
Supplementary Methods 
 

1. Field II phase-aberrated microbubble (MB) simulation 
 
To study the effect of propagation of localization error from conventional localization, we simulated 400 
images of phase-aberrated MBs using Field II. The Field II simulation sequence was configured according 
to the CAM imaging settings described in Supplementary Table 1. In each image, single MBs were 
randomly positioned within a 2D field that was 10 mm wide, extending from z = 2 mm to z = 15 mm in 
depth, and with a pixel size of 0.064 𝜆. We simulated phase aberrations in individual MBs by introducing 
perturbations to the phase/speed of sound in the RF signal. Random phase delays for each element were 
sampled from a uniform distribution between 0 and 𝜋 radians. The corresponding time delay based on the 
central frequency (20 MHz) was then applied to the transmit and receive delay for each element. We used 
conventional localization to extract Field II MB templates for training the LOCA-ULM network. The 
localization accuracy of both the conventional method and LOCA-ULM was compared against the ground 
truth positions (Supplementary Fig. 1). Localization errors exceeding 98.56 𝜇𝑚 was excluded from the 
analysis. 
 

2. Gaussian and Field II MB Modeling  
 
To study the effect of MB modeling on the training data, we created two additional MB templates: Gaussian 
and Field II. For the Gaussian MB simulation, 500 MB signals were extracted from the in vivo data and 
was fitted with a two-dimensional Gaussian model to determine the standard deviations along the lateral 
and axial axes (𝜎! and 𝜎"). The parameter range for the Gaussian MB simulation was computed based on 
the mean and standard deviations of 𝜎! and 𝜎". We set boundaries at two standard deviations from the mean 
for both 𝜎! and 𝜎" to capture the central 95% of the distribution while excluding outliers. When generating 
MB signals in simulation, the 2D Gaussian distribution was established by randomly drawing 𝜎! and 𝜎" 
from an uniform distribution (𝜎! ∈ [43 − 76	𝜇𝑚]; 𝜎" ∈ [26 − 60	𝜇𝑚]) for CAM imaging and (𝜎! ∈
[66 − 127	𝜇𝑚]; 𝜎" ∈ [43 − 74	𝜇𝑚]) for rat brain imaging. For the Field II simulation, we distributed 30 
microbubbles randomly in a two-dimensional domain that is 5 mm wide and extends from z = 2 mm to z = 
12 mm in depth. The simulation data were interpolated to a resolution of 0.064 𝜆 pixel size for the CAM 
images and 0.1 𝜆 pixel size for rat brain images (Supplementary Table I, MB template pixel resolution) and 
repeated 100 times to extract 3000 Field II MB templates. The Field II simulation sequence was configured 
according to the CAM and rat brain ultrasound imaging settings described in Supplementary Table 1.  
 
3. Deep-ULM and mSPCN implementations 

This study employed two additional deep learning-based ULM models for comparative analysis against 
LOCA-ULM: Deep-ULM and mSPCN. Deep-ULM used the U-Net architecture where the encoder consists 
of three stages, each containing two convolutional layers with 3×3 kernels, batch normalization, leaky 
ReLU activation, and a 2×2 MaxPooling operation. The latent layer, positioned between the encoder and 
the decoder, includes two convolutional layers with 3×3 kernels and a dropout layer (probability 50%). The 
decoder consists of three stages with deconvolution layers with 5×5 kernels (first layer with a stride of 2 
and the second a stride of 1), batch normalization, and leaky ReLU activation. The first two stages of the 
decoder also incorporate a 2×2 upsampling layer. The final layer is a single-channel output convolutional 
layer with linear activation. The mSPCN model (provided by the authors in DOI: 10.21227/jdgd-0379) 
employs a sub-pixel architecture that consists of 13 convolution layers. It begins with a 9×9 kernel 
convolution layer for feature extraction, followed by ten 3×3 convolution kernel convolution layers. 
Residual blocks are integrated every two layers. The 12th convolution layer forms a global residual 



connection to the first layer, while the final layer performs the upscaling operation using a sub-pixel 
convolution layer. We trained both networks using the Adam optimizer with a learning rate of 0.001 for 
400 epochs, aiming to minimize the following cost function: 
 

ℒ(𝑥, 𝑦|𝜃) = ‖𝑓(𝑥|𝜃) − 𝜆#𝑦‖$$ + 𝜆%‖𝑓(𝑥|𝜃)‖% 
 
where 𝑥  denotes the simulated ultrasound MB image, and 𝑦  represents the super-resolved image. The 
coefficients were set as λ# = 100 and λ% = 0.1 for both networks. The mSPCN and Deep-ULM models 
operate as image-to-image translation networks, where the output depicts the center of MB as a cluster of 
activated pixels rather than a single pixel. In line with the method outlined in mSPCN, the MB positions 
were determined by applying threshold to remove constant background and a 2D Gaussian kernel to group 
the adjacent non-zero pixels. The centroid is identified by computing the center of mass. The training 
datasets for LOCA-ULM, Deep-ULM, and mSPCN were generated using the same MB flow simulation 
(brightness, lifetime, and velocity) and MB templates (i.e., LSGAN, Gaussian, and Field II MB templates). 
 
4. Assessment of depth-dependent MB signal variations for LOCA-ULM training 
 
To investigate the field-of-view (FOV) dependent spatial variations in MB signals, we employed materials 
that mimic the acoustic attenuation of real tissues. This approach enabled us to replicate the in vivo 
conditions where microbubbles exhibit variations due to frequency-dependent attenuation. We used a 60:40 
volume ratio mixture of condensed milk and water to create a solution that both has a similar acoustic 
attenuation to brain tissue, specifically 0.50 dB/cm/MHz1, 2, and is a liquid environment to allow even 
distributions of MBs at different imaging depths.  
 
The attenuation coefficient was measured using a simple experimental setup as illustrated in Supplementary 
Fig. 8a below, where two identical CTS 10MHz IS1004HR transducers were positioned 5.5 cm apart to 
operate in a “pitch-and-catch” mode to assess ultrasound signal attenuation through propagation in the 
sample material contained in the testing cell. An ultrasound pulser (Olympus 5800 PR) was used to drive 
the transmitting transducer and a DAQ (NI PXI5124) was used to sample the ultrasound signal acquired at 
the receiving transducer. The attenuation coefficient 𝛼 was calculated by: 
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where	𝑑 is the propagation distance (i.e., 5.5 cm),  𝑓 is the ultrasound frequency (10 MHz), and 𝐴#, 𝐴 are 
the amplitude corresponding to the peak of the received signal for pure water and condensed milk-water 
mixture, respectively. The experiment was conducted twice, yielding an attenuation coefficient of 
approximately 0.50 dB/cm/MHz and 0.51 dB/cm/MHz, which is similar to the attenuation coefficient of 
brain tissue1, 2.  
 
After validating the attenuation coefficient, activated Definity MBs were diluted by a factor of 5000 in 
distilled water. 10 𝜇L of this diluted solution was carefully mixed with degassed condensed milk-water 
mixture, resulting in a final volume of 100 mL. We then acquired experimental MB data using the same 
imaging setup as the in vivo rat brain imaging study. To analyze the MB signals, we divided the FOV into 
three regions, corresponding to three depth segments: 2-5 mm, 5-8 mm, and 8-11 mm (Supplementary Fig. 
8b). A total of 3780 individual MB signals were extracted across all imaging zones followed by full width 
at half maximum (FWHM) measurements respect to the identified center (in both the axial and lateral 
dimensions) for the analysis of MB signal distribution.  
 



In Supplementary Fig. 8c, the axial FWHM of experimental MBs varies from 134.97 μm to 149.66 μm, 
while the lateral FWHM varies from 192.12 μm to 247.87 μm from the shallowest to the deepest regions. 
We subsequently trained the LSGAN model using 3780 experimental MB signals and generated an equal 
number of synthetic MB signals. As shown in Supplementary Fig. 8d, the distribution of LSGAN-generated 
MBs closely follows the distribution of the experimental MBs, as evidenced by the similar average lateral 
and axial FWHM values for LSGAN-generated MBs ( 𝜇! = 215.48	𝜇𝑚 , 𝜇" = 144.87	𝜇𝑚 ) and 
experimental MBs (𝜇! = 218.69	𝜇𝑚, 𝜇" =	144.34 𝜇𝑚 ). Through this experiment, we show that the 
LSGAN-generated MB templates encompass the MB signal distribution across the entire ultrasound FOV, 
thereby enhancing the robustness of LOCA-ULM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figures 
 
 
 

 
Supplementary Fig 1. Comparative analysis of LOCA-ULM and conventional localization methods using 
a Field II simulated test set with induced phase aberration. The histograms show the distribution of the 
lateral and axial localization errors respect to the ground truth positions (n = 400 phase-aberrated MB 
images). Source data are provided as a Source Data file. 
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Supplementary Fig 2. FRC curve using 2-𝜎 threshold for four ULM reconstruction. a Conventional and 
LOCA-ULM without MB separation. b Conventional and LOCA-ULM using MB separation. Source data 
are provided as a Source Data file. 
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Supplementary Fig 3. Ablation study of MB signal characteristics in the LOCA-ULM simulation 
framework. Top row: a ULM images with all MB characteristics included (All), b without brightness 
variations (w/o Brightness), c without MB movement and lifetime (w/o Lifetime/Velocity), and d without 
simulated background ultrasound noise (w/o Background Noise). Bottom row: in vivo rat brain contrast-
enhanced B-mode image and localization results under each ablation scenario.  
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Supplementary Fig 4. Comparison of conventional ULM and LOCA-ULM with MB separation at high 
MB concentration. Each ULM images were generated by accumulating 16000 frames of ultrasound data 
(a total of 20 seconds of acquisition) for MB injection rate of 90	𝜇𝐿/min 
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Supplementary Fig 5. Comparison of conventional ULM and LOCA-ULM for functional ULM (fULM) 
experiment. Each ULM images were generated by accumulating 720000 frames of ultrasound data for MB 
injection rate of 60	𝜇𝐿/min. 
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Supplementary Fig 6. Comparison of Deep-ULM, mSPCN, and LOCA-ULM trained with simulation data 
generated using either Gaussian- or LSGAN-based MB templates.  In vivo rat brain imaging data were used 
for testing. 
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Supplementary Fig 7. Comparison of reconstructed ULM images using different MB simulation 
methods: Gaussian, Field II, and LSGAN. a ULM imaging results in the CAM study, b ULM imaging 
results in the rat brain study. The ULM images demonstrate the impact of MB model selection on image 
quality, contrast, and artifact presence in ULM. Scalebar represents 1 mm.  
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Supplementary Fig 8. Experiment setup for attenuation coefficient measurement and experimental MB 
signal analysis a A custom-built housing with a testing cell sandwiched between two CTS 10MHz IS1004HR 
transducers operating in a “pitch-and-catch” mode. A mixture of condensed milk and water was used as the 
testing medium to simulate rat brain tissue. b B-mode ultrasound image displaying MBs suspended within the 
testing medium. White dashed lines denote the three analyzed depth zones. c Histograms showing the full width 
at half maximum (FWHM) of MB signals in lateral (blue) and axial (green) dimensions across different depths. 
d Histograms showing the FWHM for experimental MB signals across entire FOV (n = 3780 localized MBs) 
and LSGAN-generated MB signals (n = 3780 synthetic MBs). Source data are provided as a Source Data file. 
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Supplementary Fig 9. Regions with positive correlation identified by LOCA-ULM during functional ULM 
(fULM) imaging. The map highlights areas with increased blood flow correlating to whisker stimulation, 
with a color scale representing the Pearson’s correlation coefficient.  
 
 

Supplementary Tables 
Table 1 
In vivo study acquisition parameters, microbubble concentrations, and imaging resolution 
 

 CAM  Rat Brain 
 Standard Imaging Standard Imaging fULM Imaging fUS Imaging 
In vivo acquisition parameters 
Transducer type L35-16vX L22-14vX L22-14vX L22-14vX 
Center Frequency 20 MHz 15.625 MHz 15.625 MHz 15.625 MHz 
Sampling Frequency 125 MHz 62.5 MHz 62.5 MHz 62.5 MHz 
Wavelength 77 𝜇𝑚 98.56 𝜇𝑚 98.56 𝜇𝑚 98.56 𝜇𝑚 
No. of compounding angles 9 5 5 9 

Step size 1° 1° 2° 1° 
Voltage 6V 6V 6V 40V 

Concentration 
 70 𝜇𝐿  

Bolus injection 
15, 20, 30, 
40, 90 𝜇𝐿/min 

60 𝜇𝐿/𝑚𝑖𝑛 Contrast-free 

Image resolution 
MB template pixel 
resolution 

4.928 𝜇𝑚 9.856 𝜇𝑚 9.856 𝜇𝑚  

DECODE network input 
pixel resolution 

9.856 𝜇𝑚 19.712 𝜇𝑚 19.712 𝜇𝑚  

DECODE network output 
pixel resolution 

4.928 𝜇𝑚 9.856 𝜇𝑚 9.856 𝜇𝑚  

 

1 mm 0 0.1
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