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Abstract: Background

Cardiovascular research heavily relies on mouse (mus musculus) models to study
disease mechanisms and to test novel biomarkers and medications. Yet, applying
these results to patients remains a major challenge and often results in non-effective
drugs. Therefore, it is an open challenge of translational science to develop models
with high similarities and predictive value. This requires a comparison of disease
models in mice with diseased tissue derived from humans.

Results

To compare the transcriptional signatures at single cell resolution, we implemented an
integration pipeline called OrthoIntegrate which uniquely assigns orthologs and
therewith merges single cell data (scRNA-SEQ) of different species. The pipeline has
been designed to be as easy to use and is fully integrable in the standard Seurat
workflow.
We applied OrthoIntegrate on scRNA-SEQ from cardiac tissue of heart failure patients
with reduced ejection fraction (HFrEF) and scRNA-SEQ from the mice after chronic
infarction, which is a commonly used mouse model to mimic HFrEF. We discovered
shared and distinct regulatory pathways between human HFrEF patients and the
corresponding mouse model. Overall, 54% of genes were commonly regulated
including major changes in cardiomyocyte energy metabolism. However, several
regulatory pathways, e.g. angiogenesis, were specifically regulated in humans.

Conclusion

The demonstration of unique pathways occurring in humans indicate limitations on the
comparability between mice models and human HFrEF and show that results from the
mice model should be validated carefully. OrthoIntegrate is publicly accessible
(https://github.com/MarianoRuzJurado/OrthoIntegrate) and can be used to integrate
other large data sets to provide a general comparison of models with patients data.
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Response to Reviewers: Response to the reviewers:

Again, we would like to thank the reviewers for the remarks and valuable suggestions.
And also for the fair evaluation of our scientific work. We addressed all the point in the
section below and hope that the paper is then acceptable for publication.

Reviewer 2:
The author's additional analysis is commendable. With the inclusion of new evaluation
metrics, the benchmark section now appears relatively comprehensive, and the
explanations provided for the reduced NMI score are reasonable. In the results section,
the supplementary information on functional enrichment further elucidates the
biological functions of fibroblast cluster 25 and endothelial cell cluster 28. There are still
some minor suggestions for improvement:

1. The presentation of the biological findings in the discussion section could be more
succinct to improve clarity.

We agree with the reviewer and tried to shorten the biological discussion section of the
manuscript as much as possible. However, in order to show the advantage of
OrthoIntegrate to perform a single cell side-by-side comparison of from different
species, we think that it is crucial to at least discuss one example for human or mouse
specific pathways/genes and commonly regulated genes. Thereby we can exemplify
the usability of OrthoIntegrate and show potential research targets for other
researchers.

2. There is a lack of discussion on the impact of the numerous lncRNAs generated by
OrthoIntegrate. This topic requires further exploration and elaboration.

According to the suggestions we added the following paragraph, to the discussion
section of the paper:

“Due to the increased numbers of features that are included in OrthoIntegrate, the
clustering might be more diverged, likely by species specific non-coding RNAs or other
features, which are not included in the other databases. Therefore, the more divergent
clustering, due the increased number of features in OrthoIntegrate combined with the
broad cell type labeling might explain the slightly reduced NMI scores. However, since
various publications have shown that long-non-coding RNAs have important regulatory
roles in the heart [42–44], we think that these additional non-coding RNA’s are an
important resource to study species specific responses to different disease condition,
especially in the field of heart failure.”

3. Reorganize the paragraphs for "Single cell pre-processing" and "Study samples" to
clarify the source of the data used in the article. Emphasize the data generated by
authors (E-MTAB-13264) and provide details on the single-cell sequencing process
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(not only the raw data pre-processing).

We thank the reviewer for this remark. Accordingly we reorganized the paragraphs and
added the citation which contains the exact protocol on how the nuclei isolation was
done and how RNA was processed and sequenced.
We added the following paragraph to the paper:

"Nuclear isolation steps and single-nucleus RNA-sequencing library preparation were
conducted as described in Nicin et al.; NCVR 2022 (Nicin et al. 2022). “
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Abstract 

BackgroundOperational Delay 

Cardiovascular research heavily relies on mouse (mus musculus) models to study disease 

mechanisms and to test novel biomarkers and medications. Yet, applying these results to 

patients remains a major challenge and often results in non-effective drugs. Therefore, it is an 

open challenge of translational science to develop models with high similarities and predictive 

value. This requires a comparison of disease models in mice with diseased tissue derived 

from humans. 
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Results 

To compare the transcriptional signatures at single cell resolution, we implemented an 

integration pipeline called OrthoIntegrate which uniquely assigns orthologues and therewith 

merges single cell data (scRNA-SEQ) of different species. The pipeline has been designed to 

be as easy to use and is fully integrable in the standard Seurat workflow. 

We applied OrthoIntegrate on scRNA-SEQ from cardiac tissue of heart failure patients with 

reduced ejection fraction (HFrEF) and scRNA-SEQ from the mice after chronic infarction, 

which is a commonly used mouse model to mimic HFrEF. We discovered shared and distinct 

regulatory pathways between human HFrEF patients and the corresponding mouse model. 

Overall, 54% of genes were commonly regulated including major changes in cardiomyocyte 

energy metabolism. However, several regulatory pathways, e.g. angiogenesis, were 

specifically regulated in humans. 

 

Conclusion 

The demonstration of unique pathways occurring in humans indicate limitations on the 

comparability between mice models and human HFrEF and show that results from the mice 

model should be validated carefully. OrthoIntegrate is publicly accessible 

(https://github.com/MarianoRuzJurado/OrthoIntegrate) and can be used to integrate other 

large data sets to provide a general comparison of models with patients data. 

 

Keywords 

cross-species analysis, cardiovascular disease, heart failure with reduced ejection fraction, 

coronary artery ligation, single cell integration, cross species integration workflow 
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Introduction 

Animal experiments are a powerful tool to improve our understanding of pathophysiological 

conditions and to predict responses to new therapeutic approaches [1]. However, due to 

ethical considerations they are controversially discussed [2], and their predictive capacity for 

toxicity and drug responses is limited [3,4]. Especially mice are commonly used to model 

human diseases as they are relatively inexpensive, have short generation times and have 

large numbers of offspring. Additionally mice have a relatively close physiological and 

phylogenetic relationship with humans [5], [6]. Mice protein-coding genes are on average 85% 

identical to humans [4] and over 90% of both genomes have regional conserved synteny [7]. 

Due to these advantageous breeding characteristics and their high sequencing conservation 

to humans, hundreds of different mouse models have been developed to study human 

diseases [8] like heart failure [9] or even diseases that do not occur naturally in mice like 

Alzheimer’s or Parkinson's disease [10].  

To study cardiovascular diseases, which remain the leading cause of morbidity and mortality 

in the aging society, the ligation of the left anterior descending coronary artery model (LAD) is 

often used to induce myocardial infarction, which results in ischemic heart failure with reduced 

ejection fraction (HFrEF) [11,12]. Thereby, the LAD is ligated to mimic the clotted artery as it 

occurs after infarction. While short term reperfusion then allows to mimic the reopening of the 

coronary artery by catheter based interventions, often chronic ligation is used to induce heart 

failure over the course of > 4 weeks. As this method describes a similar decline in heart 

function, scientists use LAD mouse models to simulate HFrEF and develop and test new 

therapeutic strategies [13–15]. Patients who suffer from HFrEF, are unable to pump sufficient 

amounts of blood to meet the demands of body organs [16].  

To address the comparability of HFrEF in human to mouse models, we used single nuclei 

RNA sequencing data, enabling us to assess transcriptional regulatory pathways in all cardiac 

cell populations with high resolution and accuracy [17,18]. In order to analyze scRNA-seq data 

from various samples, integration pipelines were developed to combine individual cells from 

https://paperpile.com/c/rK02fz/gKdL
https://paperpile.com/c/rK02fz/3w6n
https://paperpile.com/c/rK02fz/11qR+Bou8
https://paperpile.com/c/rK02fz/dQUVV
https://paperpile.com/c/rK02fz/WopNy
https://paperpile.com/c/rK02fz/Bou8
https://paperpile.com/c/rK02fz/MAUp
https://paperpile.com/c/rK02fz/FBAf
https://paperpile.com/c/rK02fz/MzBL
https://paperpile.com/c/rK02fz/x3jx
https://paperpile.com/c/rK02fz/cK68+WTYK
https://paperpile.com/c/rK02fz/z8zc+oPZs+Jz8e
https://paperpile.com/c/rK02fz/GerIo
https://paperpile.com/c/rK02fz/cLMKi+JWKmI
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different subjects into clusters with similar expression patterns [18,19]. Yet these bioinformatic 

tools can only integrate datasets from identical species. Several studies developed algorithms 

to compare mRNA expression patterns across species [20–22]. However, a standardized and 

easy way to compare single cell/nuclei RNA sequencing data sets of human and mouse by 

directly integrating the data is still missing [18,23,24]. To overcome these limitations and the 

highly increasing demand for comparison of various organisms prompted us to develop a R 

package called OrthoIntegrate. It features a pipeline for integration of single cell datasets and 

orthologue assignment, allowing the simple integration of data from animal models and human 

patients. For the orthologue assignment process, we implemented an algorithm in the 

workflow that adjusts the different nomenclature between species before the integration takes 

place, by using the databases of Ensembl, NCBI, and Uniprot. [25–27]. Using our newly 

established pipeline, which is completely compatible with standard seurat workflows, we 

explored the gene expression patterns in mouse models of HFrEF compared to human 

samples. While 54% of genes were commonly regulated in both species, we also observed 

significant differences in differentially expressed genes and regulated pathways in patients 

with heart diseases than in the corresponding mouse model. 

 

Results 

One to one orthologue assignments 

To integrate single cell data from different species, we established a table of gene names, 

which contains one human gene for each mouse gene, by which it will be replaced (one-to-

one orthologues). We performed the same approach for generating a table of gene names 

between human and zebrafish genes. 

In order to generate these one-to-one orthologues, we utilized the Needleman-Wunsch 

algorithm [28] to perform a pairwise global alignment between possible orthologues retrieved 

by Ensembl database. This calculation determines alignment scores based on differences in 

the amino acid or nucleotide sequences. In case no orthologues were found, nor a protein- or 

https://paperpile.com/c/rK02fz/JWKmI+7XxOc
https://paperpile.com/c/rK02fz/UfAx+dAAd8+fn92
https://paperpile.com/c/rK02fz/JWKmI+qaCkF+PWzuL
https://paperpile.com/c/rK02fz/glxWJ+QKXIa+1fMdv
https://paperpile.com/c/rK02fz/oQriK
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nucleotide sequence is available for a particular gene, a lowercase matching of the human 

gene is searched for in the mouse gene database (Suppl. Fig. 1A).  

The Ensembl database assigned a total of 21,428 mouse orthologues to our human gene ID 

symbols. However, only 77% (16,573) of these were uniquely assigned. Through our 

OrthoIntegrate pipeline, we increased the number of assignments to 82% (17,504). Hereby, 

714 mouse genes were assigned by protein sequence alignment, 89 through nucleotide 

sequence alignment, 42 by using the Levenshtein distance between gene names and 86 using 

our lowercase matching approach. Most of the 86 matches found by lowercasing were long 

non coding RNAs with identical gene names. We then proceeded by filtering the human and 

mice data by these orthologues in our pipeline and replaced the mice nomenclature by the 

human nomenclature for the corresponding samples (Suppl. Fig. 1B). In the end, we could 

assign ~82% of the mice genes to human orthologues (Suppl. Table 2). Replacing mouse 

gene names with the human orthologue allowed us to integrate the human patient data with 

the mouse model data into one single cell object (Fig. 1A). Moreover, we aimed to underscore 

the versatility of OrthoIntegrate. Therefore, we integrated and clustered scRNA-seq datasets 

related to Alzheimer's disease from human, mouse and zebrafish with OrthoIntegrate pipeline 

(Suppl. Fig. 6). We successfully created clusters representing excitatory and inhibitory 

neurons, as well as astrocytes, in the three species (Suppl. Fig. 6A-B). Given the focus and 

the size of the human study and data most of the excitatory neurons found were of human 

origin, but we showed that excitatory neurons found in mice were also assigned to the same 

clusters and showed comparable marker genes (Suppl. Fig. 6A-D). Similar results were 

obtained for inhibitory neurons and astrocytes proving a successful integration of all three 

datasets (Suppl. Fig. 6C-F). 

 

Cell type composition in human and mouse upon HFrEF 

After demonstrating the practicality of the integrated dataset, the biological differences of the 

human mouse datasets were analyzed. The absence of species specific clusters in the 

combined UMAP plot confirms that human and mouse hearts comprise similar cell types and 



6 

gene expression patterns (Fig. 1B). This is additionally verified by similar cell type specific 

marker genes in both species in the different cell clusters (Fig. 1E-F). The specific marker 

genes allowed the annotation of the clusters into cardiomyocytes (CMs), pericytes (PCs), 

smooth muscle cells (SMCs), fibroblasts (FBs), endothelial cells (ECs), immune cells (ICs), as 

well as neuronal cells (NCs) (Fig. 1C). In addition, we analyzed how the distribution of cell 

types was affected by the heart failure phenotype. Thereby a 20% decrease in human CM 

was observed when comparing the control samples with the HFrEF samples (45% -> 25%) 

(Fig. 1D). However, in mice, there is no difference in the numbers of CMs between the 

infarcted and control mice (both comprise about ~25% CM) (Fig. 1D). Furthermore, we found 

differences in the distribution of ECs in the human versus mouse samples. Specifically, we 

observed a significant increase in the EC population in samples from HFrEF patients (~30 %) 

compared to healthy hearts (~8%). In contrast, we noticed decreased EC numbers in mice 

upon infarction (from 25% in controls to 18% after chronic infarction). Minor changes are also 

observed in the contributions of other cell types (Fig. 1D).  

 

Comparison to other integration methods 

We carefully inspected our data to determine species specific distribution by creating UMAP 

plots of all cells in our integrated object. Figure 1B shows that cells of mouse and human origin 

commingled in all clusters, which indicates a successful integration based on the cell types 

and not on the species. We additionally compared our OrthoIntegrate pipeline to other 

orthologue databases and tools to assess the advantages of our orthologue assignments. For 

this purpose, we created the same scRNA-SEQ datasets using the different orthologue lists 

OMA, Biomart and InParanoid [29–31]. Visualization of the integration by UMAP plots shows 

an integration of human and mouse-derived cells in the individual cell clusters also with the 

alternative orthologous list (Suppl. Fig. 2A-C). However, besides the visual impression, 

quantitative metrics were used to assess the quality of the clustering, we calculated silhouette 

coefficients, which measure the quality of the clustering independent from the number of 

https://paperpile.com/c/rK02fz/CB0Gn+ar2U+M80Y
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clusters. Integration by OrthoIntegrate resulted in the highest silhouette coefficients compared 

to the other orthologue databases, suggesting an improved clustering (Fig. 2A). Additionally, 

it is noteworthy to mention that our pipeline achieved by far the most 1:1 protein coding and 

lncRNA coding orthologous pairs in comparison to the other described methods (Fig. 2B-C). 

To further determine the clustering quality after integration, we computed supplementary 

metrics recommended by the single-cell integration benchmark scib package [32] and the 

Orthology Benchmark Service. We also calculated the Species Mixing Score and Bio 

Conservation Score, following the guidelines of the BENGAL pipeline (Fig. 2D) [32,33]. 

Remarkably, our method not only achieved the highest number of uniquely mapped 

orthologous pairs but also demonstrated high performance across individual metrics in 

comparison with alternative tools (Fig. 2D-F). 

 

Differential gene expression between mice and humans  

The differentially expressed gene (DEG) analysis, showed strong similarities in the regulated 

genes upon HFrEF. However, some genes showed differences in their expression patterns. 

Mainly when the cell types were analyzed individually. Overall, we found a comparable number 

of DEGs in both species (4141 in humans, 4654 in mice).  

The average of commonly regulated genes per cell type (Fig 3A; left side) showed that around 

54% of DEGs found in humans were also regulated in mice, with minor differences between 

cell types. Upregulated genes showed a generally higher comparability compared to 

downregulated genes (Fig. 3B). Only in smooth muscle cells many more human specific DEGs 

were regulated in opposite directions (Fig. 3B, right upper panel). Averaging the mouse 

regulated DEGs (Fig 3A; right side) showed that only about 34% of the cell type specific DEGs 

in mice were regulated in humans, indicating a more substantial transcriptional effect of the 

LAD model compared to the human disease. 

 

Figure 3B separately shows the up (top panel) and down (lower panel) regulated genes in 

humans and their regulation in mice. For the upregulated genes in humans, around 50-70% 

https://paperpile.com/c/rK02fz/u3vR
https://paperpile.com/c/rK02fz/u3vR+kKIJ
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of the corresponding mouse genes were also upregulated, around 25% were not regulated 

and only about 5-20% percent were regulated in the opposite direction. Suggesting that overall 

activation occurs mainly in similar expression pathways across all cell types. In the 

downregulated genes in humans, we observed a strikingly low number of commonly regulated 

genes in cardiomyocytes. There, only 23.3% of the downregulated genes were also decreased 

in mice. Most of them were either not regulated (48.2%) or even upregulated in mice (28.5%). 

The other cell types show a higher percentage of commonly downregulated genes. 

We visualized all expression changes in one heatmap to further validate individual gene 

changes upon HFrEF (Fig. 4 A/B). Thereby, we found that around 30% of the genes show no 

changes in their expression upon heart failure (Fig. 4A, cluster 1). Most expression changes 

are consistently observable in all cell types (cluster 2-23) and therefore appear as general 

responses to injury which cannot be attributed to individual cell types. However, the remaining 

16 clusters show cell type specific expression patterns (Fig. 4B). For example, cluster 25 holds 

a set of genes that show increased expression of genes in human FBs. Whereas cluster 28 in 

human ECs contains many genes that are down regulated. These changes are not detectable 

in other cell types for these genes and are therefore of utmost interest to follow up on specific 

gene expression changes in species specific cells. Similar patterns were found by observing 

commonly regulated genes (Fig. 4C). For humans, the largest number of DEGs were found in 

all cell types (1087 DEGs). The second largest groups contain DEGs that are found only in 

the individual cell types (Fig. 4C; Suppl. Fig. 4A). Thus, we identified 687 DEGs specific to 

human CM and 208 DEGs that can only be found in ECs. If we now determine the distribution 

of DEGs in mice, one finds larger populations of cell type specific genes and fewer, which are 

found in all populations (n = 228). Notably we found far fewer DEGs in the mouse SMCs than 

in the human samples. However, this could be related to the total number of SMCs in mice, 

which is far less in mice than in human samples (Fig. 1C & 3A). This could explain the lower 

number of DEGs found in all cell types. When we excluded SMCs from the common DEG 

population, we observed a similar number of DEGs in all cell types as in humans previously 

(Suppl. Fig. 4B). 
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Further, we analyzed the highest upregulated genes per cell type in humans and mice along 

with the regulation of that gene in the other species. Hereby, we observed how the genes with 

the largest changes in human heart failure patients behave in the respective mouse model 

(Suppl. Fig. 3). 

We observed that the expression of the most regulated genes in human cell types show 

comparably less regulation in the mouse models. For example, we found LDB2, a gene of the 

LIM-Domain family, in human CMs as highly upregulated (Log2FC = 2.15) (Suppl. Fig. 3A). 

The LIM-Domain family genes are well known as adapter molecules that allow the assembly 

of transcriptional regulatory complexes in CM. However, in mice, LDB2 is only mildly regulated 

upon HFrEF (Log2FC = 0.38). Other genes such as the VEGF receptor FLT1, which is 

upregulated in human cardiomyocytes, show a downregulation in mice CMs. This 

demonstrates that some genes have completely different expression patterns in humans and 

mice. However, some genes share similar regulation in their respective cell types. Thus, we 

observed that Phosphodiesterase 4D (PDE4D) and ADP Ribosylation Factor Like GTPase 15 

(ARL15) show similar changes in ECs. Among the ten most upregulated genes in the mouse 

model data, we found three genes that also show a significant increase in their expression in 

humans (RBPJ, SLC9A9, RUNX1) (Suppl. Fig. 3B). The other genes, however, show little to 

no change. In contrast, if we investigate the expression changes in ECs, DEGs show an 

opposite direction in their expression change (RBPJ, PID1, SLC9A9). These differential gene 

expressions in the cell types suggest that some cell type specific responses may be different 

between human patients and mouse models. 

 

Pathway enrichment results in cardiomyocytes 

To address whether the relatively high number of significantly regulated genes indicate overall 

changes in pathways and pathological processes or whether the differences relate more to 

the alternative use of genes with similar functions in mice and humans, we further determined 

the implications for overall pathways in the individual cell types. Figure 4 shows a 

simplifyEnrichment heatmap cluster with word clouds of gene ontology terms regulated in 



10 

human or mouse cardiomyocytes. We generally observe more significantly enriched GSEA 

terms in humans than in mice (Fig. 5A). Important pathway terms regarding mitochondrial 

energy production and the electron chain were enriched in both species. Other terms involving 

developmental processes are enriched in humans compared to mice. Additionally, we 

investigated the set of genes found in cluster 25 and cluster 28 in more detail (Fig. 4B; Fig. 

5B-C). Gene Ontology (GO) analysis on subsections of genes found in these clusters revealed 

a change in pathways associated with cell adhesion and extracellular processes (Fig. 5B). 

The second subsection of cluster 28 was associated with terms regarding cell differentiation 

processes, like “epithelial cell differentiation” or “angiogenesis” (Fig. 5C).    

We identified cell type specifically regulated pathways upon HFrEF. Therefore, we 

investigated how the enriched signaling pathways differ between humans and mice in 

cardiomyocytes. We observed larger differences for pathways that were specifically regulated 

in humans. Among the most regulated pathways, specifically detected in the human, we found 

the terms "actin filament organization" and "angiogenesis" (Fig. 6A). Genes associated with 

these pathways were explicitly upregulated in patients (Fig. 6B). These gene sets are not 

found among the regulated pathways in mice (Suppl. Table 4). Examples of angiogenesis-

related genes, which are specifically induced in human heart failure but not in mouse models, 

including receptors such as the VEGF-receptor FLT1, or transcription factors like the 

mesenchyme homeobox protein 2 (MEOX2) (Fig. 6B). In addition, many GTPase regulatory 

genes were found specifically increased in humans, including MCF2L and RASGRF2, which 

are known to regulate RAC1, and SPATA13, which enables guanyl-nucleotide exchange 

factor activity [34,35]. In contrast, we observed that signaling pathways mainly dealing with 

energy metabolism are commonly regulated in patients with heart disease as well as in mouse 

models. The genes included in pathways, such as “ATP biosynthetic process”, “mitochondrial 

ATP synthesis”, “aerobic electron transport chain” and “cellular respiration”, show significant 

downregulation compared to their corresponding control (Fig. 6C). These data suggest 

conservation of disturbed mitochondrial metabolism in both mice and humans upon heart 

failure. 

https://paperpile.com/c/rK02fz/ymhd+TOlT
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On the other hand, pathways such as "Wnt signaling pathway", "actin-myosin filament sliding" 

and “regulation of cell morphogenesis“ are upregulated specifically in the mouse HFrEF model 

(Fig. 6A). Genes associated with Wnt signaling include LRP6, a known inhibitor of 

cardiomyocyte proliferation [36], and the serine/threonine-protein kinase MARK2, which 

regulates the stability of microtubules through phosphorylation and inactivation of several 

microtubule-associated proteins [36]. 

Furthermore, we repeated the GSEA analysis with the identified ECs in the human and mouse 

model data to gain further insight into the different cell types (Suppl. Fig. 5). Here, we found 

human-specific regulated terms such as "cardiac contraction" and "regulation of 

axonogenesis" (Suppl. Fig. 5A) that we only find in ECs but not in the previously analyzed 

CMs. The genes in these sets show a distinct regulation only observed in human data (Suppl. 

Fig. 5B). When we examined the commonly regulated metabolic pathways. We found similar 

terms and changes in gene expression related to impaired mitochondrial metabolism in EC as 

we had previously observed in CMs (Suppl. Fig. 5C). In ECs, we also found similar mouse-

specific terms such as "cell morphogenesis" and the "Wnt signaling pathway", but also newly 

discovered pathways such as "positive regulation of steroid hormone secretion". Steroid 

hormones have been shown to coordinate microvascular function in obese mice endothelium 

[37]. Based on these results, one might speculate that this regulatory function is mouse 

specific. GSEA analysis for all other cell types can be found under [38]. All Source code for 

this study can be found in the paper specific Github repository [39]. 

 

Discussion 

The ever growing number of published single cell experiments enables scientists to deepen 

the knowledge about transcriptional changes of individual cell types and species specific 

regulatory changes, upon disease conditions. Particular combination of single cell datasets 

from different species in the same UMAP projection allows the detection of well conserved or 

species specific regulatory networks [40–42].  

https://paperpile.com/c/rK02fz/pNlcZ
https://paperpile.com/c/rK02fz/pNlcZ
https://paperpile.com/c/rK02fz/XHSO
https://paperpile.com/c/rK02fz/nNBB
https://paperpile.com/c/rK02fz/J7Wh
https://paperpile.com/c/rK02fz/KUU0u+qbEHC+Sw8xp
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Therefore, integrating datasets from different species with a well curated list of orthologues, 

has significant advantages and simplifies comparisons among species.  

Here we propose OrthoIntegrate, an R-package that enables scientists to integrate single cell 

datasets from different species into a shared dimensional space. To generate high quality and 

uniquely mapped orthologous lists between different species, we implemented a new pipeline 

that increases the ono-to-one assignment of ontologies to improve single cell integration. 

Compared to the Ensembl orthologous list (Biomart), our pipeline results in up to 10% more 

uniquely assigned orthologues between human and mouse. Compared to the other databases 

OMA and InParanoid, OrthoIntegrate contained 8.6% and 9.3% more one-to-one orthologues 

(Fig. 3F).  

OrthoIntegrate additionally contains functions that use the extended orthologous assignments 

to streamline the integration of single cell datasets from humans and mice. Moreover, it is 

highly adaptable and can be easily customized to support other species.  

 

We demonstrated the usability of combining cross-species single cell data by using data sets 

of human and mouse heart failure with reduced ejection fraction. 

In order to evaluate the species mixing and the biological conservation of different integration 

methods, we applied certain metrics from the scib package [32,43], which were also suggested 

by Song et.al [32,33,43]. The results are summarized in Figure 2D. We found that most batch 

correction scores improve by using OrthoIntegrate. 

For biological conservation scores, we demonstrate that some metrics, like the “cell cycle 

conservation” are improved by using OrthoIntegrate. Which means that the variance caused 

by different cell cycle states of the cells is conserved via OrthoIntegrate. Other parameters like 

the NMI-score are reduced. But this score for example is strongly influenced by the cell type 

labeling [33], which was focused only on main cell type groups in these datasets, regardless 

of the existence of subpopulation or mixed cell type population clusters. In other words, 

subclusters of different cell types were not annotated in detail. Due to the increased numbers 

of features that are included in OrthoIntegrate, the clustering might be more diverged, likely 

https://paperpile.com/c/rK02fz/tBpa+u3vR
https://paperpile.com/c/rK02fz/tBpa+u3vR+kKIJ
https://paperpile.com/c/rK02fz/kKIJ
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by species specific non-coding RNAs or other features, which are not included in the other 

databases. Therefore, the more divergent clustering, due the increased number of features in 

OrthoIntegrate combined with the broad cell type labeling might explain the slightly reduced 

NMI scores. However, since various publications have shown that long-non-coding RNAs 

have important regulatory roles in the heart [44–46], we think that these additional non-coding 

RNAs are an important resource to study species specific responses to different disease 

conditions, especially in the field of heart failure. 

 

Commonly regulated pathways upon heart failure reflect an evolutionary conserved 

transcriptomic answer to severe damage in heart cells. One example is the conserved 

downregulation of critical mitochondrial metabolic pathways, which provide ATP for the heart 

(Fig. 5, Fig. 6A/C). As the heart is the most energy consuming organ, maintaining 

mitochondrial function plays a critical role and the decline in energy production limits heart 

function [47]. We could show that genes important for ATP biosynthesis and electron transport 

(e.g. PGAM2, NDUFA1 and TMEM126A) are consistently downregulated in heart failure. 

PGAM2 and NDUFA1 have been described in the context of heart disease in mice [48] and 

rats  [49], respectively, but their role in humans is unknown.  

 

Besides commonly regulated pathways, we found differences between humans and mice 

upon heart failure. In cardiomyocytes, genes associated with “angiogenesis” were specifically 

enriched in humans. For example, the VEGF receptor FLT1 was specifically increased in the 

human samples. FLT1 primarily mediates VEGF signaling in endothelial cells, but its role in 

cardiomyocytes, besides high expression [50], is less clear [51]. Functionally, FLT1 was 

shown to partially mediate VEGF induced cardiomyocyte differentiation [52] and regulate 

cardiomyocyte contractility in the embryonic zebrafish heart [53]. Cardiomyocyte specific 

deletion of FLT1 was shown to worsen cardiac remodeling and hypertrophy induced by 

pressure overload [54], suggesting that the specific upregulation in humans may represent a 

compensatory cardioprotective mechanism that might not be conserved in mice.  

https://paperpile.com/c/rK02fz/5VEy+8y5s+vB7F
https://paperpile.com/c/rK02fz/WlivZ
https://paperpile.com/c/rK02fz/izES
https://paperpile.com/c/rK02fz/f8bB
https://paperpile.com/c/rK02fz/INhAx
https://paperpile.com/c/rK02fz/7WWCh
https://paperpile.com/c/rK02fz/6Qg7x
https://paperpile.com/c/rK02fz/C3FAJ
https://paperpile.com/c/rK02fz/AP6wp
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A second human CM specific gene is MEOX2, which was assigned to “angiogenesis” because 

of its role in endothelial fatty acid transport [55]. MEOX2 plays a critical role in development of 

all muscle lineages [56]. In cardiomyocytes, MEOX2 overexpression blocks proliferation 

during heart morphogenesis [57]. All of these human CM specific genes have not been studied 

in mouse cardiomyocytes and their human specific regulation upon heart failure might be of 

utmost interest for future studies. 

 

Among the pathways specifically enriched in mice we found predominant expression of genes 

associated with Wnt signaling. Although most identified genes have not been directly linked to 

cardiomyocyte-specific functions, Wnt signaling critically regulates cardiac hypertrophy, 

remodeling and regeneration [36,58]. Therefore, these findings and the other identified 

species specific pathways deserve more in depth validation and investigation. 

 

To further demonstrate the functionality of OrthoIntegrate, we integrated scRNA-SEQ data 

from human [43], mouse [59] and zebrafish [59,60] brain tissue under Alzheimer's condition. 

Besides the evolutionary distance between these species, we could jointly cluster different cell 

types via OrthoIntegrate (Suppl. Fig 6 A-C) and detect commonly expressed marker genes 

within these cell clusters (Suppl. Fig 6 D-F).    

 

In summary, our publicly available bioinformatic tool OrthoIntegrate simplifies the comparison 

of scRNA-SEQ datasets from humans and mice. Thereby we could identify conserved 

regulatory pathways upon heart failure. Furthermore, we identified cell type specific 

differences in both species. Also, we showed pathways like angiogenesis regulated explicitly 

in humans, and Wnt signaling pathways, specifically regulated in mice. 

We anticipate that this study shows the benefits of the joint analysis of scRNA-SEQ data 

through OrthoIntegrate. Due to the growing number of scRNA-SEQ datasets, we hope that 

OrthoIntegrate encourages other scientists to perform comparative analysis between different 

species and thereby increasing knowledge about conserved or species specific pathway 

https://paperpile.com/c/rK02fz/44l25
https://paperpile.com/c/rK02fz/btEoH
https://paperpile.com/c/rK02fz/MtQZ2
https://paperpile.com/c/rK02fz/qjvDJ+pNlcZ
https://paperpile.com/c/rK02fz/tBpa
https://paperpile.com/c/rK02fz/mrFy
https://paperpile.com/c/rK02fz/mrFy+eWKa
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responses in various diseases. This could improve the effective development of novel 

treatment strategies for heart failure or other diseases.  

 

Limitations 

The main limitation of our orthologue assignment and sample integration pipeline is the 

dependence on reliable databases for orthologous lists. Another problem with this approach 

is that it fails to consider the biological functions of the possible orthologues but selects the 

orthologue with highest sequence similarity. Second, our biological example has some 

limitations. While a decent number of healthy controls is available, the number of patients with 

HFrEF is limited. Knowing the biological heterogeneity of heart failure and comorbidities, 

variations are expected and the samples may not represent the representative and most 

common spectrum of heart failure. Finally, although the mouse model used is commonly 

applied in cardiovascular research, there are significant limitations due to the lack of 

underlying coronary artery disease and therapeutic pharmacological and interventions as it is 

done in humans. The integration of increasingly available published data both from alternative 

mice models and data derived from human samples will allow a refined comparative analysis 

in the future. 

 

Methods 

Study samples 

The human heart samples used as controls were provided from the PRJEB39602 (Human 

Cell Atlas) project published in 2020. The heart tissue was obtained from deceased transplant 

organ donors who were between 45 and 70 years old and showed unremarkable 

cardiovascular history. The healthy mice samples (CTRL: n4-n9) were gathered by Vidal et al. 

(2019) and can be found using the Array Express Data Portal under E-MTAB-7869 

(Supplement Table 1). 
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Heart samples from patients with heart failure with reduced ejection fraction (HFrEF) were 

gathered for this study from the Frankfurt University Hospital and subsequently processed at 

the Institute of Cardiovascular Regeneration (Frankfurt am Main, Germany), where the 

processed mice samples (CTRL: n1-n3, HFrEF: n1-n4) were also gathered and sourced.  

Nuclear isolation steps and single-nucleus RNA-sequencing library preparation were 

conducted as described in Nicin et al.; NCVR 2022 [61].  

 

The human heart failure samples as well as the mice control and heart failure samples are 

published in Array Express with the accession E-MTAB-13264 (Supplement Table 1). 

 

In order to provide another species and disease condition, we applied OrthoIntegrate on 

humans, mice and zebrafish in Alzheimer disease (AD) condition. Therefore we gathered 

scRNA-SEQ data from the prefrontal cortex (location matched) of human and mouse and 

zebrafish via scRead (human and mouse data, disease n=2; healthy n=2) [62] and GEO 

(GSE118577; n=3). The human and mouse samples originate from GSE129308 [43] and 

GSE143758 (AD) & GSE143758 (Healthy), respectively. 

 

Single cell pre-processing 

Single-cell RNA-seq results were processed by CellRanger (10x Genomics) version 6.1.1 

software. The first step consisted of demultiplexing and processing raw base count files by the 

implemented mkfastq tool. The human raw reads were mapped to the reference genome hg38 

(GRCh38-2020) using Cellranger count, whereas the mouse raw reads were mapped to the 

reference genome mm10 (GRCm38-2020). The secondary data analysis was conducted 

using the Seurat 4.1.0 package in R. The data sets were first combined into a Seurat object 

and then subjected to a filtering process. Barcodes with too low (< 300) or too high number of 

genes (> 6000) were sorted out and not considered further in the data analysis. In addition, 

barcodes with too low (< 500) and too high read counts (> 15000) were also sorted out. To 

further ensure no apoptotic cells or doublets were analyzed, we discarded barcodes with a 

https://paperpile.com/c/rK02fz/IeOw
https://paperpile.com/c/rK02fz/UAwK
https://paperpile.com/c/rK02fz/tBpa
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high percentage of mitochondrial content (> 5%). The filtered gene counts were then 

logarithmized and normalized according to the tutorial for data analysis with Seurat. Baseline 

characteristics for the samples can be found in Supplement Table 1. 

 

Orthologue assignment and sample integration 

In order to ensure the integration of single cell datasets from different species, we coded a 

function to assign animal model orthologues to the human nomenclature (or vice versa) using 

gene transfer format (GTF) files provided by Ensembl (GRCh38, GRCm38). In order to detect 

only well annotated genes between the species, predicted genes were removed. Afterwards 

orthologues to the human genes were determined using the R package biomaRt. This 

assigned the majority of genes in our human GTF file to at least one orthologue. If there were 

several entries of possible orthologues in the Ensembl database, a protein sequence 

comparison was initiated. Therefore, protein sequences were retrieved from the Uniprot 

database for the human gene and all possible orthologues in the second species. These 

sequences were then aligned using the R package Biostrings 2.60.2. The alignment score 

was calculated based on the Needleman-Wunsch global alignment algorithm [28] with 

substitution matrices. For nucleotide sequences, the nucleotideSubstitutionMatrix function 

was used to produce a substitution matrix for all IUPAC nucleic acid codes based upon match 

and mismatch parameters. BLOSUM50 matrix was retrieved from the NCBI Matrix 

Compendium for the protein sequence. The gene IDs with the highest amino acid sequence 

similarity between their canonical sequences were assigned. If there are no entries for 

canonical sequences in Uniprot, the nucleotide sequence similarity comparison is initiated. 

For this step, the unpredicted mRNA sequences for the gene in the first species and for the 

possible orthologues in the second species were obtained from the NCBI database and 

aligned analogously to the previous step. If no unpredicted mRNA is available for an entry, the 

function retrieves the unpredicted non coding RNA of the gene. This ensures that non coding 

genes without mRNAs can still be assigned correctly. In case both RNA sequences are not 

retrievable, predicted versions of mRNA and non coding RNA are retrieved. If all these 

https://paperpile.com/c/rK02fz/oQriK
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assignment steps are not successful, the Levenshtein distance was used to compare the ID 

symbols for possible orthologues and the orthologue with the lowest Levenshtein distance was 

selected.  

Many long-non-coding RNAs are not listed in orthologue databases, therefore a final 

lowercase matching step was performed to assign genes like Malat1 to the human MALAT1. 

With this globally applicable list of orthologues between species, the datasets were now 

filtered by these and then merged into one object using Seurat's canonical correlation analysis 

(CCA) integration. 

 

Clustering, metrics calculation and annotation 

To classify cells into clusters based on their expressed genes, we used the FindNeighbors 

and FindClusters (resolution parameter = 0.3) function implemented in Seurat. These clusters 

are determined by applying the shared nearest neighbors (SNN) clustering algorithm and the 

Uniform Manifold Approximation and Projection (UMAP) dimension reduction. 

Calculations of the silhouette coefficient are based on computing a distance matrix based on 

the cell embeddings matrix for principal component analysis (PCA) performed by Seurat. This 

distance matrix includes the information of cell-cell distance, which is necessary for calculating 

the silhouette coefficient with our calculated clusters in the function silhouette of the cluster 

package (version 2.1.4). Additionally, the coefficients of the samples were averaged for each 

object. For applying the python scib package we converted our Seurat objects into Anndata 

objects using the zellkonverter package (version 1.10.1). We computed graph connectivity, 

principal component regression comparison, silhouette batch, kBET, LISI and cell cycle 

conservation scores for defining the species mixing score. Furthermore, the bio conservation 

score was calculated by computing the species type LISI, isolated labels F1 score, as well as 

the previously mentioned silhouette coefficient. The total score was then calculated by a 

weighted addition of species mixing score and bio conservation score (0.5 * species mixing 

score + 0.5 * bio conservation score). We provided the UniprotIDs of the orthologous lists 

obtained with the tools to be compared to the Orthology Benchmark web service to calculate 
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the Schlicker similarity scores for enzyme classification conservation and gene ontology 

conservation. 

The orthologous lists for OMA, Biomart and InParanoid were created by following their 

introductions on their tool descriptions and by using the same GTF files as before (GRCh38, 

GRCm38). 

For the assignment of cell clusters to cell types, we used a reference object that we had 

previously manually annotated with marker genes from Tombor et al. 2021 [63]. Here, the R 

package SingleR can be used to adopt marker genes that were used for the previous 

annotation of clusters of the reference object. These are then transferred and compared to 

marker genes of the cell clusters of our object to be annotated. Thus, a reproducible annotation 

can be guaranteed with the help of an exactly annotated data set. 

 

Differential gene expression analysis and gene ontology analysis 

Detection of differentially expressed genes (DEGs) for the cell type specific clusters was 

performed by the hurdle model of the MAST package (version 1.20.0). Results were filtered 

by their Bonferroni-adjusted p-value (p.adj < 0.05). The totality of DEGs were represented by 

Sankey plots created with the R package networkD3 (version 0.4). Additionally, bar plots were 

created using R package ggplot2, representing human DEGs and their regulation in mice. 

DEGs were also divided according to their species and cell type assignment and then 

visualized for DEGs with a positive Log2FC and separately in another plot, for DEGs with a 

negative Log2FC. Here, DEGs occurring in both human and mouse for the respective cell type 

have been pooled. Visualization was done in the form of a Circos plot (R package circlize 

0.4.14). The gene regulation heatmap was created using the log2FC of all identified genes 

and a k-means clustering (k = 40) (R package ComplexHeatmap 2.16.0). Visualization of 

distinct and similar populations of genes in the analyzed cell types per species was achieved 

by creating venn diagrams with the Jvenn webtool. 

 

https://paperpile.com/c/rK02fz/ScX20
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Gene Set Enrichment Analysis (GSEA) was performed using the R package clusterProfiler 

(version 4.2.2) and the GO Database. GSEA terms were calculated separately for each cell 

type. The terms were sorted according to the Benjamini-Hochberg adjusted p.value and 

evaluated according to their “normalized enrichment distribution”, which gives information 

about the regulation of the genes in the described pathway. A heatmap was created by 

clustering the GSEA terms by their similar geneIDs. (R package simplifyEnrichment 1.10.0). 

Additionally, the GSEA results were plotted in dot plots. Specifically, for genes described in 

the pathway, the standard error of the mean (SEM) bar plot was created (for their averaged 

UMIs) by using the R package ggplot2. Gene Ontology (GO) analyses were performed using 

the subsection of genes found in cluster 25 and cluster 28 as input for the webtool Metascape. 

 

Funding 

The study was funded by DZHK (German Centre for Cardiovascular Research), partner site 

RheinMain, Frankfurt am Main, Germany to D.J., German Research Foundation (DFG), SFB 

1531 - Project Nummer 456687919 to SD; German Research Foundation (DFG), SFB 1366, 

Project Number 394046768; and the Dr. Rolf M. Schwiete Stiftung, Projekt 08/2018 to S.D. 

 

List of abbreviations 

RNA: ribonucleic acid; mRNA: messenger RNA; scRNA-SEQ: single cell RNA sequencing; 
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AD: Alzheimer disease; GTF: gene transfer format; CCA: canonical correlation analysis; SNN: 

shared nearest neighbors; UMAP: uniform manifold approximation and projection; PCA: 

principal component analysis; GSEA: gene set enrichment analysis; SEM: standard error of 

the mean; GO: gene ontology; HLC: human cell atlas; GC: graph connectivity; PCR: principal 

component regression comparison; bASW: batch average silhouette width; CCC: cell cycle 
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conservation; NMI: normalized mutual information; ILF1: isolated labels F1 score; SC: 

silhouette coefficient; SMS: species mixing score; BCS: bio conservation score; NES: 

normalized enrichment score; UMI: unique molecular identifier. 
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Data availability 

The single nuclei data for humans have been deposited in the Human Cell Atlas (HLC) 

database and can be accessed through the HCA Data Portal [64]. The mice sequencing data 

are available through ArrayExpress under the accession number E-MTAB-7869. All 

supporting data and materials are available in the GigaScience GigaDB database [65]. 
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Figure Legends 

Fig.1: Integrated human and mouse snRNA-SEQ data of healthy and heart failure 

samples.  

(A) Use case diagram of OrthoIntegrate: Shown are the steps that are run by the user within 

their standard Seurat workflow. First the Import function is used to create Seurat objects from 

scRNA-seq data, second orthologues are searched by the BuildOrtholog function and the third 

step creates an integrated object with uniform nomenclature by using the IntegrateObjects. (B) 

UMAP showing human cells (red) and mice cells (blue) in a common UMAP projection. In 

addition, cell types for the cell clusters can be seen. (C) UMAP with defined clusters according 

to Seurat's clustering, divided by species. Cells of mouse and human origin commingled in all 

clusters. There are no clusters formed that originated from only one of the two species. The 

cells were identified as cardiomyocytes (red), fibroblasts (yellow), endothelial cells (green), 

pericytes (turquoise), immune cells (blue), smooth muscle cells (purple) and neuronal cells 

(pink). (D) Bar plot showing cell composition of cell types in human (red) and mice (blue) 

samples. Samples were grouped based on their origin into human controls from the left 

ventricle (Human-CTRLlv), human HFrEF (Human-HFrEF), mouse controls (Mice-CTRL), and 

mouse HFrEF model (Mice-HFrEF). Cell types were then analyzed for their composition from 

the previously mentioned groups and plotted. P-values above the certain groups were 

calculated by two-sided Student's t-test. (E) Dot plot depicting the average expression levels 

and expression proportions in human samples of the top ten feature genes for the found cell 

types. The size of the dot represents the proportion of cells expressing the indicated gene 

within a cell type, and the color indicates the average expression level of cells. (F) Dot plot 

depicting the average expression levels and expression proportions in mice samples of the 

top ten feature genes for the found cell types. Similar to (E) the size of the dot represents the 

proportion of cells expressing the indicated gene within a cell type, and the color indicates the 

average expression level of cells. 
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Fig. 2: Comparison of snRA-Seq data integration with orthologues from OrthoIntegrate 

and other orthologue databases. (A) Box plot showing the average silhouette coefficient for 

clusterings based on different databases and tools. The dark blue box stands for the silhouette 

coefficient of the clustering made with an orthologous list using the tool OMA (Orthologous 

matrix). It is followed by the results for biomaRt (light blue), InParanoid (green) and the pipeline 

OrthoIntegrate (yellow). On the y-axis you can see the value of the silhouette coefficient. 

Additionally, each silhouette coefficient was calculated for each sample and depicted as a 

circle in their species specific color. (B) Bar plot with number of orthologues found which codes 

for a protein (C) and bar plot with number of orthologues found which codes for lncRNA. On 

the x-axis the used tool is depicted. (D) Table showing results of different metric calculations 

to comprehend batch correction and biological conservation of clusterings based on 

orthologous lists of OMA, biomaRt, InParanoid and OrthoIntegrate (GC = graph connectivity, 

PCR = principal component regression comparison, bASW = batch average silhouette width, 

CCC = cell cycle conservation, NMI = normalized mutual information, ILF1 = isolated labels 

F1 score, SC = silhouette coefficient, SMS = species mixing score, BCS = bio conservation 

score). The color code represents low and high values and is scaled per column (low = green, 

brown; high = blue, yellow). (E) Schlicker similarity scores calculated for OMA (red), Biomart 

(green), InParanoid (blue) and OrthoIntegrate (purple) in terms of enzyme classification 

conservation (left) and gene ontology conservation (right). (F) Venn Diagram highlighting the 

numbers of uniquely found orthologues between human and mouse per tool and their overlap 

between each other (blue = OMA, red = biomart, green = biomart, yellow = OrthoIntegrate). 

 

Fig.3: Similarities and differences revealed by DEG analysis 

(A) Sankey plot illustrating the distribution of differentially regulated genes (DEG) in the 

corresponding cell types. The width of the paths illustrates the number of DEGs that are either 

human specific (yellow), detected in both species (light green) or mouse-specific (dark green). 

DEG analysis was performed for each cell type individually. Neuronal cells were omitted from 

all further analyses due to their insufficient number of cells in the mouse data. (B) Bar graph 
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of up (top) and down (bottom) regulated genes in humans, along with the expression in mice. 

The panels show genes that are either  commonly regulated (left), regulated in humans and 

not regulated in mice (middle) and regulated in opposite directions. 

 

Fig.4: DEG analysis shows similar and different populations of regulation in gene 

expression patterns upon heart failure in humans and mice. (A) Heatmap of log2FC 

values (Control vs HFrEF) for all genes and all cell types. The y-axis describes all genes 

(16.545) clustered by a k-means algorithm (k = 40). The x-axis shows the species and the 

additional clustering into the different cell types. Positive log2FCs are represented by a red 

color, while negative scores give a blue color. (B) Close-up of the 24-40 k-means clusters of 

log2FCs of genes in which most cell type-specific differences are observed. (C) Venn 

Diagrams of all identified DEGs in human (top) and mouse (bottom) (log2FC > 0.1 and p-

adjusted < 0.05). 

 

Fig.5: GSEA analysis reveals more regulated pathways in heart failure in human 

cardiomyocytes than in mice, with the terms found sharing many keywords. (A) 

Heatmap clustering significant GSEA results (p.adj < 0.25) of DEGs found in human and 

mouse cardiomyocytes by similar GeneIDs in the pathways. Bar graphs are shown on the left 

y-axis representing the number of pathways found in the respective cluster for the given 

species and condition. In addition, the adjusted p-value is color-coded from 1 (green) to the 

smallest p-value found ~0.025 (red). On the right side of the y-axis keywords describing the 

found pathways in that cluster are shown, where the size of the word represents its frequency 

in the terms (larger = most, smaller = less). (B) Bar graph showing the first 20 GO terms found 

by analyzing genes in cluster 25. Terms were sorted by their logarithmized and Bonferroni-

adjusted p-values resulting in high significant pathways depicted first (p.adj < 0.05). (C) Bar 

graph similar to (B) with terms found in a subsection of genes in cluster 28. 
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Fig.6: Common and distinct regulated pathways found in human and mouse 

cardiomyocytes. 

(A) Dot plot visualizing the ten most significant pathways for terms only to be found regulated 

in humans, commonly regulated and specific in mice. The size of the dots corresponds to the 

negative log10 of the Benjamini Hochberg adjusted p-value and the color-code represents the 

normalized enrichment score (NES), with upregulated pathways shown in red and 

downregulated pathways in blue. The y-axis depicts the description of the identified term. 

(B) Bar plot with mean values for the amount of unique molecular identifiers (UMIs) in the cells 

for the shown genes. The genes are identified to be dissimilarly regulated between humans 

and mice for pathways specifically found in humans. (C) Bar graph similar to (B) with mean 

values for UMIs in cells for genes downregulated in both species for commonly found terms. 

(D) Bar graph similar to (B) and (C) with mean values for UMIs in cells for genes which are 

uniquely found to be regulated in terms specifically identified in mice. P-values above the 

certain groups were calculated by two-sided Student's t-test.   

 

Supplement Fig.1: Integration process of human/mouse snRNA-SEQ data.  

(A) UML-Activity-Flowchart showing orthologue assignment pipeline for human to mouse gene 

symbols. First, the Gene transfer format file (GTF) for humans (GRCh38) is used to get all 

annotated gene nomenclatures. Then all genes are filtered out which are only predicted and 

not clearly detected. This list is now searched for orthologues using the Ensembl database; 

all 1:1 assignments can be included in our orthologous list. In the case of multiple assignments, 

all possible replacements are examined according to their protein sequence and an alignment 

score is calculated according to the global sequence alignment. If there is no protein sequence 

in the Uniprot database, the alignment score is calculated based on the nucleotide sequence 

using the NCBI database. Now the gene with the best result is set as an orthologue. All 

unassigned genes are additionally compared with the GTF file of GRCm38 using a lowercase 

matching and if there is a match, they will be added to the orthologue list. If all these 

approaches for a gene do not result in an orthologue, a Levenshtein distance score is 
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calculated based on their gene names. (B) Single cell integration pipeline showing steps 

performed to integrate human and mouse scRNA-SEQ data in a joined UMAP projection. The 

scRNA-SEQ data from our human and mouse samples are first converted into Seurat objects 

and normalized. After that, clustering takes place and cell types can be determined. Using the 

orthologous list from our orthologue assignment algorithm, the objects can be subsetted 

according to the genes found and their nomenclature unified. This is followed by an integration 

into a single object and a clustering step. 

 

Supplement Fig. 2: Overlapping of human and mouse cells after Seurat integration with 

tool specific orthologous list. (A) UMAPs showing human cells (red) and mice cells (blue) 

in a common UMAP projection for each tool used for integrating the data. First UMAP was 

performed on an object made with an orthologous list of OMA, followed by Biomart and 

InParanoid. The last UMAP shows the projection for the OrthoIntegrate pipeline. (B) Similar to 

(A), UMAPs are shown to visualize the clustering created with the R package Seurat using the 

Louvain algorithm. The objects are found in the same order as previously described. (C) 

Similar to (A) and (B), UMAPs are shown with the cell type annotation. The order is maintained 

as in (A) and (B) (same parameters are used for each UMAP; resolution = 0.3).  

 

Supplement Fig. 3: Circos plots of DEGs show specific and similar expressed DEGs.  

(A) Circos plot showing the ten most upregulated genes in human HFrEF (log2FC), separated 

for all cell types. Red line indicates the log2FC for human DEGs, while the blue line indicates 

the log2FC of the corresponding mouse gene. (B)  Circos plot similar to (A) illustrates the ten 

most upregulated genes in mice HFrEF samples in comparison to the regulation of these 

genes in humans. 
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Supplement Fig. 4: DEG analysis shows population of shared and cell type-specific 

genes across cell types in humans and mice. 

(A) Upset plot of Human DEGs found in the analyzed cell types. The groups are sorted by 

their intersection size and plotted on the x-axis of the plot. Additionally the overlapping groups 

are visualized by a connected dot plot. The size of the DEGs per cell type are shown on the 

y-axis. 

(B) Upset plot of Mouse DEG populations similar to previous plot in (A).  

 

Supplement Fig. 5: GSEA analysis shows regulated pathways upon heart failure in 

human and mouse endothelial cells. 

(A) Dot plot visualizing the ten most significant pathways for terms only to be found regulated 

in humans, commonly regulated and specific in mice endothelial cells. The size of the dots 

corresponds to the negative log10 of the Benjamini Hochberg adjusted p-value and the color-

code represents the normalized enrichment score (NES), with upregulated pathways shown 

in red and downregulated pathways in blue. The y-axis depicts the description of the identified 

term. 

(B) Bar plot with mean values for the amount of unique molecular identifiers (UMIs) in the cells 

for the shown genes. The genes are identified to be dissimilarly regulated between humans 

and mice for pathways specifically found in humans. (C) Bar graph similar to (B) with mean 

values for UMIs in cells for genes downregulated in both species for commonly found terms. 

(D) Bar graph similar to (B) and (C) with mean values for UMIs in cells for genes which are 

uniquely found to be regulated in terms specifically identified in mice. P-values above the 

certain groups were calculated by two-sided Student's t-test.  

 

Supplement Fig. 6: Integration of human, mouse and zebrafish scRNA-SEQ prefrontal 

cortex data of healthy and Alzheimer patients. 

(A) UMAP showing human cells (red), mice cells (blue) and zebrafish cells (green) in a 

common UMAP projection. (B) UMAP with defined clusters according to Seurat's clustering. 
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Cells of mouse, human and zebrafish origin commingled in the astrocyte cluster (green). 

Excitatory (red) and inhibitory (green) neurons are mostly present in human data. (C) Bar plot 

showing cell composition of cell types in human (red), mice (blue) and zebrafish (green) 

samples. Samples were grouped based on their origin into human, mouse and zebrafish 

controls from the prefrontal cortex (Healthy) and Alzheimer disease human, mouse and 

zebrafish (Alzheimer). Cell types were then analyzed for their composition from the previously 

mentioned groups and plotted. (D) Dot plot depicting the average expression levels and 

expression proportions in human samples of the top fifteen feature genes for the found cell 

types. The size of the dot represents the proportion of cells expressing the indicated gene 

within a cell type, and the color indicates the average expression level of cells. (E) Dot plot 

depicting the average expression levels and expression proportions in mice samples of the 

top fifteen feature genes for the found cell types. Similar to (D) the size of the dot represents 

the proportion of cells expressing the indicated gene within a cell type, and the color indicates 

the average expression level of cells. (F) Dot plot depicting the average expression levels and 

expression proportions in zebrafish samples of the top fifteen feature genes for the found cell 

types. Similar to (D and E) the size of the dot represents the proportion of cells expressing the 

indicated gene within a cell type, and the color indicates the average expression level of cells. 
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