Supplementary Information File

Shared inflammatory glial cell signature after stab wound injury, revealed by spatial, temporal, and cell-type-specific profiling of the murine cerebral cortex

Christina Koupourtidou^{1,2,14}, Veronika Schwarz^{1,2,14}, Hananeh Aliee³, Simon Frerich^{2,4}, Judith Fischer-Sternjak^{5,6}, Riccardo Bocchi^{5,6,7}, Tatiana Simon-Ebert^{5,6}, Xianshu Bai^{8,9}, Swetlana Sirko^{5,6}, Frank Kirchhoff^{8,9,10}, Martin Dichgans^{4,11},¹², Magdalena Götz^{5,6,11}, Fabian J. Theis^{3,13}, Jovica Ninkovic^{1,6,11*}

¹Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany

²Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany

³Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany

⁴Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany

⁵Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany

⁶Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany

⁷Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland

⁸Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany

⁹Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany

¹⁰Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania

¹¹Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany ¹²German Centre for Neurodegenerative Diseases, Munich, Germany

¹³Department of Mathematics, Technical University of Munich, Munich, Germany

¹⁴These authors contributed equally: Christina Koupourtidou, Veronika Schwarz *Correspondence to: jovica.ninkovic@helmholtz-munich.de

Supplementary Figure 1. Spatial transcriptome of intact and stab wound-injured mice.

a-b Spatial transcriptomics in intact and stab wound-injured mice (3 dpi). Brains were manually resected and positioned on 10x Visium capture areas. In each capture area, two brain sections of either intact (a) or stab wound-injured cortices (b) were collected. Clustering of gene expression data on spatial coordinates is based on highly variable genes and subsequent dimensionality reduction in two replicates. The dashed black lines indicate the injury. c Dot plot depicting the 5 most enriched genes in each of the 16 identified clusters (Supplementary Table 1). d Expression of neuronal laver scores 2/3, 4, 5 and 6 in intact and injured brain sections on spatial coordinates. The dashed pink lines highlight cluster VI borders. Neuronal layer gene set scores are listed in Supplementary Table 2. e Heatmap showing the expression of the 25 most ascending genes along the spatial trajectory (see Fig. 2) depicted as mean expression of injury 1 and 2. **f** Heatmap displaying the 20 most enriched ascending gene sets along the spatial trajectory (see Fig. 2) depicted as mean expression of injury 1 and 2. All data shown in this figure are based on n=1 animal per condition over 1 experiment, with two sections being captured. Injury 1 and 2 represent the injuries of each hemisphere in the same animal. Scale bars: a,b,d: 1 mm. Abbreviations: BP = biological processes, MF = molecular functions, CC = cellular components, GO = gene ontology, REACT = reactome, WP = WikiPathways, dpi = days post injury.

Supplementary Figure 2. scRNA-seq clustering of intact and stab woundinjured mice (3 dpi) and cell-type identification.

a UMAP plots depicting clustering of cells originating from intact (2676 cells) and injured (3646 cells) conditions among 30 defined clusters. Clusters are color-coded and annotated according to their transcriptional identities. Note that clusters 13_Macrophages/Monocytes, 17_DCs, and 23_Astrocytes are almost absent in the intact condition. **b** Dot plot depicting the expression of the 3 most enriched genes in each of the 30 identified clusters (see Supplementary Data 3). **c-e** UMAPs highlighting example marker genes to identify microglia/macrophages (**c**), astrocytes (**d**) OPCs (**e**) and cycling cells (**f**). G2/M gene set score is listed in Supplementary Table 4. Data shown in this figure are derived from n=3 intact animals over 1 experiment (1 scRNAseq libray) and n=3 3dpi animals over 1 experiment (2 scRNAseq libraries). Abbreviations: UMAP = uniform manifold approximation and projection, dpi = days post injury, OPCs = oligodendrocyte progenitor cells, COPs = committed oligodendrocyte progenitors, MOL = mature oligodendrocytes, VECV = vascular endothelial cells (venous), VSMCs = vascular smooth muscle cells, VLMCs = vascular and leptomeningeal cells, BAM = border-associated macrophages, NKT cells = natural killer T cells, DCs = dendritic cells.

0_Microglia 11_Microglia 16_Microglia 12_Astrocytes 23_Astrocytes 1.0 1.0 1.0 1.0 1.0 - 0.8 0.8 0.8 0.8 - 0.8 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 L_{0.0} 0.0 0.0 0.0 0.0 14_VECV 13_Macrophages/Monocytes 18_Monocytes 15_OPCs 17_DCs 1.0 1.0 1.0 1.0 1.0 -0.8 0.8 0.8 -0.8 -0.8 -0.6 -0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 29_VLMCs 25_Pericytes 1.0 1.0 0.8 0.8 0.8 probability 0.4 0.4 0.6 0.4 0.2 0.2 0.0 0.0 1_Neurons 2_Neurons 24_Neurons 19_Neurons 3_Astrocytes 1.0 1.0 1.0 1.0 1.0 -0.8 0.8 0.8 0.8 0.8

➡Spatial*

Supplementary Figure 3. Probabilistic mapping of in scRNA-seq identified cellular clusters on Visium dataset.

Probabilistic mapping of in Fig. 3b identified scRNA-seq (3 dpi only) clusters on the spatial transcriptome dataset (3 dpi). Stab wound injury elicits different reaction modes in the injury vicinity. Plots are grouped into injury enriched clusters (upper panel) and all other clusters (lower panel). scRNAseq data shown in this figure are derived from n=3 intact animals over 1 experiment (1 scRNAseq libray) and n=3 3dpi animals over 1 experiment (2 scRNAseq libraries). stRNAseq data are based on n=1 animal over 1 experiment with two injured hemispheres being captured. Scale bars: 1 mm. Abbreviations: dpi = days post injury, OPCs = oligodendrocyte progenitor cells, NKT cells = natural killer T cells, DCs = dendritic cells, MOL = mature oligodendrocytes, VSMCs = vascular smooth muscle cells, COPs = committed oligodendrocyte progenitors, BAM = border-associated macrophages, VLMCs = vascular and leptomeningeal cells, VECV = vascular endothelial cells (venous).

→ Spatial1

8

Supplementary Figure 4. Single-cell deconvolution-based mapping of in scRNA-seq identified cellular clusters on Visium dataset.

a,**b** Deconvolution based mapping of in Fig. 3 identified scRNA-seq clusters on the spatial transcriptome dataset (3 dpi). Plots are grouped into injury enriched clusters (upper panel) and all other clusters (lower panel). scRNAseq data shown in this figure are derived from n=3 intact animals over 1 experiment (1 scRNAseq libray) and n=3 3dpi animals over 1 experiment (2 scRNAseq libraries). stRNAseq data are based on n=1 animal over 1 experiment with two injured hemispheres being captured. Scale bars: 1 mm. Abbreviations: dpi = days post injury, OPCs = oligodendrocyte progenitor cells, NKT cells = natural killer T cells, DCs = dendritic cells, MOL = mature oligodendrocytes, VSMCs = vascular smooth muscle cells, COPs = committed oligodendrocyte progenitors, BAM = border-associated macrophages, VLMCs = vascular and leptomeningeal cells, VECV = vascular endothelial cells (venous).

с 🧱							_											,								7				d 🤓
Tmsb10- Ms4a4b	8	•	•	0	0	•	0	•	0	。 ·	, • (•	0	•	0	0	0	0	• •) 0	0	0	0	00		16_NKT/T cells	Inta
Rps15a Cd79a Cd79 H2-Aa Lgals3 Cd52 Fxyd5 Cc77 Lsp1 Tmem123		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • •	••••••	•	••••••	• • • • • • • •	•••••	•		•	•••••••••••••••••••••••••••••••••••••••	• • • • •	•		•	•	•	•) 0	•••••••••••••••••••••••••••••••••••••••		• • • • • • • • • • • • • • • • •	•		26_B cells 13_Macrophages/ Monocytes 27_Macrophages/ Monocytes	
Bst2 Plac8 Rnase6 Hba-a2 Hba-a1 Hbb-bs Cx3cr1 Hexb P2ry12 Csf1r		• 0 • • • 0 • • • •	000000000000000000000000000000000000000	0 • • • 0 0 • • • •	••••••	• • • • • • • • • • • • •	0 · · • • • 00000	0 · · • • • • • • • • • • • • • • • • •	0	0	· (• • • • • • • •	• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •	• • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • • •	· · · · · · · · · · · · · · · · · · ·		• • • • • •	• • • • • • • • •	0 • • • • • • • • •	0.000.0	· · · · · · · · · · · · · · · · · · ·		29_Macrophages/ Monocytes]23_NA]1_Microglia	MAP2
C1qb C1qb C1qc Ly86 Cd52 Fcer1g Pf4 Dab2 Ms4a7 Macf1		•••••••••••••••••••••••••••••••••••••••	00000000000	• • • • • • •	• • • • • • •	000000000000000000000000000000000000000			0.0000	• • • • • • • • • • • • • • • •			•	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	•	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	•				• • • • • • • •	· · · · · · · · · · · · · · · · · · ·	00.00.00.0			5_Microglia]11_Microglia]18_BAM	UMAP1
Gm26917 Son Gfap Mt3 Dbi Htra1 Gpr3711 F3 Clu Scg3	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • •	00.00000000	• • • • • • • • •	• • • • • • • • •	• • • • • • • • • •					• • • • • • • • • • •	° () ° () () () () () () () () () () () () ()	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	00.0000	00.000.000				00.0000	• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		12_Astrocytes 7_Astrocytes 0_Astrocytes 4_Astrocytes	3d
Aldoc Plp1 Ermn Mal Olig1 C1ql1 Cacng4 Plp1 Sirt2 Bcas1	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	00	00	00	00	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			•		000000	••••••••••	00	00	00	00	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	00]	17. N N. Y
Stmn1 Tubb5 Tuna1a Sic24a2 Adcy1 Sic17a7 Sic17a7 Sic6 Gag3 Sicb Gad1	000	000 • • 00 • • .	000 • • • 0 • •	000	000 • • • 0 • • •	00000000000	000 • • • 0 • • .	000	000 • • • 0 • • .	000			0 0 0 • • • • • • • • • • • • • • • • •		000	000000	• • • • • • • • • • • • • • • • • • • •	00000000000	000000000	00000000000				0000000000	000 • • • 0 • • .	000 • • • 0 • • .	· · · · · · · · · · · · · · · · · · ·]28_NA]6_Neurons]15_Neurons	UMAP1
SIC32a1 Nrxn3 Snhg11 Meg3 R3hdm1 Snhg11 Meg3 Atp1a3 Fam19a1 Nos1ap		· • • • • • • • • • •		• • • • • • • •	••••••••••	• • • • • • • • •		• • • • • • • •		• • • • • •			• • • • • • •				• • • • • • • • • • • • • • • • • • • •	. 000000000						- 000000000		•••••			24_Neurons 21_Neurons 17_Neurons 25 Neurons	5d
Hcn1 Snhg11 Meg3 R3hdm1 Grin2b Meg3 Gria3 Cldn5 Ly6c Ptr	0 0 0	• • • • • • • • •							• • • • • • • • •	· · · · · · · · · ·							· • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••		000000				• • • • • • • • • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·] –]2_Neurons]9_Neurons]3_VECV	
Colla1 Lgals1 Serpinh1 Rgs5 Cald1 Acta2 Tagin Tpm2		• • • • • •	••••••	•	•		• • • • • • • •	•	· · · · · · · ·	•	• ()		• • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	- • • • • • •	•	· · · · · · · ·	• • • • •	• •	• •	•	•	• • • • • • • •	0000.0000			22_VLMCs]10_Pericytes]19_VSMCs	
	16_NKT/T cells	26_B cells	ages/Monocytes	ages/Monocytes	ages/Monocytes	23_NA	1_Microglia	5_Microglia	11_Microglia	18_BAM -	7 Astrocytes	0 Astrocytes	4 Astrocytes	- 8_MOL	14_OPCs	20_COPs	28_NA	6_Neurons	15_Neurons	24_Neurons	21_Neurons	25 Neurons	2 Neurons	9_Neurons	3_VECV	22_VLMCs	10_Pericytes			
			13_Macropha	27_Macropha	29_Macropha																Me	an e in D	grou 5	ess .p	ion	Fr i 20	actio in gro 9 40 (on c oup 60	of cells ○ (%) ● ● 80100	

Supplementary Figure 5. Integration of scRNA-seq datasets of intact and stab wound-injured mice (3 and 5 dpi), cluster distribution and cell type identification.

a,b UMAP plots depicting clustering (**a**) and cell distribution of intact (16964 cells), 3 dpi (3646 cells), and 5 dpi (14522 cells) cells among 30 defined clusters (**b**). Clusters were color-coded and annotated according to their transcriptional identities. **c** Dot plot depicting expression of the 3 most enriched genes in each of the 30 identified clusters (see Supplementary Data 4). **d** UMAP plots highlighting proliferating cells entering S-phase in intact and brain injured conditions (see Supplementary Table 4). Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNAseq libraries), n=3 3dpi animals over 1 experiment (2 scRNAseq libraries), and n=9 5dpi animals over 3 independent experiments (3 scRNAseq libraries). Abbreviations: dpi = days post injury, UMAP = uniform manifold approximation and projection, dpi = days post injury, VECV = vascular endothelial cells (venous), MOL = mature oligodendrocytes, OPCs = oligodendrocyte progenitor cells, NKT cells = natural killer T cells, BAM = border-associated macrophages, VSMCs = vascular smooth muscle cells, COPs = committed oligodendrocyte progenitors, VLMCs = vascular and leptomeningeal cells, NA = not available.

Supplementary Figure 6. Stab wound injury elicits unique gene expression in distinct glial subpopulations.

a UMAP depicting subclustered astrocytes of integrated and batch-corrected intact, 3 dpi, and 5 dpi datasets. **b** Dot plot depicting expression of the 5 most enriched genes in each of the 7 identified clusters. c UMAP displaying cell distribution of intact (green), 3 dpi (red) and 5 dpi (orange) cells among all 7 astrocytic clusters. d UMAP displaying localization of injury-enriched cluster 12 Astrocytes (turquoise, Supplementary Fig. 4b) on subclustered astrocytes. e UMAPs highlighting expression of example marker genes Gfap, Vim, Lcn2 and Aldh111 to identify reactive astrocyte clusters. f UMAP depicting subclustered microglia of integrated and batch- corrected intact, 3 dpi, and 5 dpi datasets. **g** Dot plot depicting expression of the 5 most enriched genes in each of the 8 identified clusters. **h** UMAP displaying cell distribution of intact (green), 3 dpi (red), and 5 dpi (orange) cells among all 8 microglial clusters. I UMAP displaying localization of injury-enriched cluster 11_Microglia (peach, Supplementary Fig. 4b) on subclustered microglia. j UMAPs highlighting expression of example marker genes Aif1, Tmem119 and P2ry12 to identify reactive microglial clusters. k UMAP depicting subclustered oligodendrocytes of integrated and batch-corrected intact, 3 dpi, and 5 dpi datasets. I Dot plot depicting expression of the 5 most enriched genes in each of the 9 identified clusters. m UMAP displaying cell distribution of intact (green), 3 dpi (red), and 5 dpi (orange) cells among all 9 clusters. n UMAP displaying localization of injury-enriched cluster 15 OPCs (pink, Supplementary Fig. 4b) on subclustered oligodendrocytes. o Dot plot depicting expression of the 30 most enriched genes in cluster OPCs2. Note comparable gene expression of clusters OPCs1 and OPCs2 prevents the identification of unique reactive OPC markers. Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNAseq libraries), n=3 3dpi animals over 1 experiment (2 scRNAseq libraries), and n=9 5dpi animals over 3 independent experiments (3 scRNAseq libraries). Abbreviations: UMAP = uniform manifold approximation and projection, AG = astroglia, dpi = days post injury, MG = microglia, OPCs = oligodendrocyte progenitor cells, COPs = committed oligodendrocyte myelin-forming oligodendrocytes, progenitors, MFOL = MOL = mature oligodendrocytes.

a 🥮

Supplementary Figure 7. Reactive glial subpopulations share injury-induced transcriptomic signature.

a,**b** UpSet plot illustrating downregulated (**a**) and upregulated (**b**) DEGs (pval < 0.05, log₂ fold change > 1.6 or log_2 fold change < -1.6, method: t-test overestimated_variance) across different glial subclusters of integrated and batch-corrected intact, 3 dpi, and 5 dpi datasets (Fig. 4c-e). Each horizontal bar represents number of DEGs within a specific cluster, and vertical bars indicate the number of unique or shared genes between clusters. Connected dots highlight shared DEGs across clusters, while single dots represent uniquely regulated DEGs. Wherever applicable, DEGs are determined by comparing each glial subcluster to all other subclusters within the respective cell type (further details in Methods). The red bar in (b) highlights commonly shared genes between reactive astrocytic, microglial, and oligodendroglial subclusters. Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNAseq libraries), n=3 3dpi animals over 1 experiment (2 scRNAseq libraries), and n=9 5dpi animals over 3 independent experiments (3 scRNAseq libraries). Abbreviations: DEGs = differentially expressed genes, AG = astroglia, MG = microglia, OPCs = oligodendrocyte progenitor cells, COPs = committed oligodendrocyte progenitors, MFOL = myelin-forming oligodendrocytes, MOL = mature oligodendrocytes.

Supplementary Figure 8. Reactive glial subpopulations display shared gene expression following injury.

a Experimental paradigm for assessing shared gene expression in astrocytes, microglia, and OPCs (NG2-EYFP). The dashed gray boxes on the mouse brain scheme indicate the example imaging areas. The red line indicates the injury core. **b** Dot plot depicting the proportion of OPCs (NG2-EYFP, yellow), astrocytes (GFAP, pink) and microglia (IBA1, purple) expressing the selected shared innate immunity- associated genes *lfi27l2a*, *Cxcl10*, and *Oasl2*. Data are shown as median \pm 95% confidence interval. Each data point represents one animal (n = 3). Source data are provided as Source Data file. **c**-**t** Representative images of RNAscope for *lfi27l2a* (**c**-**g**), *Cxcl10* (**i**-**m**), and *Oasl2* (**o**-**s**) (magenta) combined with GFP (NG2 glia) (black) (**c**,**i**,**o**), GFAP (black) (**e**,**k**,**q**), IBA1 (black) (**g**,**m**,**s**) immunostaining to identify cell types. Framed micrographs are magnifications of the red boxed areas in corresponding overview images. The orange arrowheads in micrograph depict double positive cells. All images are single z-plane of confocal z-stacks. Scale bars: **c**-**t**: 10 µm.

Supplementary Figure 9. Common inflammatory gene signature in murine brain cells following MCAO and LPS-induced reactive astrocytes

a-d Analysis of MCAO scRNA-seq dataset⁵¹. a UMAP plot illustrating single cells distributed among 11 distinct clusters. b UMAP plot depicting the distribution of cells isolated from CTRL and MCAO cerebral cortices. c UMAP plot depicting localization of the gene set scores related to the shared inflammatory signature (see Fig. 5c) among all defined cell clusters depicted in Supplementary Fig. 9a. d UMAP plots highlighting expression of example marker genes P2ry12, Aif1, Cd68 to identify reactive microglia clusters and Slc1a3, Gfap and Lcn2 to identify reactive astrocyte clusters. e Heatmap displaying cluster similarity of SWI dataset (y-axis), and MCAO dataset (x-axis). Orange arrows highlight clusters of interest. f-g UMAPs illustrating selective marker gene expression of shared inflammatory signature (see Fig. 5c) in subclustered astrocytes based on Hasel et al.³⁸. Plots depict presence (\mathbf{f}) and absence (\mathbf{g}) of several shared inflammatory genes in reactive astrocyte cluster 8. Abbreviations: UMAP = uniform manifold approximation and projection, MCAO = middle cerebral artery occlusion, CTRL = MCAO sham group, VECV = vascular endothelial cells (venous), CHOR = choroid plexus epithelial cells, MOL = mature oligodendrocytes, OPCs = oligodendrocyte progenitor cells, NKT cells = natural killer T cells, BAM = borderassociated macrophages, VSMCs = vascular smooth muscle cells, COPs = committed oligodendrocyte progenitors, VLMCs = vascular and leptomeningeal cells, NA = not available, CNT = control, LPS = lipopolysaccharide.

Supplementary Figure 10. Expression of genes associated with Tlr1/2 and Cxcr3 signaling pathways and DAMP signature upon stab wound injury.

a Dot plot depicting gene expression of components associated with the Tlr1/2 and Cxcr3 signaling pathways. Genes are adapted and complemented based on Sanchez-Gonzalez et al.⁵³. **b** UMAP plot illustrating the expression of the gene set scores associated with DAMP signature. **c** Dot plot depicting gene expression of components associated with DAMP signature⁵² and used to calculate the score in Supplementary Fig. 10b. **d**, **f** Expression of the gene set scores of DAMP (**d**) and shared inflammatory (**f**) signature in spatial context. **e** Dot plot depicting gene expression of components associated with DAMP signature within cortical clusters. Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNAseq libraries), n=3 3dpi animals over 1 experiment (2 scRNAseq libraries), and n=9 5dpi animals over 3 independent experiments (3 scRNAseq libraries). stRNAseq data are based on n=1 animal over 1 experiment with two injured hemispheres being captured. Abbreviations: UMAP = uniform manifold approximation and projection, CTRL = stab wound-injured control animals, DAMPs = Damage-associated molecular patterns.

Supplementary Figure 11. scRNA-seq data integration of intact and stab wound-injured cortices.

a UMAP plots depicting cell distribution of integrated and batch-corrected intact (green, 16964 cells), 3 dpi CTRL (red, 3646 cells), 3 dpi INH (pink, 4615 cells), 5 dpi CTRL (orange, 14522 cells), and 5 dpi INH (peach, 15658 cells) datasets. b Heatmap displaying cluster similarity between dataset containing integrated control conditions (INT, injured CTRL, y-axis), and dataset containing integrated control and inhibitor treatment conditions (INT, injured CTRL + INH, x-axis). c UMAP displaying cell distribution of intact (green), 3 dpi CTRL (red), 3 dpi INH (pink), 5 dpi CTRL (orange), and 5 dpi INH (peach) cells among the 8 identified astrocytic clusters as depicted in Fig. 6c. Clusters AG5, AG6, AG7 and AG8 are mainly formed by cells originating from injured CTRL and INH animals. d UMAP displaying cell distribution of intact (green), 3 dpi CTRL (red), 3 dpi INH (pink), 5 dpi CTRL (orange), and 5 dpi INH (peach) cells among the 8 identified microglial clusters as depicted in Fig. 6d. Clusters MG4 and MG6 are mainly formed by cells originating from injured CTRL and INH animals. e UMAP displaying cell distribution of intact (green), 3 dpi CTRL (red), 3 dpi INH (pink), 5 dpi CTRL (orange), and 5 dpi INH (peach) cells among the 11 identified oligodendroglial clusters as depicted in Fig. 6e. Cluster OPCs2 is mainly formed by cells originating from injured CTRL and INH animals. Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNAseq libraries), n=3 3dpi CTRL animals over 1 experiment (2 scRNAseq libraries), n=3 3dpi INH animals over 1 experiment (2 scRNAseq libraries), n=9 5dpi CTRL animals over 3 independent experiments (3 scRNAseq libraries) and n=6 5dpi INH animals over 2 independent experiments (3 scRNAseq libraries). Abbreviations: UMAP = uniform manifold approximation and

projection, dpi=days post injury, CTRL = stab wound-injured control mice, INH = stab wound-injured inhibitor-treated mice, VECV = vascular endothelial cells (venous), MOL = mature oligodendrocytes, OPCs = oligodendrocyte progenitor cells, NKT cells = natural killer T cells, BAM = border-associated macrophages, VSMCs = vascular smooth muscle cells, COPs = committed oligodendrocyte progenitors, VLMCs = vascular and leptomeningeal cells, NA = not available.

Supplementary Figure 12. The Cxcr3 and Tlr1/2 pathway inhibition after stab wound injury induces subcluster specific changes.

a-d UpSet plots depicting unique and overlapping downregulated (**a**,**c**) and upregulated (\mathbf{b},\mathbf{d}) DEGs (pval < 0.05, log₂ fold change > 0.7 or log₂ fold change < -0.7, method: Wald test) between different glial subclusters in response to the Cxcr3 and Tlr1/2 inhibition at 3 dpi (**a**,**b**) and 5 dpi (**c**,**d**). Each horizontal bar represents the number of DEGs within a specific cluster, and vertical bars indicate the number of unique or shared genes between clusters. Connected dots highlight shared DEGs across clusters, while single dots represent uniquely regulated DEGs. e,f Shankey diagram of GO terms linked to glial subclusters illustrating common and unique upregulated biological processes in response to Cxcr3 and Tlr1/2 pathway inhibition at 3 dpi (e) and 5 dpi (f) (Supplementary Data 7). The top 3 GO terms (based on adjusted p-value) for each glial subcluster are illustrated. The line width indicates the adjusted p-value. Significance was determined by performing GO analysis on gene set. Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNAseq libraries) , n=3 3dpi CTRL animals over 1 experiment (2 scRNAseq libraries), n=3 3dpi INH animals over 1 experiment (2 scRNAseq libraries), n=9 5dpi CTRL animals over 3 independent experiments (3 scRNAseq libraries) and n=6 5dpi INH animals over 2 independent experiments (3 scRNAseq libraries). Abbreviations: DEGs = differentially expressed genes, dpi = days post injury, AG = astroglia, MG = microglia, OPCs = oligodendrocyte progenitor cells.

Supplementary Figure 13. OPC reactivity after injury is not altered by the Cxcr3 and Tlr1/2 pathway inhibition.

a, **b** UMAPs illustrating subclusters of oligodendrocytes (**a**) and cell distributions among these subclusters (b) at all time points (intact, 3 dpi, and 5 dpi) and conditions (CTRL and INH). Data in (b) are downsampled to an equal number of cells between time points and conditions. Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNĂseq libraries), n=3 3dpi CTRL animals over 1 experiment (2 scRNAseq libraries), n=3 3dpi INH animals over 1 experiment (2 scRNAseq libraries), n=9 5dpi CTRL animals over 3 independent experiments (3 scRNAseq libraries) and n=6 5dpi INH animals over 2 independent experiments (3 scRNAseq libraries). c Experimental paradigm for assessing number of oligodendrocytes and OPC proliferation in injury vicinity. The dashed gray box on mouse brain scheme indicates the analyzed area. The red line highlights the injury core. **d-g** Representative overview images of proliferating OLIG2⁺ (gray) and EdU⁺ (magenta) cells in CTRL (d), and INH-treated (g) animals. The white dashed lines highlight injury cores. Micrographs in (e,f,h,i) are magnifications of the white boxed areas in (d) and (g), respectively. The white arrowheads in micrographs depict colocalization of EdU (e,h) with OLIG2⁺ (f,i) cells. All images are full z-projections of confocal z-stacks. j,k Dot plots depicting number of oligodendrocytes (OLIG2+ cells) (j) and proliferating OPCs (OLIG2+ and EdU⁺) (k) in CTRL and INH-treated animals. Data are shown as mean ± standard error of the mean. Each data point represents one animal. Source data are provided

as Source Data file. Statistics in (j) and (k) have been derived from $n_{CTRL} = 6$ and $n_{INH} = 5$ animals. p-values were determined with unpaired t-test (two-tailed). Scale bars: d,g: 50 µm, e, f, h, i: 20 µm. Abbreviations: UMAP = uniform manifold approximation and projection, dpi = days post injury, EdU = 5-Ethinyl-2'-deoxyuridine, i.p. = intraperitoneal injection, CTRL = stab wound-injured control animals, INH = stab wound-injured inhibitor-treated animals, OPCs = oligodendrocyte progenitor cells, COPs = committed oligodendrocyte progenitors, MFOL = myelin-forming oligodendrocytes, MOL = mature oligodendrocytes.

Supplementary Figure 14. Microglia reactivity upon Cxcr3 and Tlr1/2 pathway inhibition.

a Experimental paradigm for assessing microglial reactivity. The gray boxes on the mouse brain scheme highlight the analyzed areas. The red lines indicate the injury cores. **b**,**c** Representative images with 3D reconstruction of IBA1⁺ microglia (yellow) in CTRL (**b**) and INH-treated (**c**) mice. Dashed white boxes indicate selected microglia used for 3D reconstruction. **d**,**e** Plots depict the distribution of microglial branch length (**d**) and number of major branches (**e**) of n=5 CTRL and n=6 INH-treated animals. Source data are provided as Source Data file. Data are fitted with multiple peak functions. The parameters are depicted in Supplementary Data 8 for each fit. **f**,**g**,**j**,**k** Representative

images of IBA1 (**f**,**g**) and CD68 (**j**,**k**) staining in CTRL (**f**,**j**) and INH-treated (**g**,**k**) mice. Dashed white lines indicate the injury cores. All images are full z-projections of confocal z-stacks. **h**,**I** Dot plots depict the mean grey values of IBA1⁺ (**h**) and CD68⁺ (**I**) signal in the injury vicinity of CTRL and INH-treated mice. Data are shown as mean \pm standard error of the mean. Each data point represents one animal. Source data are provided as Source Data file. Statistics in (**h**) and (**I**) have been derived from n_{CTLR} = 6 and n_{INH} = 7 animals. p-values were determined with unpaired t-test (two-tailed). **i**,**m** Violin plots depicting expression levels of *Aif1* (**i**) and *Cd68* (**m**) in microglia (scRNAseq) in intact, 5 dpi CTRL and 5 dpi INH condition. Data shown in violin plot are derived from n=12 intact animals over 3 independent experiments (3 scRNAseq libraries), n=9 5dpi CTRL animals over 3 independent experiments (3 scRNAseq libraries). Scale bars: **f**,**g**,**j**,**k**: 50 µm, **b**,**c**: 20 µm. Abbreviations: dpi = days post injury, CTRL = stab wound- injured control animals, INH = stab wound-injured inhibitortreated, INT = intact mice.

Astrocytes

29

Supplementary Figure 15. Reaction of astrocytes to stab wound injury in absence of Cxcr3 and TIr1/2 signaling.

a,**b** UMAP (**a**) and dot plots (**b**) depicting the expression of *Gfap* and *Lcn2* among astrocytic subclusters. c Dot plot depicting astrocyte reactivity scores between all time points and conditions. Genes defining astrocyte reactivity scores were extracted from cluster 4 and 8 astrocytes of Hasel et al.³⁸ (Supplementary Table 7) and are plotted on the reactive subclusters. d Experimental paradigm for assessing astrocyte reactivity in the injury vicinity. Dashed gray box on mouse brain scheme indicates analyzed area. Red line highlights the injury core. e-j Representative images of GFAP⁺ astrocytes (green) and NGAL⁺ cells (magenta) in CTRL (e) and INH-treated (h) animals. White dashed lines highlight injury cores. Micrographs in (f,g,i and j) are magnifications of white boxed areas in (e) and (h). The white arrowheads in micrographs depict colocalization of NGAL with GFAP. All images are full z-projections of confocal z-stacks. **k**, I Dot plots depicting percentage of area covered with GFAP⁺ signal (**k**) and density of GFAP⁺ NGAL⁺ (protein of *Lcn*2) double positive astrocytes (I) in CTRL and INH-treated mice. Data are shown as mean ± standard error of the mean. Each data point represents one animal. Source data are provided as Source Data file. Statistics have been derived from $n_{CTRL} = 4$ and $n_{INH} = 4$ animals. p-values were determined with unpaired t-test (two-tailed). m,n Representative overview images of NGAL distribution (magenta) in CTRL (m) and INH-treated (n) animals. o Dot plot depicting mean grey values of NGAL⁺ signal of CTRL and INH- treated mice. Data are shown as mean ± standard error of the mean. Each data point represents one animal. Source data are provided as Source Data file. Statistics have been derived from $n_{CTRL} = 6$ and $n_{INH} = 7$ animals. p-values were determined with unpaired t-test (two-tailed). p Violin plots depicting expression levels of *Lcn2* in astrocytes (scRNA-seq). **q** UMAPs highlighting localization of proliferating astrocytes (pink). **r** Histogram illustrating percentage of proliferating astrocytes (based on S+G2/M score expression (Supplementary Table 4)) between all time points and condition. Data shown in this figure are derived from n=12 intact animals over 3 independent experiments (5 scRNAseq libraries), n=3 3dpi CTRL animals over 1 experiment (2 scRNAseq libraries), n=3 3dpi INH animals over 1 experiment (2 scRNAseq libraries), n=9 5dpi CTRL animals over 3 independent experiments (3 scRNAseq libraries) and n=6 5dpi INH animals over 2 independent experiments (3 scRNAseq libraries). Scale bars: e,h,m,n: 50 μm, f, g, i, j: 20 μm. Abbreviations: UMAP = uniform manifold approximation and projection, dpi = days post injury, INT = intact mice, CTRL = stab wound-injured control animals, INH = stab wound-injured inhibitortreated animals.

Cluster	names	pvals	logFC	Cluster	names	pvals	logFC
	Cplx1	1.89E-124	1.76		3110035E14Rik	1.18E-54	2.25
I	Pvalb	1.85E-106	2.16		Rprm	8.12E-45	3.03
	Tmsb10	1.80E-78	1.36	IX	Ttc9b	1.90E-40	1.75
	Mgst3	8.69E-74	1.17		Pcp4	1.25E-37	2.17
	Serpini1	1.03E-73	1.41		Cplx3	1.11E-36	4.39
	Lamp5	4.32E-130	2.63		C1ql2	5.68E-56	5.80
	Calb1	9.14E-134	2.79		Fam163b	1.07E-55	3.00
П	Camk2n1	1.15E-111	1.76	Х	Ddn	4.44E-49	2.12
	Rasgrf2	5.02E-117	2.58		Btbd3	7.11E-51	2.25
	lgfbp6	2.23E-86	2.00		Orai2	8.37E-49	2.81
	Fth1	4.75E-311	2.21		Lamp5	3.16E-24	2.08
	Plp1	4.13E-208	4.56		Tshz2	8.22E-23	3.10
Ш	Mbp	7.94E-204	3.72	XI	Camk2n2	1.70E-21	1.61
	Mal	3.80E-238	4.44		Nrep	7.83E-22	1.90
	Mobp	8.61E-205	3.96		Sparcl1	3.24E-20	0.85
IV	3110035E14Rik	7.17E-97	2.24		Calml4	4.99E-91	7.53
	Ttc9b	6.56E-92	2.04		Ttr	4.93E-111	7.60
	Rprm	7.36E-93	3.31	XII	1500015O10Rik	1.15E-92	7.05
	Myl4	4.83E-90	2.85		Folr1	4.86E-80	6.67
	Pcp4	7.09E-73	2.31		KI	1.91E-70	6.94
V	Cabp7	2.12E-130	3.63		Spink8	1.93E-111	5.95
	Cnih2	7.44E-99	2.21		Tmsb4x	6.09E-68	2.01
	Sepw1	2.34E-72	0.91	XIII	Wipf3	2.23E-64	3.94
	Neurod6	6.58E-69	2.54		Нрса	4.97E-55	3.62
	Нрса	6.12E-63	2.06		Rgs14	1.07E-65	4.47
	Serpina3n	4.79E-72	3.30		Gpr88	2.84E-73	5.57
	C1qc	4.39E-66	2.65		Ppp1r1b	4.65E-70	4.64
VI	Gfap	2.99E-64	2.65	XIV	Pde10a	3.90E-62	5.29
	Tyrobp	6.83E-59	2.38		Penk	1.17E-61	5.64
	lfi27l2a	1.82E-55	3.78		Tac1	2.76E-50	5.08
	Арое	1.18E-70	1.30		Calb2	2.80E-48	6.18
	mt-Co1	1.41E-58	0.89		Ramp3	1.10E-41	4.92
VII	mt-Nd5	1.22E-58	1.17	XV	Tcf7l2	7.64E-35	5.87
	mt-Nd2	1.35E-57	1.02		Slc17a6	3.02E-35	4.62
	mt-Co2	4.83E-55	1.02		Zic1	2.69E-32	5.21
	Camk2n1	4.14E-70	1.90		Tac2	7.48E-42	8.23
	Nrsn1	6.58E-66	1.80		Gng8	8.03E-34	7.97
VIII	Plcxd2	3.53E-73	2.61	XVI	Zic1	6.28E-43	6.42
	Rorb	1.36E-66	2.90		Necab2	3.60E-41	5.99
	Cnih3	5.63E-65	2.69		Gm5741	2.54E-23	9.60

Top 5 enriched genes in different stRNA-seq identified clusters. Significance was determined using the method t-test overestimated_variance.

Neuronal layers markers ³⁴						
Layer 2/3	A830009L08Rik, Gm12371, Lamp5, Calb1, Igfbp6, A830009L08Rik					
Layer 4	Krt12, Tcap, Dkkl1, Rorb, Tnnc1, A830036E02Rik					
Layer 5	Hs3st2, Vipr1, Pde1a, Scube1, Ml4, Dkkl1, Fezf2, RP24-134N2.1, Nov, Coro6, Lamp5, Kcng1					
Layer 6	Rprm, Rell1, Tbr1, 3110035E14Rik, Nxph3, Hs3st4, Myl4, Cpne4, Fezf2, Tshz2, Lypd1					

List of genes used for each of the cortical neuronal layer gene set scores.

Cell type	Gene	Reference
Microglia	Tmem119, Cx3cr1, P2ry12, P2ry13, Gpr34, Olfml3, Selplg, Sparc, Fcrls, Siglech, Slc2a5, Mafb, Pmepa1, Cd14	45, 98, 99,100,101
Disease associated microglia (DAM)	Lpl, Cst7	45, 99, 102, 103
Macrophages	Cd163, Mrc1, Lyve1, Siglec1, Itga4, Tgfbi, Ifitm2, Ifitm3, TagIn2, F13a1, Kynu, S100a11, S100a6	45,104–106
Border Associated Macrophages (BAM)	Cd163, Mrc1, Lyve1, Siglec1	45, 107,108
Monocytes	Ly6c2, Ccr2, Spn	109, 110
Dendritic cells (DC)	Cd24a, Itgax, Bst2, Cd209a, Xcr1, Ccr7, Ccr9, Flt3, Itgae, Itgam, Nudt17, Zbtb46, Ccr9, H2-Oa, Tnni2, Kctd14, Amica1, Kmo, Hepacam2	45,111, 112, 113, 114
NKT cells	Cd3e, Klrb1c, Ncr1	45, 114
T cells	Cd3e, Lat, Bcl11b	45, 114
B cells	Cd19, Ms4a1, Pax5	45, 114
Neutrophils	S100a9	103, 114
Neurons	Rbfox3, Slc17a7, Gabra1, Cux1, Pou3f2, Bcl11b, Foxp2	34
OPCs	Pdgfra, C1ql1	34
COPs	Neu4, Brca1	34
MOL	Opalin, Ninj2	34
Astrocytes	Sox9, Gfap, Aldh1l1, Atp1b2, Vim, Gfap, Slc1a3, Aldoc	34
Pericytes	Pecam1, Pdgfrb, Higd1b, Ndufa4l2, Rgs5, Kcnj8, Flt1	34
VSMCs	Acta2, Tagln, Myh11, Mustn1, Map3k7cl	34
VLMCs	Mgp, Slc47a1, Thbd, Col1a1, Col1a2	34
VECV	Ly6c1, Cldn5, Ly6a, Pltp, Pglyrp1, Scgb3a1	34

List of marker genes of well-characterized cell populations, employed for cluster identification.

	Cell Cycle	genes ^{46, 47}			
S-pl	hase	G2M	l-phase		
Mcm5	Atad2	Hmgb2	Hjurp		
Pcna	Rad51	Cdk1	Cdca3		
Tyms	Rrm2	Nusap1	Hn1		
Fen1	Cdc45	Ube2c	Cdc20		
Mcm2	Cdc6	Birc5	Ttk		
Mcm4	Exo1	Tpx2	Cdc25c		
Rrm1	Tipin	Top2a	Kif2c		
Ung	Dscc1	Ndc80	Rangap1		
Gins2	Blm	Cks2	Ncapd2		
Mcm6	Casp8ap2	Nuf2	Dlgap5		
Cdca7	Usp1	Cks1b	Cdca2		
Dtl	Clspn	Mki67	Cdca8		
Prim1	Pola1	Ттро	Ect2		
Uhrf1	Chaf1b	Cenpf	Kif23		
Mlf1ip	Brip1	Tacc3	Hmmr		
Hells	E2f8	Fam64a	Aurka		
Rfc2		Smc4	Psrc1		
Rpa2		Ccnb2	AnIn		
Nasp		Ckap2l	Lbr		
Rad51ap1		Ckap2	Ckap5		
Gmnn		Aurkb	Cenpe		
Wdr76		Bub1	Ctcf		
Slbp		Kif11	Nek2		
Ccne2		Anp32e	G2e3		
Ubr7		Tubb4b	Gas2l3		
Pold3		Gtse1	Cbx5		
Msh2		Kif20b	Cenpa		

List of genes used to calculate the cell cycle phase score.

	Shared inflammatory genes						
	3dpi - downregulated	5dpi- downregulated					
AG1	-	-					
AG2	-	lfitm3					
AG3	-	-					
AG4	-	-					
AG5	Rsad2, Ifit3, Ifit3b, Bst2	lfitm3, Bst2					
AG6	lsg15, Bst2, Rtp4, lfit3, lfit3b	lsg15					
AG7	Isg15, Cxcl10, Oasl2, Ifitm3, Irf7, Bst2, Trim25, Rsad2, Rtp4, Ifit3, Ifit3b, Ifit1	Isg15, Irf7, Ifi27l2a, Rtp4					
AG8	Rsad2, Ifi27l2a	-					
MG1	lfitm3	-					
MG2	-	lfitm3					
MG3	Isg15, Ifitm3, Bst2, Ifi27I2a, Rtp4, Ifit3						
MG4	Zbp1, Isg15, Cxcl10, Oasl2, Oasl1, Oas1a, Ifitm3, Irf7, Bst2, Rsad2, Rtp4, Ifit3, Ifit3b	Isg15, Cxcl10, Ifitm2, Irf7, Bst2, Rsad2, Lgals1, Ifit3, Ifit1					
MG5	-	Isg15, Ifitm3, Irf7					
MG6	Zbp1, Isg15, Oasl2, Oas1a, Ifitm3, Irf7, Bst2, Dhx58, Ifi27l2a, Rtp4, Ifit3	-					
MG7	-	Bst2, Ifi27l2a, Lgals1					
MG8	-	-					
OPCs1	lfitm3	-					
OPCs2	Isg15, Oasl2, Oas1a, Ifitm3, Irf7, Bst2, Rsad2, Ifi27l2a, Lgals1, Rtp4, Ifit3, Ifit3b, Ifit1	Bcl3, Ifitm2, Ifitm3, Bst2, Ifi27l2a, Lgals1					
OPCs3	-	-					

List of shared inflammatory genes which are downregulated after INH treatment in each subcluster.

Sample-id			Chromium	Sequencing		number of	mean	mean
(Matrix)	FastQ	Condition	Kit	plattform	cellranger	cells	genes	counts
	21L008532,							
21L008532	22L000025	5dpi_CTRL	V3.1	Novaseq6000	6.0.0	7440	3212	10960
0.41.000500	21L008533,		N/0 4			7400	0004	11000
21L008533	22L000026	5dpi_INH	V3.1	Novaseq6000	6.0.0	7403	3334	11696
MUC29190	MUC29190	Intact	V3.1	Novaseq6000	6.0.0	4357	2595	7301
MUC18415	MUC18415	5dpi_CTRL	V2	Novaseq6000	3.0.2	4615	2759	9150
				HiSeq				
MUC13721	MUC13721	Intact	V2	3000/4000	3.0.2	2674	2121	5674
				HiSeq				
MUC13722	MUC13722	3dpi_CTRL	V2	3000/4000	3.0.2	1848	2306	7934
				HiSeq				
MUC13723	MUC13723	3dpi_CTRL	V2	3000/4000	3.0.2	1795	2403	8731
	111040704		240	HiSeq		4005	0077	0000
MUC13724	MUC13724		V2	3000/4000	3.0.2	1865	2377	8036
MUC13725	MUC13725	3dpi INH	V2	3000/4000	3.0.2	2748	2420	8259
				HiSeg				
MUC13726	MUC13726	Intact	V2	3000/4000	3.0.2	2471	2069	5360
				HiSeq				
MUC13727	MUC13727	5dpi_CTRL	V2	3000/4000	3.0.2	1711	2385	7665
				HiSeq				
MUC13729	MUC13729	5dpi_INH	V2	3000/4000	3.0.2	3831	2199	6306
				HiSeq				
MUC13730	MUC13730	5dpi_INH	V2	3000/4000	3.0.2	3908	2125	6063
				HiSeq			(===)	
MUC13731	MUC13731	Intact	V2	3000/4000	3.0.2	3385	1764	4443
		linte et	10	HISeq		0700	4700	4505
MUC13732	MUC13732	Intact	V2	3000/4000	3.0.2	3762	1782	4505

Specification of datasets used for the scRNA-seq analysis.

Genes defining astrocyte reactivity scores - extracted from cluster_4 and 8 astrocytes of Hasel et al. ³⁸						
Cl4	Cl8					
Lcn2	Igtp					
lfitm3	Gm4951					
H2-D1	ligp1					
Timp1	Irgm1					
B2m	Tap1					
Vim	lfit3					
Gfap	Gbp2					
Psmb8	F830016B08Rik					
Bst2	Gbp7					
H2-T23	Tap2					
Cd63	lfi47					
Serping1	B2m					
Tspo	lfit1					
Rps4x	Psmb8					
S100a6	Stat1					
Tuba1a	H2-T23					
H2-K1	Usp18					
Mt1	lfit3b					
Gpx1	Rtp4					
S100a11	Psmb9					

List of genes used to calculate the gene set score in Supplementary Fig. 15c.

References:

- 34. Zeisel, A. *et al.* Molecular Architecture of the Mouse Nervous System. *Cell* **174**, 999-1014. e22 (2018).
- 38. Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. *Nat Neurosci* **24**, 1475–1487 (2021).
- 45. Ochocka, N. *et al.* Single-cell RNA sequencing reveals functional heterogeneity of gliomaassociated brain macrophages. *Nat Commun* **12**, 1151 (2021).
- 47. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science (1979)* **352**, 189–196 (2016).
- 46. Baranek, T. *et al.* High Dimensional Single-Cell Analysis Reveals iNKT Cell Developmental Trajectories and Effector Fate Decision. *Cell Rep* **32**, 108116 (2020).
- 51. Zheng, K. *et al.* Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. *Journal of Cerebral Blood Flow and Metabolism* **42**, (2022).
- 52. Midwood, K. S. & Piccinini, A. M. DAMPening inflammation by modulating TLR signalling. *Mediators Inflamm* 2010, (2010).
- 53. Sanchez-Gonzalez, R. *et al.* Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. *Cells* **11**, 520 (2022).
- 98. Sousa, C., Biber, K. & Michelucci, A. Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. *Front Immunol* **8**, (2017).
- 99. Masuda, T. *et al.* Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. *Nature* **566**, 388–392 (2019).
- 100. Bennett, M. L. *et al.* New tools for studying microglia in the mouse and human CNS. *Proceedings of the National Academy of Sciences* **113**, E1738–E1746 (2016).
- 101. Matcovitch-Natan, O. *et al.* Microglia development follows a stepwise program to regulate brain homeostasis. *Science (1979)* **353**, aad8670 (2016).
- 102. Keren-Shaul, H. *et al.* A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. *Cell* **169**, 1276-1290.e17 (2017).
- 103. Li, Y. *et al.* Microglia-organized scar-free spinal cord repair in neonatal mice. *Nature* (2020) doi:10.1038/s41586-020-2795-6.
- 104. Venteicher, A. S. *et al.* Decoupling genetics, lineages, and microenvironment in IDHmutant gliomas by single-cell RNA-seq. *Science (1979)* **355**, eaai8478 (2017).
- 105. Müller, S. *et al.* Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. *Genome Biol* **18**, 234 (2017).
- 106. Bowman, R. L. *et al.* Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. *Cell Rep* **17**, 2445–2459 (2016).
- 107. Jordão, M. J. C. *et al.* Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. *Science* (1979) **363**, eaat7554 (2019).
- 108. Goldmann, T. *et al.* Origin, fate and dynamics of macrophages at central nervous system interfaces. *Nat Immunol* **17**, 797–805 (2016).
- 109. Ziegler-Heitbrock, L. *et al.* Nomenclature of monocytes and dendritic cells in blood. *Blood* **116**, e74–e80 (2010).
- 110. Thomas, G. D. *et al.* Human Blood Monocyte Subsets. *Arterioscler Thromb Vasc Biol* **37**, 1548–1558 (2017).
- 111. Fleming, T. J., Fleming, M. L. & Malek, T. R. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. *The Journal of Immunology* **151**, 2399 (1993).
- 112. Musumeci, A., Lutz, K., Winheim, E. & Krug, A. B. What makes a PDC: Recent advances in understanding plasmacytoid DC development and heterogeneity. *Frontiers in Immunology*. vol. 10 Preprint at https://doi.org/10.3389/fimmu.2019.01222 (2019).
- 113. Hey, Y. & O'Neill, H. C. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen. *PLoS One* **11**, e0162358- (2016).
- 114. Van Hove, H. *et al.* A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. *Nat Neurosci* **22**, 1021–1035 (2019).