work directly. However, Fd can still be applied by following

the quasi-adiabatic sweep preparation with a short, ergodic quench2,3. Importantly, Fd is accurate for short quenches,
meaning there is little fidelity loss in this process, and that tensor network methods can be used to generate exact
classical simulation references even for large system sizes where critical states have area law entanglement with
potentially logarithmic corrections47. Further, the performance of this method could be improved by calibrating the
fidelity loss due to the quench via measurements at multiple times.
Method B) Continue the adiabatic sweep into a phase with a ground state for which the fidelity is easily measured

(such as a product state). The fidelity of preparing the critical state can then be approximated as the fidelity at the
end of the sweep.
We demonstrate both fidelity estimation methods using our standard error model (with no preparation or measure-

ment errors, see Section J) to simulate a quasi-adiabatic sweep to prepare the ground state of the quantum phase
transition between the disordered and classical Z2 ordered phases in the 1D Rydberg phase diagram (Supp. Fig. 23b)
with N = 11 atoms. The sweep in question has a tangent detuning profile with maximum detuning range of ±2π× 40
MHz, and Rabi frequency of 2π × 5 MHz. The sweep duration is 3 µs.
For Method A, we simulate the preparation of the target state at the critical point. We then use the error model

to simulate a quench for 4 cycles with a time-independent Hamiltonian with Ω = 2π × 6.9 MHz, and with 2π × ±2
MHz random on-site disorder drawn from a uniform distribution. Such a technique in a similar parameter regime has
been well studied theoretically in our previous works2,3. For Method B, we measure the population of the classical
Z2 ordered state (|10101 . . . 0101⟩) at the end of the entire quench. Similar techniques can also be used for estimating
fidelities of two-dimensional arrays48,49. For both methods the mixed state entanglement proxy remains a lower bound
to the actual mixed state negativity at the quantum phase transition, with Method A providing a tighter bound. For
Method A we also provide the value assuming the measurement quench is error-free (or where the fidelity loss due to
the quench is calibrated away), which closely estimates the actual mixed state negativity (Supp. Fig. 23c).

Supp. Fig. 23 | Estimating mixed state entanglement of adiabatic state preparatiom. a. The mixed state
entanglement proxy presented in the main text can be applied to the case of adiabatic state preparation. For instance, a
quasi-adiabatic sweep may be performed to prepare the critical state at a quantum phase transition. To estimate the fidelity,
there are two possible methods: A) use the Fd formula presented here (and as further discussed in this context of target state
benchmarking in Ref.2), or B) continue the sweep into a classical phase for which the ground state fidelity can be directly
measured. b, c. We use our error model to simulate a sweep to the quantum phase transition between the disordered and Z2

phases of the ground state Rydberg phase diagram in 1D. For method A, after reaching the critical point we performed a
disordered quench for 4 cycles and calculate Fd to estimate the fidelity. For method B, we use the Z2 population at the end of
the entire sweep to estimate the fidelity. While both options work, for the particular sweep simulated here, method A yields a
tighter lower bound on the actual mixed state negativity at the critical point, particularly if the measurement quench is
error-free.
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I. Simulation methods

I1. Description of the Caltech computing cluster

This work extensively utilizes the Caltech Resnick High Performance Computing (HPC) Center, running CentOS
Linux 7. In our work, each simulation is assigned to a single node, using 16 cores of Intel Cascade Lake CPU (at 2.2
or 2.4 GHz), with a total node memory of 386 GB (at 2933 MT/s). We note that many classical simulation times are
reported as core-time, which we simplify as the wall time multiplied by the number of cores.
In terms of raw wall time, the largest simulation we performed (for N = 60 and χ = 3072) took ∼8.3 days (∼11.1

days if including the additional time points past the last experiment time in order to calculate pavg). Representative
times to simulate up to the last experimental time point are shown as a function of bond dimension in Supp. Fig. 24;
extrapolating the expected O(χ3) scaling we predict simulation for N = 60 and χ∗ = 3400 would entail a simulation
time of 11.3 wall-days (180 core-days, as reported in the main text). In total, we generated roughly ∼100 TB of data
in order to create and store the MPS tensors at various bond dimensions used in this work.

Supp. Fig. 24 | Simulation time as a function of bond dimension. After an initial overhead plateau, the
Lightcone-MPS simulation time (measured in raw wall time on the Caltech central cluster) to reach the last experimental
time increases as a function of N , approaching the expected asymptotic χ3 scaling.

I2. Exact simulation with a Schrieffer-Wolff transformation

We first consider the possibility of exact brute-force simulation of our system. The current state-of-the-art in exact
RUC simulation is 45 qubits50, while the state-of-the-art for continuous Hamiltonian time evolution is 38 qubits51.
While clearly neither of these approaches would work natively for the largest experimental system sizes of N = 60, it is
possible they could become applicable through a Schrieffer-Wolff transformation by rewriting the Rydberg Hamiltonian
only in the blockaded subspace, applying appropriate level shifts to mimic the effect of higher blockade sectors, as
described in the supplement of Ref.52. Because of the Rydberg blockade constraint, the effective system size is given
by Ñ = log2(Fib(N + 2)) ≈ 0.7N , where Fib is the Fibonacci function. For the 60-atom system, Ñ∼42 qubits, so
such brute-force techniques could allow for potentially pseudo-exact simulation.
However, here we discount such approaches for multiple reasons. First they both rely on specialized hardware – a

supercomputing system50 with 100s of TB of RAM, or tensor processing units51 which are not widely available. Further,
even with this hardware it is not clear that our system would be easily simulable, because of difficulties associated
with treating the blockaded subspace. In particular, applying local gate operations becomes more complicated to
implement efficiently, because the blockaded subspace is not factorizable into the product of local bases.
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Supp. Fig. 25 | Using an effective Hamiltonian simulation. a. The Rydberg blockade constraint stratifies the energy
levels of the Rydberg Hamiltonian, enabling approximating the dynamics in the full Hilbert space by an effective set of
dynamics in the lowest energy Hilbert space (relative size of energy sectors are not to scale). b. While a lowest-order
approximation (blue) quickly causes the fidelity of the reduced-Hilbert-space simulation to drop compared to simulation in
the full space, adding the second-order term from a Schrieffer-Wolff Hamiltonian transformation52 (orange) improves the
fidelity. c. Even with the second-order correction, the simulation fidelity decreases as a function of system size. It is possible
that numerically solving for higher order terms in the Schrieffer-Wolff transformation will improve this fidelity, but it likely
can never achieve unity given the finite blockade violation probability (Supp. Fig. 6d).

Finally, applying this transformation is still an approximation to the true dynamics, for which it is not clear if the
resulting fidelities will actually be competitive at these large system sizes and late evolution times. In Supp. Fig. 25 we
test the accuracy of the Schrieffer-Wolff transformation at second order for system sizes up to N = 20 (Ñ ∼ 14), where
we see the fidelity falls by the latest experimental time. Importantly, the fidelity decay increases with system size.
A simple linear extrapolation implies a simulation accuracy of ∼0.48 for N = 60. Further, employing this approach
will always have some fundamental inaccuracy as the blockade constraint is imperfect, and we expect the ideal target
state to always have some finite population in the blockade-violating sectors, a symptom which grows stronger with
increasing system size and evolution time (Supp. Fig. 6d). However, we do not discount the possibility that by adding
successively higher-order terms in the Schrieffer-Wolff transformation, the accuracy of this method could be at least
improved.
We strongly emphasize that storing even a single copy of the wavefunction at Ñ∼42 still requires ∼65 TB of

memory, and that Ñ∼42 exceeds the current state-of-the-art for Hamiltonian simulation51, N = 38. Still, we welcome
collaboration on studying the boundaries of nearly-exact classical simulation with the most advanced hardware.

I3. Standard Trotterization-based TEBD-MPS

A standard approach for simulating large one-dimensional (1D) quantum systems is to use a matrix product state
(MPS) representation53. In this representation, the quantum state is decomposed into a tensor network in the form
of a 1D chain through repeated Schmidt decompositions. The key insight of such schemes is that if particles are
weakly entangled at any bipartition of the system, then the on-site tensors will be low rank, and so can be efficiently
truncated to a smaller size while preserving most of the information. The size to which the tensor is truncated is
user-controllable, and is known as the bond dimension, χ. Thus, larger bond dimensions equate to truncating less
information when converting a state into its MPS representation. For a more general review of MPS, see Ref.24.
An important aspect of the tensor decomposition of the MPS is that unitary evolution can be efficiently applied to

just part of the tensor network. This enables the standard time-evolving block decimation (TEBD) algorithm54, in
which Hamiltonian evolution is discretized (or Trotterized) using the Suzuki–Trotter formula

e−i(
∑

i Ĥi)δ =
∏
i

e−iĤiδ +O(δ2). (98)

For a many-body Hamiltonian with (geometrically) local interactions Ĥi, each term is applied sequentially onto the
MPS. With suitable implementation, Trotterization results in a second-order decomposition of the time evolution
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operator.
Thus, the basic algorithmic loop of the TEBD approach is: 1) perform Schmidt decompositions to write the state

as a tensor network, 2) truncate the tensor ranks, 3) Trotterize the Hamiltonian, 4) and apply it to the relevant
tensors, after which we repeat step 1. The two fundamental sources of error in this approach come from steps 2 (the
truncation) and 3 (the Trotterization) (Supp. Fig. 26).
The error of the Trotterization decomposition depends on the product of the commutator of the terms in the

Hamiltonian and the time step dt (here dt is defined as a full cycle of application of local evolution from the leftmost
site to the rightmost site and then back to the leftmost site). For the Rydberg system, the commutator is on the order
of the nearest neighbor interaction Vnn. Therefore, even with the second-order Suzuki–Trotter decomposition, the
perturbative expansion converges only for Vnn ·dt ≲ 1. Due to the Rydberg blockade, the nearest neighbor interaction
for Rydberg Hamiltonian is strong, putting a significant constraint on the maximum dt possible for the simulation. In
practice, with a second-order decomposition of the time-evolution operator, we found that a maximum of dt ≈ 1/100
Rabi cycle is necessary to have a 0.5% Trotterization error.
Importantly, however, for too small of a timestep, the TEBD algorithm will perform many more truncations, each

time lowering the fidelity. This leads to a fundamental tension, where an optimal dt must be chosen which balances
these competing effects of truncation and Trotterization errors (Supp. Fig. 26d).
Moreover, a truncation of the long-range interaction must be chosen to efficiently use the TEBD algorithm. In

practice, we found that keeping an interaction length of 5 results in the desired error of less than 0.5% (Supp.
Fig. 26c). This results in a local evolution involving at most 6 atoms.
We emphasize that we do not believe this performance could be strongly improved through the use of a Schrieffer-

Wolff transformation as described above. This is because in performing the Schmidt decompositions, MPS-based
methods already find the optimal working basis, which is nearly entirely within the blockaded Hilbert space (Supp.
Fig. 6d). In fact, it is likely such a transformation will decrease the MPS performance, because of the added complexity
in local gate application due to the non-locally-factorizable structure of the blockaded subspace.

I4. The Lightcone-MPS algorithm

One of the challenges of the Trotterization TEBD algorithm is the small dt required to faithfully simulate the
quantum dynamics. However, this difficulty can be circumvented by efficiently utilizing the lightcone dynamics of
quantum systems, allowing for simulation with much larger dt, and thus higher fidelity as truncation errors are
minimized. In particular, in Ref.55 it was shown that a global time evolution operator could be decomposed into

Supp. Fig. 26 | Comparing Lightcone-MPS and TEBD algorithms. a. Illustration of the Lightcone-MPS
Hamiltonian decomposition over a single time step dt. The long range Rydberg interaction is truncated after a cutoff distance
of L. b. Illustration of the MPS update procedure. c. We choose the Lightcone-MPS block size to be L = 6, which we
estimate as introducing an error of < 0.5% at N = 60. d, e. For MPS algorithms there exists an optimal simulation timestep;
for too large a timestep, the Hamiltonian Trotterization introduces simulation errors. For too small a timestep, the MPS is
contracted and truncated too often, leading to loss of accuracy. For the TEBD algorithm, the maximum timestep is set by the
inverse blockade energy, but the Lightcone-MPS algorithm can be used accurately with much larger timesteps. This ultimately
means that at equal bond dimension, χ, the Lightcone-MPS algorithm can be optimized to higher fidelities than the TEBD.
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small blocks of local evolution by combining forward and backward time evolution. In this proposed non-perturbative
decomposition, the time step is only limited by the Lieb-Robinson velocity v and the block size L of the local time
evolution, not the blockade interaction strength56.
Here, we propose a modified version of the Hamiltonian decomposition in Ref.55, which is especially amenable to

efficient integration with MPS state representations, and which we call Lightcone-MPS. This modification allows for
a smaller block size L with the same cutoff of long-range interactions. This algorithm consists of alternating forward-
time and backward-time evolution, where the forward-time evolution has a block size L, and the backward evolution
has a block size of L− 1. Each block performs the time evolution for all Hamiltonian terms strictly inside the block.
Crucially, in this implementation, dt is no longer limited by blockade interactions at the edges of the local evolution
blocks (Supp. Fig. 26d).
Specifically, for the Rydberg Hamiltonian on N atoms

Ĥ/h = Ω

N∑
i=1

Ŝxi −∆

N∑
i=1

n̂i +
C6

a6

N∑
i=1

N∑
j=i+1

n̂in̂j
|i− j|6

, (99)

we consider the Hamiltonian defined locally from k to k + L− 1 sites as

Ĥk,k+L−1/h = Ω

k+L−1∑
i=k

Ŝxi −∆

k+L−1∑
i=k

n̂i +
C6

a6

k+L−1∑
i=k

k+L−1∑
j=i+1

n̂in̂j
|i− j|6

, (100)

with the forward evolution operator on L sites and backward evolution operator on L− 1 sites defined as

Û forward
k,k+L−1 = exp

(
−i Ĥk,k+L−1

h

dt

2

)
; (101)

Ûbackward
k,k+L−2 = exp

(
+i
Ĥk,k+L−2

h

dt

2

)
(102)

Then, the evolution within one timestep is decomposed (Supp. Fig. 26a) as

exp

(
−i Ĥ

h
dt

)
≈ Û forward

1,L

N−L+1∏
i=2

(
Ûbackward
i,i+L−2 Û

forward
i,i+L−1

) 2∏
i=N−L+1

(
Û forward
i,i+L−1Û

backward
i,i+L−2

)
Û forward
1,L (103)

Here, the order of applying the time evolution operator is reversed in every other layer (i.e. left to right for odd
layers and right to left for even layers), and each two layers are defined as one timestep. In practice, each forward
evolution can be combined with the backward evolution (each pair of operators in Eq. (103)) into a single operator,
reducing the simulation cost.
The simulation cost can be further reduced by always keeping a tensor with L − 1 atoms fused together, without

performing addition decompositions of the MPS. (Supp. Fig. 26b). More specifically, we can keep an MPS in the form

⟨z1, z2, . . . , zN |ψMPS⟩ =
∑

α1,α2,...,αN−1

Aα1
z1 A

α1α2
z2 · · ·Mαj−1αj+L−2

zj ,...,zj+L−2
· · ·BαN−1

zN , (104)

without decomposing M
αj−1αj+L−2
zj ,...,zj+L−2 into L− 1 tensors. Here, zi denotes the physical indices and αi denotes the bond

dimensions. In addition, we use A to denote the tensors in the left canonical form, B to denote tensors in the right
canonical form, and M to denote tensors in the center canonical form. Basically, all tensors to the left of M

αj−1αj+L−2
zj ,...,zj+L−2

should be in the left canonical form and all the tensors to the right of M
αj−1αj+L−2
zj ,...,zj+L−2 should be in the right canonical

form. When applying the operator of length L between site j and site j + L − 1, we can first combine M
αj−1αj+L−2
zj ,...,zj+L−2

with B
αj+L−2αj+L−1
zj+L−1 into a tensor of length L

Mαj−1αj+L−1
zj ,...,zj+L−1

=
∑

αj+L−2

Mαj−1αj+L−2
zj ,...,zj+L−2

Bαj+L−2αj+L−1
zj+L−1

. (105)

Then, we update the tensor by applying the operator of length L

M ′αj−1αj+L−1

zj ,...,zj+L−1
=

∑
z′j ,...,z

′
j+L−1

Uzj ,...,zj+L−1;z′j ,...,z
′
j+L−1

M
αj−1αj+L−1

z′j ,...,z
′
j+L−1

, (106)
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and decompose the updated tensor back into two tensors of length 1 and L− 1

M ′αj−1αj+L−1

zj ,...,zj+L−1

SV D−−−→ A′αj−1αj

zj M ′αjαj+L−1

zj+1,...,zj+L−1
. (107)

Here, the process of truncating the Schmidt coefficient and combining it intoM ′αjαj+L−1

zj+1,...,zj+L−1
is omitted for simplicity.

The same process can be carried on over the rest of the system, and reversed if the operators are applied in the reverse
order.
The Lightcone-MPS algorithm allows for a maximum dt∼L/v. Although computing the Lieb-Robinson velocity is

difficult, based on empirical results, we find in practice that dt ≈ 0.5 Rabi cycle is sufficient for a 0.5% decomposition
error with a block size of 6 (long-range interaction cutoff at 5). Again, the dt is defined as a full cycle of application
of local evolution from the left-most site to the right-most site and then back to the left-most site.
Crucially, there is still a tension on dt from the competing effects of truncation and Trotterization errors, but for the

Lightcone-MPS algorithm the Trotterization errors are minimized up to much larger dt. This means at equal bond
dimension, if selecting the optimal dt, the Lightcone-MPS can reach higher fidelities than TEBD (Supp. Fig. 26de).
Equivalently, to reach the same fidelity necessitates the TEBD to use a larger bond dimension, as is visible in Fig. 5
of the main text.
Additionally, even if a larger bond dimension is used for the TEBD (where truncation error is small), the optimal dt

in TEBD is empirically ∼50× smaller than that for the Lightcone-MPS, increasing the raw simulation time further.
In practice, to benchmark the experiment, we need to choose dt such that we can match the time step chosen in the
experiment (around 0.77 Rabi cycle). Therefore, we use half the experimental time step as the dt for the Lightcone-
MPS algorithm, and use 1/80 the experimental time step as the dt for the TEBD algorithm. This still results in a
1/40 reduction in number of simulation steps thanks to the Lightcone-MPS algorithm.

I5. Time-dependent variational principle

The Time-Dependent Variational Principle57 (TDVP) algorithm is another MPS time evolution algorithm. In this
algorithm, the Schrödinger equation is projected onto the variational manifold of MPS, where an effective (nonlinear)
partial differential equation (PDE) is obtained to update the MPS parameters. This method is better than TEBD
in certain situations such as simulating emergent hydrodynamics, due to its ability to preserve all symmetries and
conservation laws. In addition, TDVP can naturally handle long-range interactions.
However, the TEBD algorithm (and the Lightcone-MPS algorithm) is expected to be better suited in our setup. First,

the TEBD algorithm is optimal for minimizing the infidelity in each evolution time step. This is done by truncating
the Schmidt coefficients in a way that the infidelity is minimized. In the TDVP algorithm, on the other hand, the
infidelity is not necessarily minimized at the cost of preserving conserved quantities. Second, when combined with MPS
representation, the TDVP implementation is nontrivial. This is due to the existence of the gauge degree of freedom
in MPS representation. More specifically, the representation of MPS is not unique due to gauge transformation. This
makes it difficult to utilize MPS-based TDVP by leveraging existing PDE solvers. Ref.58 presents a solution to this
problem, which shows that TDVP can be implemented by using the canonical form of MPS, but it relies on evolving
the system locally in small time steps, akin to the Trotterization of the Hamiltonian. In addition, it turns out that
this solution is a minor modification of the original TEBD algorithm, where a backward time evolution is added. This
backward evolution is already naturally incorporated in our Lightcone-MPS algorithm.
Moreover, regardless of the implementation of the TDVP algorithm, the PDE needs to be solved numerically, with

the maximum time step limited by the largest term of the Hamiltonian or the largest term in the PDE. Therefore,
the TDVP algorithm has the same bottleneck as the TEBD algorithm —the time step must be small compared to
the blockade interaction strengths, limiting its utility. In our Lightcone-MPS algorithm, however, this limitation is
lifted by utilizing extra physical properties such as Lieb-Robinson bound and our knowledge about the geometry of
the system (Supp. Fig. 26). Given this, we do not explicitly test a TDVP implementation in this work.

I6. Noisy MPO-based simulation

Instead of simulating perfect quantum dynamics with limited fidelity, an alternative method of benchmarking with
the experiment is to (almost) exactly simulate noisy quantum dynamics ρ̂(t) with similar fidelity. We explore this
possibility using the recently developed matrix product operator (MPO) based simulation59. In MPO simulation, each
local tensor has an extended Hilbert space dimension of 4 instead of 2. The increased local dimension significantly
increases the cost of simulation using the efficient decomposition of Ref.55. Therefore, we fall back to simulating the
Trotterized Hamiltonian dynamics and ignore the long-range interactions. In addition, we choose dt to be half the
Rabi cycle, and ignore Trotterization error, in order to consider this method in the most favorable light.
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For simplicity, we consider local dephasing error as the only error source and find the effective dephasing rate γ
per qubit as a function of system size such that the fidelity of the simulation matches the fidelity of the experiment
(Supp. Fig. 27), extrapolated using the exponential decay fit. As shown in the figure, the effective dephasing rate
decreases as the system size increases, which means the dephasing rate at N = 12 overestimates the dephasing rates
at larger system sizes. Since the MPO entanglement decreases as the decoherence rate increases, this leads to an
underestimation of the MPO simulation complexity. To make the case more favorable for the MPO method, we thus
use the dephasing rate at N = 12 for the simulation at N = 60.
Assuming the early time exponential fit of the experimental fidelity, the Lightcone-MPS algorithm achieves similar

fidelity with the experiment at N = 60 using χ = 913 (Ext Data Fig. 31). This motivates us to test if the MPO method
with a similar or larger bond dimension can achieve the same fidelity. We simulate the noisy quantum dynamics at
N = 60 using χ = 1100 and the dephasing rate upper bound, yielding the un-normalized simulation mixed state ρ̂trun,
where we don’t explicitly normalize ρ̂trun at each time step. Here, tr(ρ̂trun) serves as a measure of the simulation
accuracy, where it equals 1 when the simulation is perfect and decreases as we truncate the density matrix. We
measure tr(ρ̂trun) as a function of time (Supp. Fig. 27, inset) and find that it drops to ∼10−7. This shows that the
MPO algorithm is far from an exact simulation of the noisy quantum dynamics. We note that the tr(ρ̂trun) measures
the accuracy of the algorithm compared to the noisy dynamics. It does not measure the fidelity of the simulation
compared to the ideal dynamics, which can be even smaller. Thus, this study, in combination with the Trotterization
errors not considered here, implies the MPO-based approach will achieve far lower fidelity than the experiment and
the lightcone-MPS method for reasonable simulation parameters.

Supp. Fig. 27 | Matrix product operator (MPO) simulation. Effective dephasing rate per qubit to obtain noisy
dynamics with a fidelity similar to the exponential decay fit of the experiment. Inset) Truncation accuracy of the MPO
method with χ = 1100 at N = 60. The effective dephasing rate is taken as the dephasing rate at N = 12, which should serve
as an upper bound of the effective dephasing rate at N = 60.

I7. Path integral formulation

A hybrid path integral algorithm was introduced in Ref.5 for quantum circuit simulation. In this algorithm, the
system is cut into two patches. When no gate is applied between the two patches, each patch evolves independently
under the Schördinger equation. When a gate is applied across the two patches, the gate is decomposed into sums
of gates that apply independently on the two patches, where one path was sampled out of this decomposition. More
formally, we write the gate as Û =

∑
i V̂i ⊗ Ŵi. For each path, we only choose a particular V̂i ⊗ Ŵi, so that the two

patches stay in a product state. The wave function of each path can be then summed over to obtain the desired result.
Suppose each gate across the cut can be minimally decomposed as r product gates and there are m gates across the
cut in total, rm paths are required to fully describe the system.
In this work, we adapt the hybrid path integral algorithm to the long-range Hamiltonian dynamics. We first decom-

pose55 the global time evolution operator into local gates with block size L = 10. We further reverse the order of the
gate application at every other layer so the gates can be fused between the two layers (Supp. Fig. 28). This reduces
the number of gates that need to be decomposed at the cut. This allows us to have a minimum of 19 cuts throughout
the simulation to match the experiment time steps. Similar to the original hybrid path integral algorithm, we cut
the system into two halves. For gates applied across the two halves of the system, we use Schmidt decomposition
to write the gate as Û =

∑
i σiV̂i ⊗ Ŵi, where σi can be then absorbed into either of the halves. However, a näıve

decomposition results in a large interaction between the blockade and non-blockade sectors, which results in poor
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convergence. Therefore, we project the gate into the blockade sector before performing the decomposition.

Supp. Fig. 28 | A hybrid path integral simulation. a. Illustration of the hybrid lightcone-path integral (Lightcone-PI)
method. b. Simulation fidelity of the Lightcone-PI with 4× 106 paths, showing decreasing fidelity as a function of N . We
compare against Fsvd for the Lightcone-MPS algorithm at χ = 1024 and N = 60, which outperforms the L-PI method. c, d.
At a fixed N , the infidelity in the Lightcone-PI method from using too few paths is visible when benchmarking directly
against experimental data, as was the case for the Lightcone-MPS algorithm (Fig. 2 of the main text).

We test this algorithm for up to 24 atoms where we truncate the rank of the gates across the cut to ri to mimic
actually simulating the path integral with

∏
i ri paths. We find that the resulting fidelity mostly depends on the

number of paths and only weakly depends on the system size, where the dependency becomes weaker as the system
size increases. This is because, for all system sizes, we have the same number of gates across the cut, which we expect
to be the only factor affecting the fidelity for large enough system sizes. Extrapolating to 60 atoms, we find that
we need at least 4 × 106 paths to obtain a fidelity of ∼0.01, where each path requires an exact simulation of two
30-atom systems. Even using our Lightcone-MPS method, simulating each 30-atom system takes 60 core-hours (with
χ = 1536, which is nearly exact). This adds up to a formidable amount of computational resources. In comparison,
a direct application of the Lightcone-MPS algorithm for 60 atoms achieves better fidelity with a bond dimension of
χ = 1024 (Supp. Fig. 28b).
Interestingly, we can still benchmark the experimental fidelity using the hybrid path integral approach, which we see

shows qualitatively the same behavior as the Lightcone-MPS algorithm in Fig. 2 of the main text. That is, when the
number of paths is too low, the classical simulation fidelity drops, and this drop is visible directly on the benchmarked
experimental fidelity (Supp. Fig. 28cd).
This raises the interesting potential prospect of using the experimental benchmarking protocol in reverse to determine

the fidelity of the classical algorithm, which we leave to future work.

I8. Neural network based Hamiltonian simulation

Neural networks have shown great potential in simulating quantum dynamics60,61. However, such protocols are still
in an early age of development and their application to the Rydberg Hamiltonian with ergodic, long-time dynamics
is still challenging. We considered two different neural network algorithms used in Refs62,63, but neither results in a
fidelity higher than the Lightcone-MPS algorithm, even for comparing both at system sizes as low as N = 12. While
it is possible that neural network based algorithms require additional fine-tuning and hyper-optimization, as it is not
the main focus of this work, we leave them for future study. We also note that neural network algorithms are under
active development, and we welcome readers to benchmark their algorithms on our data.
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J. Estimating the MPS fidelity

J1. Approximating the MPS fidelity with truncation errors

While MPS gives a controlled approximation of the exact wave function, an exact calculation of the MPS fidelity,
C – defined as the overlap between the MPS state and the ideal target state – is not possible over multiple time steps
for system sizes greater than N∼30. However, it is possible to estimate the MPS fidelity from the truncation fidelity

Fsvd =
∏
i

χ∑
α=1

s2i,α, (108)

where i runs over all steps involving Schmidt value truncations, and si,α are the Schmidt values at truncation step i.
Here, we assume the wave function is normalized where

∑∞
α=1 s

2
i,α = 1. While this estimation is only approximate, it

can be extremely accurate when successive truncations are independent25. For N ≤ 30, a bond dimension of χ = 3072
almost exactly captures the dynamics, therefore, it is possible to compute the MPS fidelity, C, for various bond
dimensions. In Supp. Fig. 29a, we plot Fsvd versus the actual MPS fidelity, C, to show the general agreement when
using the Lightcone-MPS algorithm. This is expected due to the large dt of the algorithm, which makes successive
truncations approximately independent.
In addition, we notice that the agreement becomes better when the system size increases, indicating that Fsvd can be

a good estimator of the MPS fidelity for large systems (Supp. Fig. 29b). If anything, it appears that in the parameter
regime of evolution times shorter than the entanglement saturation time, Fsvd slightly over-estimates C, making it a
conservative quantity to study (Supp. Fig. 29bc). Further, we emphasize that for N < 30, where we have access to
both C and Fsvd, the values of χ∗ are consistent (Supp. Fig. 30).

Supp. Fig. 29 | Estimating the classical fidelity. a. MPS truncation accuracy, Fsvd, and MPS fidelity, C, for various
bond dimensions and system sizes. The MPS fidelity is measured against another MPS calculation with χ = 3072, which is
almost exact for N ≤ 30. b. For a fixed log-normalized bond dimension, χ̃∼0.7, Fsvd first over-estimates C, before
under-estimating it at late time (left). However, rescaling the time by the entanglement saturation time (which is linearly
proportional to system size, see Fig. 3e of the main text) causes the data to collapse (right). This implies that before tent, Fsvd

will over-estimate C, so in the parameter regimes we study in this work, using Fsvd is the conservative choice when comparing
quantum and classical fidelities. c. The ratio of Fsvd/C around the entanglement saturation time, showing the over-estimation
increases with decreasing χ̃. Given the data collapse, we expect that Fsvd overestimates by a factor of 1.15 at the
entanglement saturation time for N = 60. Taking this effect into account implies the actual χ∗(N=60) ≈ 4000, higher than
the value of 3400 quoted in the main text. However, we choose to present the lower value as a more conservative estimate. We
note that this relationship between Fsvd and C is only observed to hold for the case of the Lightcone-MPS algorithm, because
the timestep is long enough that truncations are relatively independent. The agreement is not observed with a TEBD MPS
implementation (which requires much finer timesteps, see text).
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Supp. Fig. 30 | Estimating χ∗ from Fd and true classical fidelity. For system sizes larger than N > 30, we are not
easily able to calculate the exact classical MPS fidelity (as it is impractical to simulate the exact reference state), so in the
main text we used Fsvd to compare against the experimental quantum fidelity. However, for N ≤ 30, we can directly compare
against the classical MPS fidelity, C, which we find gives consistent values of χ∗ in the applicable range. Finally, for these
small N , we can directly calculate Fd between an approximate MPS simulation and an exact simulation. We find the
corresponding χ∗ is also consistent with the values based solely on fidelity.

J2. Extrapolating the experimental χ∗ value

We only directly perform Lightcone-MPS simulations up to χ = 3072. At this highest χ, the MPS fidelity for N = 60
at the latest experimental time is 0.088, as quantified by Fsvd. Given that this is lower than the experimental fidelity
of 0.095(11), we need to extrapolate in order to find the predicted value of χ∗. The fidelities are very close, so we
make a simple linear extrapolation approximation, from which we find χ∗ = 3392 ≈ 3400 as quoted in the main text
(Supp. Fig. 31a).

J3. Fitting and extrapolating the MPS fidelity

In the previous subsection, we used a linear extrapolation of MPS fidelity as a function of bond dimension in
order to predict χ∗ beyond the regime we directly simulated. However, in Fig. 5b of the main text, we compare the
experimental and MPS fidelity over a much larger hypothetical fidelity range, where the linear approximation breaks
down (see for instance Supp. Fig. 10ab).
In order to make the comparisons in Fig. 5b, we perform fits of the MPS fidelity, approximated by Fsvd. For RUCs,

Fsvd is essentially exponentially decaying past tex, as the truncations are independent25. In our case this behavior is
not perfect, and so we fit the MPS fidelity as a stretched exponential decay after tex.
We are able to fit the exponential parameters, and in particular observe an apparent universality in the decay rate

as a function of the log-normalized bond dimension (Supp. Fig. 31b), an interesting phenomena which we leave to
future study. We ultimately use these fits to predict the MPS fidelity at arbitrary bond dimension to compare against
experiment; we find the fits generally agree to within a few percent with the true fidelities.
To generate Fig. 5b, we assume an effective per-atom error rate, F , and find the minimum χ∗ such that the fitted

MPS fidelity is always greater than F = FNt. The experimental F is determined as the value required for exponential
decay of the experiment to match the fidelity value of 0.095(11) for the experiment at t = 14.3 cycles and N = 60.
We then convert χ∗ into runtime using the known conversion of χ = 3072 → 136 core-days, measured empirically on
the Caltech cluster, and assuming the runtime scales as O(χ3) (Supp. Fig. 24).
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Supp. Fig. 31 | Extrapolating χ∗. a. MPS fidelity (as quantified by the MPS truncation, Fsvd) for bond dimensions up to
χ = 3072, the largest directly simulated. None of the MPS fidelities (markers) exceed the experimental value (blue dashed
lines), but given the functional smoothness in this regime, we use a linear extrapolation of the last few data points to predict
the χ∗ for the experimental fidelity, yielding χ∗ = 3392 ≈ 3400. b. For estimating the χ required to reach a broader range of
fidelities (as for instance is used in Fig. 5b of the main text), we fit the Lightcone-MPS fidelity as a stretched exponential
decay past the exact simulation time (inset). We observe a universal collapse of the decay rate as a function of the
log-normalized bond dimension, for all system sizes and bond dimension up to N = 60 and χ = 3072.
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K. Error model simulations

K1. Random unitary circuits

The dynamics of the one-dimensional random unitary circuit (RUC) shown in Fig. 4a are simulated using randomly
sampled two-qubit SU(4) unitary gates from the Haar measure. Specifically, the time evolution of an N -qubit system
starting from the initial state |0⟩⊗N can be described as follows:

|ψ(t)⟩ = ÛtÛt−1 · · · Û2Û1|0⟩⊗N , (109)

where Ûodd = {Û1, Û3, · · · } and Ûeven = {Û2, Û4, · · · } are the odd- and even-time unitaries composed of local two-qubit
unitaries as

Ûodd =

N/2∏
i=1

Û2i−1,2i, Ûeven =

N/2∏
i=1

Û2i,2i+1 (110)

with open boundary condition, and t is the circuit depth and Ûµ,ν is the randomly-sampled SU(4) gate acting on
two qubits at site µ and ν. Note that at each circuit depth t, we randomly sample two-qubit random unitaries to
generate a many-body unitary Û , which leads to chaotic dynamics. To emulate noisy quantum dynamics, we utilize a
stochastic evolution method64 incorporating local errors represented by the Pauli operators Ŝx,y,z. These local errors
are stochastically applied to individual qubits at a single-qubit error rate of perr = 0.007 per circuit layer. By repeating
the simulations of the noisy dynamics more than ∼2000 times with a fixed perr for 10 different circuit realizations,
we obtain good approximations of the density matrices, ρ̂RUC, from which we extract the logarithmic negativity as a
measure of entanglement in the mixed state.

K2. The Rydberg Hamiltonian

The chaotic dynamics of a one-dimensional Rydberg-atom array presented in this study can be described by time
evolution governed by the Rydberg Hamiltonian given in Eq. (1) of the Supp. Info. To simulate the open quantum
dynamics of the Rydberg atom array, we employ an ab initio error model that incorporates realistic error sources
observed in our experiment. For detailed information about the error model, please refer to Refs.2,13. Similar to the
case of the RUC, we simulate the noisy quantum evolution using the stochastic wavefunction method64 to obtain the
density matrix. This allows us to calculate the logarithmic negativity (Fig. 4a of the main text). We generally find
excellent agreement between our error model and the experimental fidelities across a range of system sizes (Supp.
Fig. 5), and note that this is the same error model employed in our recent study of record high-fidelity two-qubit Bell
state generation13.
Of present interest is understanding the main limitations to our experimental fidelity, to best improve the system

in the future. To this end, we perform error budget simulations, grouping error sources generally into four main
categories: noise on the detuning, noise on the Rabi frequency, spontaneous decay, and atomic temperature effects
(Supp. Fig. 32). We generally find that Rabi frequency noise (in particular, as arising from shot-to-shot laser intensity
fluctuations) is a dominant noise source across all times. We extrapolate from error model simulations at small system
sizes to larger systems, and find that likely spontaneous decay can become of similar strength for large systems (Supp.
Fig. 32). We note that in these simulations, collective Rydberg decay effects are not accounted for65, but we do not
yet observe evidence of such effects in the t < 15 cycles time window in which we experimentally operate.
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Supp. Fig. 32 | Impact of different error sources on fidelity. a. Simulated fidelity decay for a variety of choices of
noise sources affecting our Rydberg quantum simulator. b. Fidelities for error sources in a at short (left) and long (right)
times. Solid lines are exponential fits as a function of system size. c. We use the fits in b to estimate the relative contribution
of different error sources for increasing system size. Here relative error contribution is defined as log(Fi)/ log(F ), where the
subscript, i, indexes the error source in question, and F = ΠiFi, the product of all individual errors. Note that collective
Rydberg decay processes are not accounted for here, and may further lower the fidelity measured for spontaneous decay noise
at late times.
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