
Author's Response To Reviewer Comments  

Response to the reviewers  

In general, we think that the review process strongly improved the paper quality and therefore we would like to thank the reviewers for their remarks and 

suggestions. Te answers to the reviewer questions and remarks can be found below the comment, marked in green.  

 

Reviewer1 :  

 

A few points need to be addressed before publishing  

 

1. The authors utilized the Needleman-Wunsch algorithm to generate one-to-one orthologs between human genes and mouse genes. What is the advantage of 

using this algorithm compared to other algorithms i.e., SAMap uses BLAST?  

 

We appreciate the reviewer's comment. In our study, we focused on aligning sequences with multiple orthologues listed for one human orthologue in the 

ensemble database. To ensure accurate comparisons, we opted for global alignments since the reference and query sequences have similar lengths. From a small 

gene set of potential homologues, our aim was to select the orthologue with the highest overall agreement with the reference sequence. Global alignments were 

chosen because they are less likely to show false homology [1].  

On the other hand, local alignments, as employed in SaMap (Blast), have advantages in identifying homologues in species without well-annotated genomes or 

between evolutionarily distant species [2]. Their purpose is to pinpoint similar sequencing regions within larger sequences. However, they cannot consider the 

overall sequence conservation of sequences with similar lengths [1].  

SaMap is specifically designed for defining homologs between species with higher evolutionary distances, but it comes with computational expenses [3]. Our study 

focused on comparing well-annotated species with high evolutionary conservation, and we achieved the best results with the global alignment strategy used in 

OrthoIntegrate. However in order to provide functionality for more distant species we added a parameter to select between global and local alignments during the 

assignment of one-to-many orthologues. The function BuildOrthologues() now provides an argument alignment_type, which can be set to local or global, and 

thereby switching between the Smith-Waterman and the Needleman-Wunsch algorithm.  

 

2. The authors have shown the application of OrthoIntegrate in the context of heart failure between mice and humans. Could the authors include at least one 

more example of using OrthoIntegrate in other disease conditions or between other species to show the versatility of OrthoIntegrate?  

 

We thank the reviewer for this reasonable comment. As suggested, we applied OrthoIntegrate to another species and another disease condition. Therefore, we 

obtained single cell data from human mouse and zebrafish for healthy and Alzheimer's conditions and integrated it with Ortho Integrate. The results are 

summarized in Suppl. Fig. 6 and an additional paragraph was added to the discussion.  

 

“To further demonstrate the functionality of OrthoIntegrate, we integrated scRNA-SEQ data from human [41], mouse [54] and zebrafish [54,55] brain tissue 

under alzheimer condition. Besides the evolutionary distance between these species, we could jointly cluster different cell types via OrthoIntegrate (Suppl. Fig 6 

A-C) and detect commonly expressed marker genes within these cell clusters (Suppl. Fig 6 D-F).”  

 

 

3. To assess the quality of clustering after integration, the authors calculated silhouette coefficients/scores and found that integration by OrthoIntegrate resulted 

in an improved clustering performance. Could the authors include more benchmarking metrics to assess the performance of OrthoIntegrate compared to other 

methods? The authors could consider metrics like the species mixing score used by BENGAL (Song et al., 2022, biorxiv; https://github.com/Functional-

Genomics/BENGAL)  

 

We would like to thank the reviewer for drawing our attention to the Bengal Paper [3] . We applied all their benchmarking metrics to our pipeline as well. The 

results can be seen in Figure 2D. Additionally we added the following paragraph to the discussion section.  

 

“We demonstrated the usability of combining cross-species single cell data by using data sets of human and mouse heart failure with reduced ejection fraction.  

In order to evaluate the species mixing and the biological conservation of different integration methods, we applied certain metrics from the scib package [4,5], 

which were also suggested by Song et.al [3–5]. The results are summarized in Figure 2D. We found that most batch correction scores improve by using 

OrthoIntegrate.  

For biological conservation scores, we demonstrate that some metrics, like the “cell cycle conservation” are improved by using OrthoIntegrate. Which means that 

the variance caused by different cell cycle states of the cells is conserved via OrthoIntegrate. Other parameters like the NMI-score are reduced. But this score for 

example is strongly influenced by the cell type labeling [3], which was focused only on main cell type groups in these datasets, regardless of the existence of 

subpopulation or mixed cell type population clusters. In other words, subclusters of different cell types were not annotated in detail. Due to the increased 

numbers of features that are included in OrthoIntegrate, the clustering might be more diverged, likely by species specific non-coding RNAs or other features, 



which are not included in the other databases. Therefore, the more divergent clustering, due the increased number of features in OrthoIntegrate combined with 

the broad cell type labeling might explain the slightly reduced NMI scores. “  

 

 

4. Miscalling of figures: silhouette coefficients are shown in Supp_Fig_4 rather than Suppl_Fig_3.  

 

We changed the text accordingly and added Supp_Fig_4 to the main manuscript as Fig 2.  

 

5. Some information on the used datasets in the manuscript has been shown in supplementary table 1, but it's still a bit confusing, for example, where the mouse 

and human HFrEF datasets come from. I am not exactly sure, but I presume HFrEF datasets are from E-MTAB-13264? This information should be described more 

explicitly in the method section.  

 

We changed the text accordingly and added detailed information regarding the origin of the samples. Additionally, we added a paragraph to describe the source of 

the Alzheimer datasets.  

 

 

Reviewer2:  

 

- [ ] 1. Ortholog identification has long been a critical and essential step for many comparative, evolutionary, and functional genomic analyses. To evaluate the 

performance of an orthology inference method, there are some gold standards available for benchmark testing, such as the Quest Orthology Benchmark Service 

(https://orthology.benchmarkservice.org). Whether OrthoIntegrate outperforms other methods should be comprehensively benchmarked on diverse datasets and 

metrics, rather than relying solely on the silhouette coefficient score from a heart single-cell RNA sequencing (scRNA-seq) dataset.  

 

According to the reviewer suggestions, we incorporated the Quest Orthology Benchmark Service and tested the 4 ortholog databases. We could show that 

OrthoIntegrate has the second highest Gene Ontology Conservation score and the second highest Enzyme Classification score. The highest score in these tests 

was achieved with InPara.  

We tried to perform other tests as well. But since we are only comparing two species and these tests require multi species evolutionary trees, we could not 

perform all tests from the Quest Orthology Benchmark Service. The results from the Orthology Benchmark Service were incorporated in Fig. 2E.  

 

- [ ] 2. According to the authors' integration pipeline, both human and mouse scRNA-seq data are individually clustered to assign cell type labels and are then 

further integrated with orthologous genes for clustering to assign new labels. How do the labels for each cell and each cell type change before and after the 

integration approach? Does cell type assignment become more reasonable after the integration? The authors should demonstrate that the selection of orthologous 

genes for clustering improves the accuracy of cell type assignment. The silhouette coefficient score is not a direct metric for assessing accuracy, as it can be 

influenced by biological factors. For example, in Supplementary Table 3, the silhouette scores of mouse-HFrEF samples generated by Paranoid and OMA are 

consistently higher than those by OrthoIntegrate, which is opposite to the control groups and human-HFrEF samples.  

 

In order to assign cell type, we manually applied previously established marker genes (Tombor et al. 2021) to assign the human clusters accordingly. Afterwards 

we used singleR, to transfer cell labels from the human to the mouse samples, based on published marker genes.  

Furthermore, we applied all benchmarking metrics from the BENGAL paper [3] to our pipeline in order to validate celltype assignment.  

 

We added the following paragraph to the discussion:  

 

“We demonstrated the usability of combining cross-species single cell data by using data sets of human and mouse heart failure with reduced ejection fraction.  

In order to evaluate the species mixing and the biological conservation of different integration methods, we applied certain metrics from the scib package [4,5], 

which were also suggested by Song et.al [3–5]. The results are summarized in Figure 3D. We found that most batch correction scores improve by using 

OrthoIntegrate.  

For biological conservation scores, we demonstrate that some metrics, like the “cell cycle conservation” are improved by using OrthoIntegrate. Which means that 

the variance caused by different cell cycle states of the cells is conserved via OrthoIntegrate. Other parameters like the NMI-score are reduced. But this score for 

example is strongly influenced by the cell type labeling [3], which was focused only on main cell type groups in these datasets, regardless of the existence of 

subpopulation or mixed cell type population clusters. In other words, subclusters of different cell types were not annotated in detail. Due to the increased 

numbers of features that are included in OrthoIntegrate, the clustering might be more diverged, likely by species specific non-coding RNAs or other features, 

which are not included in the other databases. Therefore, the more divergent clustering, due the increased number of features in OrthoIntegrate combined with 

the broad cell type labeling might explain the slightly reduced NMI scores. “  

 

 

- [ ] 3. The data analysis needs to be expanded further if there are findings with potential biological significance. For example, the authors mentioned, 'In cluster 

25, we observe a group of genes showing increased expression in human FBs, and we also identify a set of genes that are negatively regulated in cluster 28 in 



human ECs.' However, there is no functional analysis, such as GO or KEGG pathway enrichment analysis, conducted to interpret the data and validate these 

findings.  

 

We thank the reviewer for the valuable input. To expand the biological significance of the data analysis, we performed gene set enrichment analysis for genes that 

are either enriched in humans, mice or genes that are commonly regulated, in all other cell types. Furthermore, we plotted enriched genes for all other cell types. 

As all these analysis would exceed the scope of the supplementary figure, we uploaded them to the paper specific github account 

(https://github.com/MarianoRuzJurado/RuzJurado_et_al_2023/tree/main/Expanded_Analysis_Figures). Additionally, we performed GoTerm analysis on the genes 

that were regulated in the fibroblast cluster 25 and endothelial cell cluster 28. The results were incorporated in Figure 4B and 4C and the text was extended 

accordingly.  

 

- [ ] 4. The discussion section is confusing. The authors should clarify whether the paper is primarily focused on research methods or data analysis. If it is a data 

analysis paper, the authors should conduct additional investigations to include further data analysis. If it is a research method paper, the authors should extend 

the discussion to relate to the algorithm itself.  

 

According to the reviewers suggestions, we restructured the discussion section and added additional paragraphs regarding the data analysis and the 

benchmarking of OrthoIntegrate. Additionally we have strengthened the research part by incorporating the benchmarking results into the main part (Fig 2) of the 

paper.  

 

 

Minor comments:  

 

MinorThings:  

- [ ] 1. The cell number for each sample and each clustered cell type is critical for assessing the reliability of the results; however, this information is not provided 

in the paper.  

 

We thank the reviewer for this remark and added all QC statistics to the Supplementary Table 6.  

 

- [ ] 2. As the mouse model is generated through chronic infarction, it raises the question of why very few T/B cell markers are found in immune cells in Figure 

1F. Is it possible that these cell types are not adequately captured in the mouse samples? In data integration analysis, the audience may be more interested in 

understanding how species-specific cell types perform, particularly when, for instance, only macrophages are the dominant immune cells found in human samples.  

 

 

We thank the reviewer for this comment. In single nuclei sequencing of isolated hearts, almost no T-cells or B-cells are found (Litviňuková et al. 2020). Also the 

heart cell Atlas by Litviňuková et.al.; Nature 2020 showed mainly Myeloid cells (see https://www.heartcellatlas.org/v2/global/). When we subsetted the immune 

cell cluster in our dataset, we also could not detect any t- or b-cell clusters (see Reviewer Fig.1 in the GitHub Repository 

[https://github.com/MarianoRuzJurado/RuzJurado_et_al_2023/blob/15e208c336b668402aa201cfc45d6433c1479ea6/Reviewer%20Figures/ReviewerFigure1.pdf]).  

However, for scientist interest in mouse or human specific immune cell responses through chronic inflammation, we provide detailed analysis of immune cells in 

our github repository (https://github.com/MarianoRuzJurado/RuzJurado_et_al_2023/tree/main/Expanded_Analysis_Figures/Immune%20cells). Also the other 

celltype are analyzed there in detail.  

 

 

.- [ ] 3. On page 5, clarify "latter ones" in the sentence "Most of the latter ones were long non-coding RNAs with identical gene names."  

 

We clarified the text in this paragraph and changed the sentence to:  

"Most of the 86 matches found by lowercasing were long non coding RNAs with identical gene names"  

 

 

- [ ] 4. On page 5, correct the reference to Supplementary Figure 4A instead of Supplementary Figure 3A and Supplementary Table 3.  

 

We changed the text accordingly and added Supp_Fig_4 to the main manuscript as Fig 2.  

 

 

- [ ] 5. On page 16, replace "regulated genes" with "differentially expressed genes (DEGs)" to accurately represent what the authors referred.  

 

We changed the text accordingly.  
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