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Related work 17 

DIABLO [1] is a supervised method for multi-omics data integration based on generalised 18 
canonical correlation analysis (GCCA). It uses singular value decomposition to find a lower-19 
dimensional representation of multiple omics input matrices and selects correlated 20 
variables which are associated with the phenotype of interest. It requires the user to specify 21 
a design matrix, representing the expected correlation between omics datasets in the model. 22 
The inputs for DIABLO are scaled N-by-M omics data matrices, rendering it also compatible 23 
with pathway-transformed data matrices. 24 

MOGSA [2] is an unsupervised method for multi-omics data integration, designed to output 25 
a matrix of multi-omics single-sample pathway scores. It begins by integrating the data at 26 
the molecular level using multiple-factor analysis, followed by projecting a binary matrix of 27 
pathway-membership information onto the observations in the latent space, and finally 28 
multiplying together the latent space matrices of samples and pathways to produce an N-by-29 
P pathway score matrix. The final pathway score matrix can be decomposed to investigate 30 
the contribution of each omics dataset. MOGSA, unlike PathIntegrate and DIABLO, is not a 31 
predictive model but rather a method for generating multi-omics pathway scores, which 32 
could be used as input to predictive models like PathIntegrate.  33 

Like MOGSA, Multi-Omics Pathway Analysis (MOPA) [3] generates pathway-score matrices 34 
using non-negative tensor decomposition. It is designed for gene-based omics data such as 35 
mRNA, methylation, and miRNA data. MOPA uses a two-step process for generating pathway 36 
scores, firstly it employs a non-negative tensor decomposition to perform feature selection 37 
to find genes significantly associated with a phenotype, and secondly computes pathway 38 
scores using these genes with a method similar to Gene Set Variation Analysis [4]. Like 39 
MOGSA, MOPA allows the calculation of an ‘omics contribution rate’, to understand how 40 
different omics contribute to pathway score calculation. 41 

Multi-Omics Factor Analysis (MOFA) [5] is an unsupervised latent-variable method for 42 
multi-omics data integration. It uses group factor analysis to decompose multiple omics 43 
matrices into loadings and score matrices, which can be sparse. MOFA could be used with 44 
ssPA score matrices as input, to form an unsupervised pathway-based multi-omics 45 
integration model. Similar to PathIntegrate, users can extract variable importances for each 46 
latent factor and the contribution of each omics to each factor. 47 

Lilikoi 2.0 [6] is a metabolomics-specific pathway-based deep learning model. It uses 48 
Pathifier [7] to produce ssPA scores which are then input to a deep neural network, or other 49 
classifiers such as random forest or logistic regression. It offers prognosis prediction using a 50 
Cox proportional hazards model, as well as network-based pathway visualisation options for 51 
downstream analysis.  52 

PathwayPCA [8] is a toolkit offering multiple pathway-analysis based utilities: 1) testing 53 
pathway association with an outcome (similar to conventional pathway analysis), 2) 54 
extracting important genes within a pathway using sparse modelling, 3) compute pathway 55 
scoring on important genes, which can be used as input for multi-omics analysis. The 56 
pathway scores are computed using Adaptive, Elastic-net, Sparse PCA) or Supervised PCA 57 
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(SuperPCA), introduced by the same authors. Similar to Lilikoi, the pathway-transformed 58 
output can be input to various downstream analysis such as survival analysis.  59 

Integrative directed random walk-based method utilizing pathway information (iDRW) 60 
[9,10] is a method for generating ssPA scores based on utilising gene-gene topological 61 
interactions within pathways. Combining a gene-gene directed graph based on KEGG 62 
pathways and a random walk algorithm, iDRW was used to integrate gene-expression and 63 
copy number alteration data, resulting in a pathway score matrix. The authors demonstrated 64 
using iDRW scores improved survival prediction compared to molecular-level data as well 65 
as other ssPA scoring approaches.  66 

Finally, we refer the interested reader to a comprehensive review by Maghsoudi et al. [11] 67 
which provides a systematic evaluation of 32 integrative pathway analysis methods. While 68 
the aforementioned methods all provide useful functionality for either multi-omics 69 
integration at the molecular level (DIABLO, MOFA), or the generation of pathway scores at 70 
either the single omics level (Lilikoi, PathwayPCA), or the multi-omics level (MOGSA, MOPA, 71 
iDRW), none of these provide a framework for pathway-based multi-omics data integration. 72 
PathIntegrate seeks to fill this gap, providing a user-friendly Python implementation of the 73 
Multi-View and Single-View frameworks which a) generate multi-omics pathway scores 74 
(based on the user’s choice of ssPA methods), and b) apply state-of-the-art predictive models 75 
to identify perturbed pathways. Furthermore, the majority of methods for generating multi-76 
omics pathway scores are not designed to incorporate metabolomics data and are primarily 77 
based on gene/protein identifiers. PathIntegrate is specifically designed for (but not limited 78 
to) the integration of metabolomics data alongside other omics, providing multi-omics 79 
pathways containing gene (ENSEMBL), protein (UniProt), and metabolite (ChEBI) 80 
identifiers. Finally, to enhance ease-of-use and seamless integration with other pipelines, 81 
PathIntegrate models are compatible SciKit-Learn estimators, enabling the use of various 82 
predictive models and parameter optimisation functions available in the SciKit-Learn 83 
library.  84 

 85 

  86 
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Supplementary figures and tables 87 

 88 

Fig A in S1 Supporting Information: Fold changes in COVID-19 multi-omics data based on 89 
outcome (mild vs. severe cases).  90 

  91 
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 95 

Fig B in S1 Supporting Information: Fold changes in COPDgene multi-omics data based on 96 
either COPD status or gender outcomes.  97 
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 99 

 100 

Fig C in S1 Supporting Information: Pathway transformation enhances sensitivity to 101 
low signal-to-noise signals (COPDgene semi synthetic data). Y axis shows proportion of 102 
MWU tests significant at Bonferroni p ≤ 0.05, performed either on the pathway-level data or 103 
the molecular level data, at varying effect sizes shown on X-axis.  104 

  105 
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Pathway database influences model performance 106 

The performance of pathway-based models is strongly dependent on the pathway 107 
definitions used. The number and composition of pathways varies between databases, and 108 
factors such as size, level of overlap, ratio of compounds to proteins/genes, etc. can all impact 109 
the models. We investigated the size of pathways in the Reactome human versus the KEGG 110 
human multi-omics pathway databases (those used in this work, where pathways can 111 
contain a combination of metabolites, proteins, and genes), and found KEGG to contain on 112 
average larger pathways (median size 96 molecules) than Reactome (median size 24 113 
molecules). Reactome however contains more pathways (2,583) than KEGG (352). 114 
Importantly, these pathway database statistics are influenced by the molecules profiled in 115 
the dataset at hand, as only molecules that map to pathway identifiers will be included in the 116 
modelling. We investigated the pathway size distribution in two datasets, COPDgene and 117 
COVID-19 and found that the general trend was the same: KEGG pathways are generally 118 
larger than Reactome pathways (Fig D in S1 Supporting Information).  119 

We also investigated the pathway annotation levels of genes, proteins, and metabolites, i.e. 120 
the percentage of molecules profiled in a dataset with a valid pathway database identifier 121 
(ENSEMBL, Uniprot, or ChEBI) assigned to pathways. Although results are highly dataset and 122 
assay-dependent, when considering the COPDgene and COVID-19 datasets and the Reactome 123 
pathway database (Table A in S1 Supporting Information), we found proteomics data to have 124 
the highest percentage of total molecules profiled mapping to pathways (>70% for both 125 
datasets). Metabolomics data had the lowest percentage of molecules mapping to pathways 126 
(16.9% for COPDgene and 23.9% for COVID-19). This is likely due to the specificity of the 127 
ChEBI identifiers, particularly for chemical subclasses such as fatty acids, where molecules 128 
i.e. lipids can be annotated to a very high level of specificity depending on side chain 129 
composition etc, but these are not yet annotated to pathway databases at such a high level of 130 
specificity. Bulk transcriptomics data was not available for the COVID-19 data, but in the 131 
COPDgene dataset only 27% of ENSEMBL genes mapped to Reactome pathways, 132 
demonstrating that the annotation issue is not specific only to metabolomics data, but can 133 
also affect sequencing-based omics such as transcriptomics, where thousands of genes are 134 
yet to be added to pathways.   135 

  136 
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Fig D in S1 Supporting Information: Violin plots showing log10 pathway size for KEGG and 137 
Reactome human databases, both for the original databases as well as the database specific 138 
coverage (COPDgene and COVID-19). Pathways used are Reactome and KEGG human multi-139 
omics pathways, containing both metabolites and proteins. 140 

 141 

 142 

 143 

 144 
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Table A in S1 Supporting Information: Percentage of molecules with a valid identifier 146 
(ChEBI, UniProt, or ENSEMBL) in single omics mapping to Reactome human pathways. A lower 147 
percentage of molecules mapping to pathways means a greater percentage of molecules do not 148 
yet map to pathways and are not incorporated into pathway-based analyses.  149 

 % of molecules with an identifier mapping to pathways 

Dataset Metabolomics (ChEBI) Proteomics (UniProt) Transcriptomics 
(ENSEMBL) 

COPDgene 16.9 81.5 27.5 

COVID-19 23.9 77.9 NA (No transcriptomics 
data) 

 150 

  151 
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 152 

Fig E in S1 Supporting Information. Comparison of PathIntegrate methods classification 153 
performance using KEGG and Reactome pathway databases as well as molecular-level model 154 
based on semi-synthetic COPDgene data. 155 

 156 

 157 
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Fig F in S1 Supporting Information. Comparison of PathIntegrate and DIABLO full/sparse 166 
models ability to correctly recall target enriched pathway based on semi-synthetic COPDGene 167 
data. ‘DIABLO pathway (loading)’ uses an RGCCA model with no regularisation, whereas 168 
‘DIABLO pathway (sparse loading)’ uses an RGCCA model with L1 penalty.  169 

 170 



13 
 

  171 

Fig G in S1 Supporting Information: Investigation of effect of sample size in PathIntegrate 172 
Single-View (PLS) classification performance on COPDgene data.  173 

 174 
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Fig H in S1 Supporting Information: Performance of PathIntegrate and DIABLO vs. 184 
effect size, based on semi-synthetic data measured by AUROC. COVID-19 metabolomics 185 
and proteomics data were integrated in each model. A. Ability to correctly predict sample 186 
outcomes (case vs. control). We compared PathIntegrate Multi-View and Single-View to 187 
DIABLO using both molecular and pathway-level multi-omics data. B. Ability to correctly 188 
recall target enriched pathway. For ‘DIABLO pathway’ we compared the full RGCCA model 189 
loadings to the sparse model loadings for feature importance. C. Comparison of PathIntegrate 190 
Multi-View using KEGG and Reactome pathway databases as well as molecular-level model. D. 191 
Effect of sample size on PathIntegrate Multi-View classification performance. For panels A-C 192 
error bars indicate 95% confidence intervals on the mean AUROC (in some cases they appear 193 
smaller than point sizes).  194 
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 196 

Fig I in S1 Supporting Information. Comparison of PathIntegrate classification performance 197 
using KEGG and Reactome pathway databases as well as molecular-level model based on semi-198 
synthetic COVID-19 data.  199 

  200 
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 201 

Fig J in S1 Supporting Information: Investigation of effects of sample size in PathIntegrate 202 

Multi-View (left) and Single-View (PLS) (right) classification performance based on semi-203 
synthetic COVID-19 data.  204 

 205 
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 206 

Fig K in S1 Supporting Information: 5-times repeated nested 5-fold cross-validated results 207 
for number of latent variables parameter tuning in PathIntegrate Multi-View for COPDgene 208 
case study integrating metabolomics, proteomics, and transcriptomics data. X axis shows mean 209 
AUC across inner folds. Error bars represent standard deviation. 210 

 211 
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Table B in S1 Supporting Information: Clinical data definitions for significantly correlated 213 
clinical variables from COPDgene study shown in Fig 4F. 214 

Variable Definition 

AGE_VISIT Age in years 

CAT4_Breathless Cat questionnaire breathlessness 

Finalgoldphase 2 GOLD stage at Phase 2 

CurrentMedUse Currently do you use medications to treat breathing problem 

SGRQ score total St George's Respiratory Questionnaire total score (1-100) 

Predicted FEV1_FVC Predicted ratio of the forced expiratory volume in the first one second to the 
forced vital capacity of the lungs 

FEV1_post Post-bronchodilator forced expiratory volume in one second  

FEV1_FVC post Post-bronchodilator forced expiratory volume in one second to the forced 
vital capacity of the lungs 

Gender Gender 

Race of subject Race of subject 

 215 
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 217 

Fig L in S1 Supporting Information: Preview of PathIntegrate network explorer app (running 218 
on a local host server) showing an example of a multi-omics dataset being analysed. Interactive 219 
visualisations are facilitated by the open-source Plotly Dash framework (MIT license). Nodes in 220 
the network represent pathways and edges represent parent-child relationships between them. 221 
Users can zoom in and hover over nodes to see more information about the pathway. 222 
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 223 

Fig M in S1 Supporting Information: Reactome hierarchy network (based on coverage in 224 
COPDgene multi-omics data) coloured by root pathway membership with full legend. In the 225 
interactive app users can hover over nodes to see detailed information about pathway name, 226 
root pathway, and coverage in a dataset.  227 

 228 
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Table C in S1 Supporting Information: Table of notation 229 

Variable Dimension Definition 

𝑋 [N, M] Molecular level matrix of N samples by M molecular features  

𝐴 [N, P] Pathway level matrix of N samples by P pathway features 

N  Number of samples profiled 

M  Number of molecular features profiled 

P  Number of pathways accessible in an omics dataset based on 

minimum coverage threshold 

L  Number of molecules present in a given pathway p 

𝑝𝑃   A pathway member of the total pathway set P set consisting of a set 

of molecules 

𝑚𝐿  A molecule member of the pathway pP 

Z [N, L] Sub matrix of X containing only the L columns (molecules) present in 

the i’th pathway 

Y [N, H] Outcome variable 

H  Number of columns in outcome variable (1 in univariate case) 

𝑌̂ [N, H] Predicted outcome variable 

𝛽 [M, 1] Set of regression coefficient of each variable in a regression model 

VIP  Variable importance in projection statistic of PLS model 

MB-VIP  Multi-block variable importance in projection statistic of MB-PLS 

model 

𝛼  Constant added to semi-synthetic data corresponding to magnitude 

of enrichment 

C  Set of samples present in the semi-synthetic simulated control group 

D  Set of samples present in the semi-synthetic simulated case group 

𝜃  Model hyperparameters 

T [N, R] PLS X score matrix 

Ts [N, R] MB-PLS X super score matrix 

V [M, R] PLS X loadings matrix (note usually denoted by P, but here we use P 

for pathways) 

U [N, R] PLS Y scores matrix 
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C [M, R] PLS Y weights matrix 

E, F, G [N, M] PLS model residual matrices 

W [M, R] PLS X weights matrix 

𝑊∗ [M, R]  

R  Number of latent variables in PLS/MB-PLS model 

k  Number of omics data matrices (predictor blocks) 

J  Total number of features in a single X block  

f  Total number of features across all k predictor blocks  

 230 

  231 
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