B7-H3 confers resistance to $V\gamma 9V\delta 2$ T cell-mediated cytotoxicity in human colon cancer cells via the STAT3/ULBP2 axis

Primer Name	Primer Sequence (5'-3')
Human-B7H3 Forward	ACAGGGCAGCCTATGACATT
Human-B7H3 Reverse	CTGCATTCTCCTCCTCACAG
Human-ULBP1 Forward	TAAGTCCAGACCTGAACCACA
Human-ULBP1 Reverse	TCCACCACGTCTCTTAGTGTT
Human-ULBP2 Forward	AGCAACTGCGTGACATTCAG
Human-ULBP2 Reverse	GCCATCCTATACAGTCTCCCA
Human-ULBP3 Forward	TCTATGGGTCACCTAGAAGAGC
Human-ULBP3 Reverse	TCCACTGGGTGTGAAATCCTC
Human-ULBP4 Forward	GCACTTGGGGAGAATTGACCC
Human-ULBP4 Reverse	ACATCTCGACTTGCAGAGTGG
Human-ULBP5 Forward	GACAGCTACCAAATAGCGAAGC
Human-ULBP5 Reverse	GGTAAGGAGTGTGAGTCGTCT
Human-MICA Forward	AGGGTTTCTTGCTGAGGTACA
Human-MICA Reverse	GGTCTCTCTGTCCCATGTCTTA
Human-MICB Forward	TCTTCGTTACAACCTCATGGTG
Human-MICB Reverse	TCCCAGGTCTTAGCTCCCAG
Human-MHCI Reverse	GATTACATCGCCTTGAACGAGG

Supplementary Table 1. Primers for RT-qPCR assay of genes in this study

Human-MHCI Reverse	AGAGACAGCGTGGTGAGTCAT
Human-BTN3A1 Reverse	AAAGCACAAGAGTGAAGCTCC
Human-BTN3A1 Reverse	GCCGAGAACACAATAATGCCA
Human-CD155 Reverse	TGGAGGTGACGCATGTGTC
Human-CD155 Reverse	GTTTGGACTCCGAATAGCTGG
Human-β-actin Forward	CATGTACGTTGCTATCCAGGC
Human-β-actin Reverse	CTCCTTAATGTCACGCACGAT

CC patients	Number
No. of patients	106
Gender	
Male	61
Female	45
Age (years)	
Mean	61.72
Range	26-81
Tumor location	
Right hemicolon	52
Left hemicolon	54
Tumor volume	
>6.5cm ³	83
\leq 6.5cm ³	23
Distant metastasis	
Yes	3
No	103
TNM stage	
I-II	54
III-IV	52

Supplementary Table 2. Clinical characteristics of colon cancer (CC) patients

Supplementary Fig. 1. B7-H3-overexpressing CC cells resist the killing effect of Vδ2 T cells

(a) The mRNA expression of B7-H3 in B7-H3-overexpressing HCT116 and RKO cells was analyzed by RT-qPCR. (b) The cytotoxicity of V δ 2 T cells (effector cells, E) against HCT116 or RKO cells (target cells, T) at different E/T ratios was analyzed by CCK-8 assay. (c, d) Representative images of the clusters in which V δ 2 T cells formed surrounding B7-H3-overexpressing HCT116 (c) or RKO (d) cells. Values are expressed as the means \pm SD. Data are representative of results from 3 independent experiments. *p<0.05, **p<0.01, and ***p<0.001.

Supplementary Fig. 2. B7-H3 knockdown CC cells are sensitive to the killing effect of Vδ2 T cells

(a) The mRNA expression of B7-H3 in B7-H3-knockdown HCT116 and RKO cells was analyzed by RT-qPCR. (b, c) Representative images of the clusters of V δ 2 T cells that formed around B7-H3 knockdown HCT116 (b) or RKO (c) cells. Values are expressed as the means \pm SD. Data are representative of results from 3 independent experiments. ***p<0.001.

Supplementary Fig. 3. The expression of $\gamma\delta T$ cells in B7-H3-overexpressing HCT116 tumors treated with $\gamma\delta T$ cells.

Immunofluorescence represents infiltrating $\gamma \delta T$ cell expression in B7-H3-overexpressing HCT116 cell tumors in SCID mice following V $\delta 2$ T cell injection.

Supplementary Fig. 4. B7-H3 knockdown CC cells promote the formation of Vδ2 T cell clusters by suppressing ULBP2

(a, b) Representative images showing the clusters of V δ 2 T cells around B7-H3-knockdown HCT116 (a) and RKO (b) cells treated with ULBP2-siRNA or ULBP2 monoclonal blocking antibody (ULBP2 mAb).

Supplementary Fig. 5. B7-H3-overexpressing CC cells inhibit the formation of Vδ2 T cell clusters via STAT3.

(a, b) Representative images showing the clusters of V δ 2 T cells around B7-H3-overexpressing HCT116 (a) and RKO (b) cells treated with or without cryptotanshinone (CTN).

Supplementary Fig. 6. The expression of $\gamma\delta T$ cells in NAT samples was higher than CC samples in colon cancer patient specimens.

Immunofluorescence represents infiltrating $\gamma\delta T$ cell expression in NAT samples and CC samples.

Supplementary Fig. 7. Aberrant ULBP2 mRNA expression is positively correlated with B7-H3 mRNA expression in TCGA CC datasets.

(a) The mRNA expression of B7-H3 and ULBP2 in NAT (n=17) and CC (n=173) specimens of TCGA CC database. (b) The correlation between B7-H3 and ULBP2 mRNA expression in CC specimens. n=173. Values are expressed as the means \pm SEM. *p<0.05, and ***p<0.001.

Supplementary Fig. 8. The expression of MHC I, BTN3A1, and CD155 are not associated with B7-H3 in CC cells. (a) The mRNA expression of MHC I, BTN3A1, and CD155 in B7-H3-overexpressing HCT116 and RKO cells were analyzed by RT-qPCR. (b) The mRNA expression of MHC I, BTN3A1, and CD155 in B7-H3 knockdown HCT116 and RKO cells were analyzed by RT-qPCR. Values are expressed as the means \pm SD. Data are representative of results from 3 independent experiments. *p<0.05, **p<0.01, and ***p<0.001.

