Supporting Information

Implantable, 3D-Printed Alginate Scaffolds with Bismuth Sulfide Nanoparticles for the Treatment of Local Breast Cancer via Enhanced Radiotherapy

Busra Colak^{1,2}, Yavuz Nuri Ertas^{1,2,3*}

¹ ERNAM–Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye

² Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye

³ UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye

*Corresponding Author:

Yavuz Nuri Ertas, Ph.D.

ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye

Email: yavuznuri@gmail.com

Web: <u>www.ertaslab.com</u>

Supporting Figures

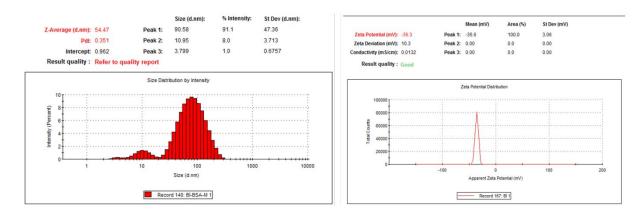


Figure S1. DLS analysis of Bi₂S₃@BSA nanoparticles.

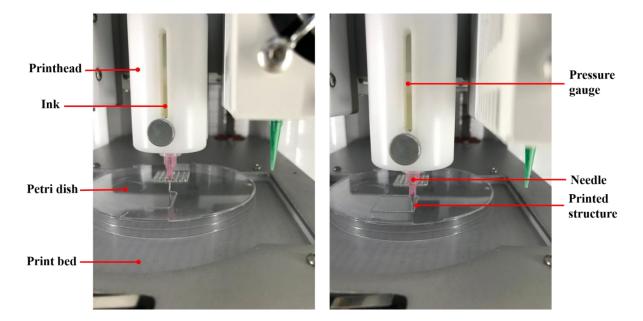


Figure S2. Components of the Axo A3 Bioprinting device.

 Table S1. 3D printing parameters of the four different hydrogels.

		Alg-	Alg-	Alg-
Conditions	Alginate	Bi ₂ S ₃ @BSA	Bi ₂ S ₃ @BSA	Bi ₂ S ₃ @BSA
	(Alg)	(0.25%)	(0.5%)	(1%)
Needle size (G)	25 G	25 G	25 G	25 G
Pressure (kPa)	4.1	5.1	5.8	6.1
Speed (mm/s)	100	100	100	100
Density	40%	40%	40%	40%
Print-head temperature (°C)	-	-	-	-
Print-bed temperature (°C)	4	4	4	4

Element	Weight %	Atomic %	Net Int.	Error %	<u>Kratio</u>	Z	А	F
СК	13.75	17.69	172.90	12.94	0.0646	1.0431	0.4500	1.0000
N K	0.02	0.03	0.30	99.99	0.0001	1.0186	0.3057	1.0000
ОК	85.12	82.20	2976.10	6.76	0.4480	0.9974	0.5277	1.0000
BiM	1.11	0.08	26.50	7.32	0.0088	0.5851	1.3634	0.9959

b

Element	Weight %	<u>Atomic</u> %	Net Int.	Error %	<u>Kratio</u>	Z	А	F
СК	23.32	29.68	65.80	7.30	0.1185	1.0462	0.4857	1.0000
N K	0.00	0.00	0.00	99.99	0.0000	1.0219	0.2074	1.0000
ОК	73.35	70.08	370.40	7.59	0.2690	1.0008	0.3665	1.0000
BiM	3.33	0.24	16.60	4.87	0.0267	0.5878	1.3675	0.9964

С

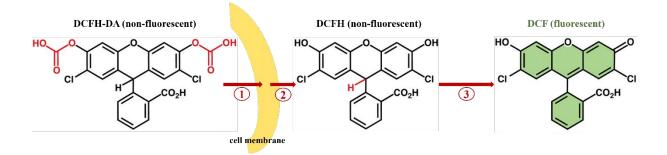

Element	Weight %	Atomic %	Net Int.	Error %	<u>Kratio</u>	Z	А	F
СК	23.98	30.50	65.30	7.28	0.1226	1.0464	0.4884	1.0000
N K	0.00	0.00	0.00	99.99	0.0000	1.0221	0.2028	1.0000
O K	72.53	69.25	344.00	7.68	0.2603	1.0010	0.3584	1.0000
BiM	3.48	0.25	16.70	4.88	0.0279	0.5880	1.3678	0.9965

Figure S3. The data of main elements (C, N, O and Bi) amount in the scaffolds. (a) Alg-Bi₂S₃@BSA (0.25%), (b) Alg-Bi₂S₃@BSA (0.5%), (c) Alg-Bi₂S₃@BSA (1%).

а

 Table S2. In vitro degradation groups.

Scaffold Type	Medium	рН	Temperature
Alginate (Alg)	PBS (1 ml)	7.4	37 °C
Alg-Bi ₂ S ₃ @BSA (0.25%)	PBS (1 ml)	7.4	37 °C
Alg-Bi ₂ S ₃ @BSA (0.5%)	PBS (1 ml)	7.4	37 °C
Alg-Bi ₂ S ₃ @BSA (1%)	PBS (1 ml)	7.4	37 °C

Figure S4. DCFH-DA is taken up by cells (1) where cellular esterase cleaves off the acetyl groups, resulting in DCFH (2). Oxidation of DCFH by ROS (such as ${}^{1}O_{2}$, H₂O₂, OH•) converts the molecule to DCF (3), which emits green fluorescence at an excitation wavelength of 485 nm and an emission wavelength of 530 nm.