Cancer Immunology, Immunotherapy (submitted in 2023) – Yan Luo et al. Supplementary Figures

Supplementary Fig. 1 Generation of a novel anti-BAFF-R antibody. BAFF-R-pCDH (pCDH cDNA Cloning and Expression Lentivectors, System Biosciences, Palo Alto, CA.) lentivirus infected NIH/3T3 or 293FT cells were selected with 1 µg/mL puromycin (Sigma-Aldrich, St. Louis, MO, USA) for 1 week; single-cell clones were established from sorted BAFF-R positive NIH/3T3 or BAFF-R positive 293FT cells, and a BAFF-R expressing NIH/3T3 cell clone were used as the immunogen for BAFF-R monoclonal antibody development. The expression of BAFF-R in a BAFF-R-NIH/3T3 single-cell clone (**a**) or a BAFF-R-293FT cell line (**b**) was confirmed by flow cytometry. **c.** Crude C21 hybridoma supernatants were screened for antigen specific binding using BAFF-R-positive and BAFF-R-negative 293FT cells with a 5-fold serial diluted concentration to generate this representative data. **d.** The antigen specific binding was detected with R-PE conjugated goat anti-mouse IgG for 30 mins at 4°C. **e.** Antigen specific binding affinity of purified mAb C21 with serial diluted concentration (from 19 ng/ml to 1250 ng/ml) to BAFF-R-positive and BAFF-R-negative 293FT cells.

а

е

	Production 1		Production 2		Production 3	
	Non CAR-T	MC10029 CAR-T	Non CAR-T	MC10029 CAR-T	Non CAR-T	MC10029 CAR-T
Fold expansion	87.2	82.6	76.5	72.6	82.3	90.2
Viability(%)≥70%@D14	92	94	89	88	91	93
Identity(%) ≥80%	99.0	98.7	99.7	99.8	97.9	98.3
Potency(%) ≥10%	0.18	23.9	0.34	22.6	0.34	21.7

Supplementary Fig. 2 MC10029 CAR construct and initial characterization of MC10029 CAR-T cells production. a. Schematic diagram the functional elements within the CAR design. The construct included the following elements in tandem: signal peptide (SP); the scFv of our novel BAFF-R antibody; a IgG4 hinge; CD28 transmembrane (TM) domain; CD28 costimulatory domain (CD28QQ); CD3ζ; T2A (self-cleaving 2A peptide); and tEGFR (truncated epidermal growth factor receptor). b. Fold expansion of CAR-T cells was calculated from day 1 to day 14 by measuring the number of viable CAR-T cells by trypan blue exclusion using Bio-Rad Cell counter. Non CAR-T cells from the same donor were used as controls. c,d. MC10029 CAR-T cells were stained with antibodies to measure surface expression of CD3 for identity (c) or EGFR for potency (d) to characterize the CAR-T cells with the data shown in these representative flow cytometry dot plots. Non CAR-T cells from the same donor were used as controls. e. These characterization assays were performed on three production batches of MC10029 CAR -T cells that were used in various in vitro assays. Each batch of CAR-T cells destined for research testing were evaluated for cell quality with Fold Expansion (> 25) and Viability (> 70%, as determined by Trypan Blue staining) as well as CAR-T cell specific characterization with Identity (> 80%, as determined by flow cytometry for CD3 positive cells) and Potency (> 10%, as determined by flow cytometry for EGFR positive T cells). EFGR is a transgene that is accepted as a measure of potency, per guidance documents for CAR-T cell product development.

Supplementary Fig. 3 Comparison of BAFF-R CAR-T cell constructs with differing costimulatory domains. With the option of complementing CD3ζ with either the CD28 costimulatory domain (MC10029) or the 4-1 BB costimulatory domain (MC10023), both CARs were generated and transduced into T cells to identify which BAFF-R CAR-T cells provided superior antigen specific cytotoxicity. **a**. Expansion of MC10023 and MC10029 CAR-T cells showed comparable fold increases by day 14. **b**. The T cell content (CD3) and the proportion of CAR-T cells (using EGFR as a proxy) within the final products of both MC10029 and MC10023 CAR-T cells are also found to be comparable. **c**. Antigen specific cytotoxicity was assayed by testing MC10023 CAR-T cells or MC10029 CAR-T cells against Nalm-6 and Nalm-6 BAFF-R KO cell lines; this degranulation assay shows the higher activity of MC10029 CAR-T cells compared to MC10023 CAR-T cells and justified the advancement of MC10029 CAR-T cells into our other experiments.

Supplementary Fig. 4 In vitro cytotoxicity of MC10029 CAR-T cells against CD-19 deficient malignant B-cell tumor lines. Three cell lines that are used to evaluate cytotoxicity of MC10029 CAR-T cells were tested for antigen expression. a. Using anti-BAFF-R-AF647 antibody, flow cytometry histograms show BAFF-R expression in Nalm-6, Z-138, or MEC-1. b. These cell lines were also evaluated for CD19 surface expression using anti-CD19-APC antibody. CD19 knock-out (KO) Nalm-6, Z-138, and MEC-1 variants were generated and evaluated for antigen surface expression. Flow cytometry histograms show BAFF-R expression in wild type Nalm-6, Z-138, or MEC-1 cell lines, as well as their CD19-deficient counterparts. c, e. Flow cytometry plots show the functional potency of CAR-T cells against CD19-deficient tumor cells by the surface expression CD107a in a degranulation assay. Non-CAR-T cells, MC10029 CAR-T cells, or CD19 CAR-T cells were generated from the same donor and incubated with CD19-deficient Z-138 (c) or CD19-deficient MEC-1 (e) cells at an E:T ratio of 2:1 to characterize the cytotoxicity of MC10029 CAR-T cells against these CD19-deficient tumor cells. d, f. Granzyme B ELISA shows functional potency of MC10029 CAR-T cells against CD19deficient tumor cells. Non-CAR-T cells, MC10029 CAR-T cells, or CD19 CAR-T cells were co-incubated with CD19-deficient Z-138 (d) or CD19-deficient MEC-1 (f) cells at an E:T ratio of 4:1 for 72 hours when the supernatants were harvested for subsequent ELISA. Graphed data are means of quadruplicate sampling. The data are representative of three independent experiments.

а	Identifier	Disease	Gender	Age (Years)
	1	B-CLL	Female	77
	2	B-CLL	Male	63
	3	B-CLL	Female	83
	4	B-CLL	Male	78
	5	B-CLL	Female	65
	6	B-CLL	Male	56
	7	B-CLL	Male	77
	8	B-CLL	Male	64
	9	B-CLL	Female	54

d

	Subject 2		Subject 3		Subject 4		Subject 5	
	Non CAR-T	CAR-T ¹						
Granzyme A								
pg/ml	518	2037**	1169	3656**	572	3898**	320	1980**
Fold change ²	1	5.7	1	3.1	1	6.8	1	6.2
Perforin								
pg/ml	452	1413**	677	1593**	1056	3066**	549	1792**
Fold change ²	1	3.1	1	2.4	1	2.9	1	3.3
IFN-γ								
pg/ml	3102	4683**	1416	3577**	565	1336**	146	457**
Fold change ²	1	1.5	1	2.5	1	2.4	1	3.1

¹ CAR-T = MC10029 CAR-T cells ² Fold change is calculated by dividing pg/ml from MC10029 CAR T-cells by those from non-CAR T-cells.

Supplementary Fig. 5 Supporting data on the activity of MC10029 CAR-T cells against primary CLL tumor cells. a. Basic demographic data for the nine B-CLL subjects evaluated with MC10029 CAR-T cells. b. Subject PBMCs were enriched for CLL tumor cells, and the removal of endogenous T cells was confirmed in these six samples by characterizing the CD3 positive T cells in the original PBMC samples (top panels) and enriched B cell population (bottom panels). c. Statistical analysis of degranulation data in Fig. 4d shows statistical significance in cytotoxicity against primary CLL tumor cells between MC10029 CAR-T cells and Non CAR-T cells (* p < 0.05), while no difference was noted between Donor A and Donor B. d. Release of multiple granule proteins/cytokines from MC10029 CAR-T cells incubated with primary CLL tumor cells isolated from selected subjects. There was a significant increase observed in the release of granule proteins in CAR-T cell groups compared to the Non CAR-T cell groups. (**p<0.01)

Supplementary Fig. 6 Characterization of MC10029 CAR-T cells used in the experiments shown in Figure 4. MC10029 CAR-T cells were generated from two healthy donors and tested against primary CLL tumor cells. The two production batches of MC10029 CAR-T cells were characterized using our standard QC assays. The identity (CD3 positive cells) and the potency (EGFR positive cells) of MC10029 CAR-T cells from donor A (a) were nearly identical as those from donor B (b). (c) Both batches of MC10029 CAR-T cells met our requirements in terms of QC parameters, including fold expansion, viability, identity, and potency.

Supplementary Fig. 7 Statistical analysis of CD107a degranulation assays. a. Statistical analysis of degranulation data of MC10029 CD4 CAR-T cells in Fig. 1a. **b.** Statistical analysis of degranulation data of MC10029 CD8 CAR-T cells in Fig. 1b. **c.** Statistical analysis of degranulation data of MC10029 CAR-T cells against CD19 KO Nalm-6 cells in Fig. 2a. **d.** Statistical analysis of degranulation data of MC10029 CAR-T cells against Z-138 cells in Fig. 3a. **e.** Statistical analysis of degranulation data of MC10029 CAR-T cells against MEC-1 cells in Fig. 4a. **f.** Statistical analysis of degranulation data of three production batches of MC10029 CAR-T cells in Fig. 6b. (** p < 0.01 ; ns: no significance)