
Supplementary Information and Figures
Deep learning to decode sites of RNA translation in normal and cancerous

tissues

1. Supplementary Methods

1.1. Ribosome profiling processing
Cutadapt and STAR are applied for trimming adapters and mapping reads to the genome and tran-

scriptome. Read lengths between 20 and 40 nucleotides are retained. Reads mapping against tRNA/r-
RNA/sm(o)RNA are filtered out. Extended Data Table 1 lists the total number of reads within the dataset
at various steps. The data were selected in order to have variation with respect to applied treatments and
mapped number of reads.

# trim files and perform fastqc
cutadapt -j 20 -m 20 -a $adapter ${dataset}.fastq -o "out/temp/${dataset}_trimmed.fq" > "

↪→ out/temp/${dataset}_trimmed_report.txt"

# remove rRNA/tRNA/smRNA/smoRNA
STAR --genomeLoad NoSharedMemory --seedSearchStartLmaxOverLread .5 --genomeDir '../../

↪→ genome/STAR/excl_RNA' --readFilesIn $trimmed --outFilterMultimapNmax 1000 --
↪→ outFilterMismatchNmax 2 --outFileNamePrefix out/temp/ --runThreadN 20 --
↪→ outReadsUnmapped Fastx

mv out/temp/Unmapped.out.mate1 $cleaned

# align to genome, output mapping to transcriptome as well
STAR --runThreadN 20 --genomeDir '../../genome/STAR' --genomeLoad NoSharedMemory --

↪→ readFilesIn $cleaned --outFileNamePrefix out/ --outSAMtype BAM SortedByCoordinate
↪→ --quantMode TranscriptomeSAM --outSAMattributes MD NH --outFilterMultimapNmax 10
↪→ --outMultimapperOrder Random --outFilterMismatchNmax 2 --
↪→ seedSearchStartLmaxOverLread 0.5 --alignEndsType EndToEnd --outWigType bedGraph

1.2. RiboTIE
1.2.1. Data processing

Data loading for RiboTIE is achieved by storing data in the hierarchical data format version 5 (hdf5).
Using Python, the ribosome reads mapped to the transcriptome are stored by transcript. The generated bam
files are parsed using Python and data is stored to the hdf5 format. Data is aggregated by the total number
of reads aligned by their 5’ position for every read length and transcript position. Transcript matrices are
loaded from the hdf5 files by a PyTorch data loader object and used as inputs to the model.

1.2.2. Input embedding strategies
The transformer architecture takes full transcript regions as input and provides a prediction along each

position of the input range. No sequence information is processed. No ORFs are identified as a pre-processing
step. Transformer networks use vector representations of mapped reads at each nucleotide position as input
tokens. As part of this research, different approaches were explored to create input vector representations
from the mapped ribosome profiling data. For all instances, read counts are normalized for each transcript.
This ensures the numerical stability of the inputs. Supplementary Figures 1 and Extended Data Figure 2
illustrate both strategies evaluated as part of this paper.

1.2.3. Model architecture
The architectural framework is identical to that of TIS transformer[21], a transformer model used for

predicting translation initiation sites using transcript sequence information. The transformer structure
features multiple layers with multiple attention heads per layer. These are identical in structure but feature
unique trainable model parameters. The outputs of the transformer module are sent to a set of fully connected
layers to obtain a binary output at each input position. Notwithstanding the size of the dataset and overall
high computational requirements of transformer architectures, model optimization from scratch is possible
on a single RTX 3090 and converges after ca. 7 hours due to the relative shallowness of the transformer
architecture as compared to many language-learning transformers.

1.2.4. Attention
Custom attention strategies can be performed by the attention heads independent of the number of

weights utilized to calculate the Q, K, V matrices. In this model, full attention is calculated through
the Fast Attention Via Positive Orthogonal Random Features (FAVOR+) algorithm [22]. These allow full
attention, where all inputs along the transcript are included by the attention head. In contrast, local
attention restricts the attention matrix to only neighboring positions. Local attention is implemented by
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Algorithm 1 RiboTIE network architecture. Given are the different layers, their respective dimensions
as defined by their hyperparameter names, the dimensions for RiboTIE (Table 5), and the resulting total
weights. The bias term applied in each node is included and marked with italics.

RiboTIE | 211,964
Ribosome Read Count | 21,546

Linear | 1× dim | 1× 42 + 42 | 84
Linear | dim × dim ∗ 6 | 42× 252 + 252 | 10,836
Linear | dim ∗ 6× dim | 252× 42 + 42 | 10,626

Ribosome Read Count Embedding | 1 × dim | 1× 42 | 42
Ribosome Read Length Embedding | read lengths × dim | 21× 42 | 882
Positional Embedding | fixed positional embeddings | 0
Performer | 185,712

Layer (× depth | 6) | 30,952
Layer norm | dim × 2 | 42× 2 + 2 | 86
Attention head (× n_head | 6) | 2,064

WQ | dim × dim_head | 42× 16 + 16 | 688
WK | dim × dim_head | 42× 16 + 16 | 688
WV | dim × dim_head | 42× 16 + 16 | 688

Wo | dim_head ∗ n_head × dim | 96× 42 + 42 | 4,074
Layer norm | dim × 2 | 42× 2 + 2 | 86
Linear | dim × dim ∗ 4 | 42× 168 + 168 | 7,224
Linear | dim ∗ 4× dim | 168× 42 + 42 | 7,098

Linear | dim × dim ∗ 2 | 42× 84 + 84 | 3,612
Linear | dim × 2 | 84× 2 + 2 | 170

dividing the attention matrix in smaller blocks on which full attention is calculated. Three blocks around
the evaluated input are calculated. These local attention heads do not apply the FAVOR+ algorithm and
use rotary positional embeddings [23]. The block size of the local attention heads is referred to under the
’attention scheme’ columns of Supplementary Table 5.

1.3. Training and Evaluation
This study explores the use of transformer models to detect translated open reading frames using ribosome

profiling data. This is achieved by detecting translated initiation sites, constituting a binary-classification
task. Model evaluations follow a standard deep learning set-up featuring a training, validation and test set.
Data is grouped according to chromosomes to prevent identical profiles of ribosome reads, possible due to
the existence of transcript isoforms, being separated between the training, validation or test set. The data
used for the hyperparameter and input strategy selection are chromosomes 3, 4, 5, 6, 8, 9, 10, 11, 12, 13,
15, 16, 17, 18, 20, 21, 22, X, and Y for the training set, chromsomes 2 and 14 for the validation set, and
chromosomes 1, 7, 13, and 19 for the test set. The data used for the pre-training strategy selection and
benchmarking with previous tools feature two sets (folds) in order to cover the full transcriptome (within the
test set). The first fold has chromosomes 3, 5, 7, 11, 13, 15, 19, 21, and X for the training set, chromosomes
1, 9, and 17 for the validation set, and chromosomes 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and Y for the test
set. The second fold has chromosomes 2, 6, 8, 10, 14, 16, 18, 22, and Y for the training set, chromosomes 4,
12, and 20 for the validation set, and chromosomes 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and X for the test set.
Binary cross-entropy is applied as the loss function. For all set-ups described in this paper, a learning rate
of 10−3 is applied. The loss on the validation set indicates the optimal point of the model fit and is used for
model selection (i.e. early stopping) to prevent overfitting on the training set. All reported performances
are obtained on the test set.

1.3.1. Hyperparameter selection
Hyperparameter optimization is performed to identify the optimal model architecture for this learning

problem. The benchmark dataset featuring the highest number of mapped reads (SRR2733100) was selected
to perform the hyperparameter selection on. No individual hyperparameters were observed to be more
effective than others in improving performances. However, a correlation exists between the total number of
model parameters and model performance. Eight unique architectures have been evaluated featuring varying
configurations for the size of the hidden dimension, number of layers, number of attention heads per layer
and the dimension of the attention head itself (Supplementary Table 5). Supplementary Figure 5 shows the
validation loss at different epochs of the various architectures.

1.3.2. Input token strategy
The input token strategies follows the same data allocations as the hyperparameter selection. To evaluate

strategy A, reads were mapped by their 5’ reads without offsets, and with offsets calculated by Plastid and
RiboWaltz. Plastid and RiboWaltz have been selected for A/P-site offset calling as they are both popular
methods specifically created for this task. Package versions are those listed as ’Last update’ in Table 1.
Scripts are executed following our custom folder structure.

Plastid

reformat_transcripts --annotation_files genome/Homo_sapiens.GRCh38.107.gff3 --
↪→ annotation_format GFF3 --output_format GTF2 genome/Homo_sapiens.GRCh38.107.gtf2

metagene generate genome/plastid/ --landmark cds_start --annotation_files genome/
↪→ Homo_sapiens.GRCh38.107.gtf2
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psite genome/plastid/_rois.txt ribo/${dataset}/out/plastid/ --min_length 20 --max_length
↪→ 41 --require_upstream --count_files ribo/${dataset}/out/genome/${dataset}_aligned.
↪→ bam

RiboWaltz

library(riboWaltz)

metadata <- read.table('ribo/metadata.txt', header = FALSE, sep = "", dec = ".")
annotation_db <- create_annotation('genome/Homo_sapiens.GRCh38.107.gtf')
for (i in metadata$V1){

reads_list <- bamtolist(bamfolder=sprintf("ribo/%s/out/", i), annotation=annotation_db
↪→ )

filtered_list <- length_filter(data=reads_list, length_filter_mode="custom", length_
↪→ range=20:40)

psite_offset <- psite(filtered_list)
dir.create(sprintf("ribo/%s/out/ribowaltz", i))
write.table(psite_offset, sprintf("ribo/%s/out/ribowaltz/riboWaltz_offsets.csv", i),

↪→ sep="\t")
}

1.3.3. Fine-tuning
Fine-tuning a trained model has two important advantages as compared to training a model from scratch–

faster convergence of the validation loss, substantially reducing optimization times, and improved perfor-
mances. Model pre-training follows the same data groupings to ensure models are exposed to the same
transcripts during training at any stage. Both self-supervised and supervised pre-training have been evalu-
ated using eight independent datasets (Extended Data Table 1). The supervised training objective proved to
be the most effective (Supplementary Table A2). When applying RiboTIE for mapping translated open read-
ing frames on the transcriptome, multiple models are trained that cover different parts of the transcriptome
during training and model selection (i.e. training and validation set).

1.3.4. Benchmark
Code snippets used to run various tools. ORFquant was run without use of any flags except those

selecting the input and output files and is thus not listed.
PRICE

gedi -e IndexGenome -s genome/Homo_sapiens.GRCh38.dna.primary_assembly.fa -a genome/
↪→ Homo_sapiens.GRCh38.107.gtf -f genome/price -nobowtie -nostar -nokallisto

gedi -e Price -reads ribo/${dataset}/out/genome/${dataset}_aligned.bam -genomic
↪→ Homo_sapiens.GRCh38.107 -prefix ribo/${dataset}/out/price/ -progress -plot

Rp-Bp

prepare-rpbp-genome ../scripts/benchmark/rpbp_full.yml --star-options "--
↪→ genomeSAindexNbases 10" --mem 10G --num-cpus 4 --logging-level INFO --log-file
↪→ genome/rpbp/rpbp-genome.log --write-unfiltered

run-all-rpbp-instances ribo/${dataset}/out/rpbp/rpbp.yml --num-cpus 30 --logging-level
↪→ INFO --mem 50G

Ribo-TISH

ribotish quality -b ribo/${dataset}/out/genome/${dataset}_aligned.bam -g genome/
↪→ Homo_sapiens.GRCh38.107.gtf -f ribo/${dataset}/out/ribotish/quality.pdf -r ribo/${
↪→ dataset}/out/ribotish/offset.txt -o ribo/${dataset}/out/ribotish/quality.txt -l
↪→ 20,41

ribotish predict -b ribo/${dataset}/out/genome/${dataset}_aligned.bam -g genome/
↪→ Homo_sapiens.GRCh38.107.gtf -f genome/Homo_sapiens.GRCh38.dna.primary_assembly.fa
↪→ -o ribo/${dataset}/out/ribotish/orfs.txt --ribopara ribo/${dataset}/out/ribotish/
↪→ offset.txt

ribotricer

ribotricer prepare-orfs --gtf genome/Homo_sapiens.GRCh38.107.gtf --fasta genome/
↪→ Homo_sapiens.GRCh38.dna.primary_assembly.fa --prefix genome/ribotricer/ribo

ribotricer detect-orfs --bam ribo/${dataset}/out/genome/${dataset}_aligned.bam --
↪→ ribotricer_index genome/ribotricer/ribo_candidate_orfs.tsv --prefix ribo/${dataset
↪→ }/out/ribotricer/
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2. Supplementary Tables

Supplementary Table 1: Various tools designed to detect expressed coding sequences using ribosome profiling
data. Methods with * require RNA-seq data. The list is non-exhaustive.

Calling
Method Author A/P-site ORF Year Last update Language

Ribotricer [24] Yes Yes 2019 1.3.3 (2023) Python
Ribodeblur [25] Yes No 2018 2018 Python
RiboWaltz [26] Yes No 2018 1.2.0 (2021) R
RibORF [27] Yes Yes 2018 2.0 (2022) Perl
RiboCode [28] Yes Yes 2018 1.2.15 (2022) Python
RiboWave [29] Yes Yes 2018 2018 Python
Scikit-ribo* [30] No Yes 2018 2018 Python
Rp-Bp [31] Yes Yes 2017 3.0.1 (2023) Python
RiboTISH [32] Yes Yes 2017 0.2.7 (2021) Python
Plastid [33] Yes No 2016 0.6.1 (2022) Python
PRICE (Gedi) [34] No Yes 2016 1.0.5 (2022) Python
SPECtre [35] No Yes 2016 1.0.0 (2018) R/Python
riboHMM* [36] No Yes 2016 2016 Python
RiboProfiling [37] Yes Yes 2016 1.28.0 (2022) R
RiboTaper* [38] No Yes 2015 1.3 (2016) R
ORF-RATER [39] No Yes 2015 2018 Python2.7
PROTEOFORMER [40] Plastid Yes 2015 2.0 (2022) Python2.7/Perl
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Supplementary Table 3: RiboTIE performances for different input token strategies and datasets. Scores are calculated
on the test set after selection of the model with the minimum validation loss (See Extended Data Figure 2). For each dataset
and strategy, the cross-entropy loss (×103), area under the receiver operating characteristic curve (ROC), and area under the
precision-recall curve (PR) are given. Results indicate the relevance of read length information for the prediction of translation
initiation sites using ribosome profiling data, especially for datasets featuring a higher read depth (see Extended Data Table 1).
All strategies are evaluated using the same model architecture and training/validation data (Architecture 4, see Supplementary
Table 5, Supplementary Figure 5), Strategy A generates input tokens utilizing read count information for every position of
the transcript. Strategy A includes mappings generated by taking the 5’ position of every read, and offsetting reads based on
read length utilizing two different tools (Plastid, RiboWaltz). Strategy B includes information on both the positions and read
lengths of the mapped reads.

SRR1802129 SRR2433794 SRR2732970 SRR2733100
Position Loss ROC PR Loss ROC PR Loss ROC PR Loss ROC PR

A 5’ 1.71 0.938 0.0211 1.48 0.965 0.0937 1.40 0.963 0.161 1.38 0.965 0.161
A Plastid 1.74 0.935 0.0144 1.49 0.964 0.0825 1.39 0.965 0.156 1.41 0.964 0.145
A RiboWaltz 1.7 0.941 0.0205 1.47 0.966 0.0908 1.4 0.964 0.154 1.4 0.964 0.151
B 5’ 1.69 0.945 0.0217 1.44 0.968 0.104 1.31 0.969 0.211 1.3 0.97 0.217

SRR2954800 SRR8449577 SRR9113067 SRR11005875
Position Loss ROC PR Loss ROC PR Loss ROC PR Loss ROC PR

A 5’ 1.69 0.935 0.0394 1.55 0.955 0.0721 1.7 0.943 0.0178 1.48 0.967 0.0727
A Plastid 1.72 0.931 0.0309 1.57 0.954 0.0579 1.7 0.942 0.0161 1.5 0.966 0.0721
A RiboWaltz 1.71 0.932 0.0324 1.56 0.955 0.064 1.7 0.943 0.0171 1.48 0.967 0.0721
B 5’ 1.69 0.937 0.04 1.54 0.956 0.0751 1.7 0.943 0.0189 1.47 0.967 0.0804

Supplementary Table 4: RiboTIE performances for different model optimization strategies and datasets. Scores are
calculated on the test set after selection of the model with the minimum validation loss (See Supplementary Figure 7, 8). For
each dataset and strategy, the cross-entropy loss (×103), area under the receiver operating characteristic curve (ROC), and area
under the precision-recall curve (PR) are given. Results show the gain by having a model trained on a large variety of ribosome-
profiling datasets using a supervised learning objective (see Extended Data Table 1). All settings are evaluated using the same
model architecture (Architecture 4, see Supplementary Table 5) and input token strategy (Strategy B, see Supplementary Table
3. The data is split in two folds (F1 and F2), with different parts of the transcriptome covered as training/validation/test data
in each fold.

SRR1802129 SRR2433794 SRR2732970 SRR2733100
Pre-train Loss ROC PR Loss ROC PR Loss ROC PR Loss ROC PR

- 1.58 0.944 0.017 1.36 0.968 0.097 1.24 0.969 0.193 1.22 0.969 0.203
F1 Supervised 1.56 0.948 0.024 1.32 0.970 0.120 1.18 0.972 0.239 1.18 0.972 0.240

Self-Supervised 1.57 0.946 0.020 1.36 0.966 0.110 1.20 0.970 0.227 1.20 0.969 0.226

- 1.66 0.944 0.015 1.47 0.962 0.084 1.29 0.968 0.193 1.29 0.969 0.195
F2 Supervised 1.63 0.948 0.024 1.42 0.967 0.104 1.25 0.972 0.227 1.24 0.972 0.229

Self-Supervised 1.65 0.945 0.021 1.44 0.965 0.098 1.26 0.969 0.214 1.28 0.969 0.214

SRR2954800 SRR8449577 SRR9113067 SRR11005875
Position Loss ROC PR Loss ROC PR Loss ROC PR Loss ROC PR

- 1.60 0.935 0.033 1.43 0.959 0.079 1.59 0.946 0.013 1.37 0.969 0.075
F1 Supervised 1.57 0.939 0.045 1.40 0.962 0.096 1.55 0.951 0.024 1.34 0.972 0.094

Self-Supervised 1.59 0.936 0.036 1.42 0.959 0.087 1.58 0.946 0.019 1.37 0.968 0.077

- 1.70 0.932 0.025 1.52 0.956 0.071 1.68 0.941 0.013 1.45 0.966 0.076
F2 Supervised 1.65 0.939 0.044 1.47 0.960 0.092 1.62 0.949 0.027 1.42 0.970 0.090

Self-Supervised 1.68 0.933 0.033 1.50 0.958 0.085 1.67 0.944 0.015 1.45 0.967 0.079

Supplementary Table 5: Eight model architectures used for hyperparameter tuning selection. For each set-up, a
model is trained to detect translation initiation sites using ribosome profiling data. Hyperparameter selection is based on the
minimum loss on the validation set. Hyperparameter tuning is performed on SRR2733100, featuring the highest read depth of
all evaluated datasets. Supplementary Figure 5 displays the validation loss curves for each of the listed architectures.

Hidden Attention head Attention scheme
ID state dim. Depth Heads Head dim. Local Full Model parameters Val. loss (×10−3)

1 24 5 6 12 4 2 81K 1.099
2 30 6 6 16 4 2 129K 1.105
3 30 8 6 24 4 2 215K 1.108
4 42 6 6 16 4 2 211K 1.095
5 42 8 6 24 4 2 339K 1.099
6 48 6 8 16 5 3 297K 1.096
7 48 8 8 24 5 3 484K 1.110
8 50 10 10 24 6 4 525K 1.102
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Supplementary Table 6: Comparative performances of RiboTIE based on different subsets of the data. The model
predictions to detect translation initiation sites for each position on the trancriptome can be subsetted as a post-processing
step. Using Ensembl translation initiation sites to derive a positive set, the area under the receiver operating characteristic
curve (ROC) and area under the precision-recall curve (PR) are calculated. Given is the performance for all positions (total
of ∼430M), with no conditions for what a valid ORF constitutes, positions that result in an ORF with a valid stop codon on
the transcript (stop codon), an ORF length larger than 30 nucleotides (ORF length), and an ATG start codon (ATG start).
Additionally, a subset has been selected using a minimum of 20 mapped reads (# Reads) on the transcript as a requirement.
The performance and percentage of the total samples when using a combination of all listed conditions (Combined) is listed
in the last set of columns. Note that the predictions of RiboTIE are those of the models pre-trained using a supervised
learning strategy (see Supplementary Table 2), where the predictions of both models/folds are simply merged to cover the full
transcriptome.

- Stop codon ORF length # Reads ATG start Combined
dataset ROC PR ROC PR ROC PR ROC PR ROC PR % ROC PR

SRR1802129 0.945 0.020 0.946 0.020 0.943 0.021 0.981 0.041 0.952 0.318 0.6 0.983 0.502
SRR2433794 0.965 0.101 0.966 0.103 0.964 0.103 0.983 0.137 0.966 0.419 1.0 0.981 0.516
SRR2732970 0.969 0.220 0.970 0.222 0.968 0.223 0.986 0.285 0.958 0.399 1.1 0.972 0.487
SRR2733100 0.969 0.215 0.970 0.217 0.968 0.218 0.986 0.279 0.957 0.399 1.1 0.971 0.488
SRR2954800 0.935 0.034 0.935 0.034 0.932 0.036 0.972 0.068 0.942 0.266 0.6 0.974 0.417
SRR8449577 0.958 0.083 0.959 0.084 0.957 0.085 0.983 0.128 0.961 0.382 0.8 0.982 0.514
SRR9113067 0.944 0.016 0.945 0.016 0.942 0.017 0.971 0.024 0.950 0.289 0.9 0.974 0.399
SRR11005875 0.967 0.077 0.968 0.078 0.966 0.080 0.985 0.106 0.969 0.432 1.0 0.984 0.534

7



3. Supplementary Figures

Supplementary Figure 1: Illustration of the data applied for calculating the input vector representation. For a
given matrix containing reads mapped according to their 5’-end by transcript position and read length. Strategy A: reads are
offset according to a fixed value for each read length. The total read count is applied for further processing. Strategy B: both
the total read count and the fractional abundance of each read length is used to obtain an input vector representation. Input
vector representations are calculated for each position (e.g. dotted square encapsulates data used for a single position). Note
that in contrast to the illustration, data is generally sparse and ribosome profiling data is applied for 21 read lengths ([20, 40]).
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Supplementary Figure 2: Counts of reads mapped by their 5’ positions along translation initiation start sites.
The figure showcases unique patterns of read alignments per read length and experiment. Read counts are taken by only
evaluating translation initiation sites of coding sequences within the consensus coding sequence (CCDS) library. A window of
20 nucleotides upstream and 40 nucleotides downstream is taken. A logarithmic scale and alternating color scheme is used to
highlight the patterns emerging from the triplet periodicity along the translation initiation site and coding sequence. Included
are experiments SRR1802129, SRR2433794, and SRR2732970. Accompanied by Supplementary Figure 3 and 4.
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Supplementary Figure 3: Counts of reads mapped by their 5’ positions along translation initiation start sites.
The figure showcases unique patterns of read alignments per read length and experiment. Read counts are taken by only
evaluating translation initiation sites of coding sequences within the consensus coding sequence (CCDS) library. A window of
20 nucleotides upstream and 40 nucleotides downstream is taken. A logarithmic scale and alternating color scheme is used to
highlight the patterns emerging from the triplet periodicity along the translation initiation site and coding sequence. Included
are experiments SRR2733100, SRR2954800, and SRR8449577. Accompanied by Supplementary Figure 2 and 4.

10



Supplementary Figure 4: Counts of reads mapped by their 5’ positions along translation initiation start sites.
The figure showcases unique patterns of read alignments per read length and experiment. Read counts are taken by only
evaluating translation initiation sites of coding sequences within the consensus coding sequence (CCDS) library. A window of
20 nucleotides upstream and 40 nucleotides downstream is taken. A logarithmic scale and alternating color scheme is used to
highlight the patterns emerging from the triplet periodicity along the translation initiation site and coding sequence. Included
are experiments SRR9113067, SRR11005875. Accompanied by Supplementary Figure 2 and 3.
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Supplementary Figure 5: The loss curves of the model architectures trained for detecting TIS using ribosome
profiling data. The validation sets used are chromosomes 2 and 14. The hyperparameters for each model are given in Table 5.
Architectures 1–2 converge slowly over several epochs without reaching a minimum within the evaluated time frame, indicating
too few model weights. The higher number of model weights of architectures 7–8 result in clear overfitting from epoch 5
onward. Architecture 4 returns the lowest loss, and is selected for model benchmarking. While the minimum loss is similar for
all architectures, the plot confirms our selection of a model architecture with a suitable number of parameters.

Supplementary Figure 6: Self-supervised learning implementation for ribosome profiling data. One of the pre-training
approaches investigated in this paper. A model is trained to infer the presence of a mapped ribosome reads at a given position.
The task constitutes a binary multi-label classification task. 15% of the input positions were randomly selected (dotted frame)
and masked using a custom input embedding (orange input vectors). Positive labels are allocated to read lengths having more
than one read mapped at a given position. Note that in contrast to the illustration, data is generally sparse and ribosome
profiling data is applied for 21 read lengths ([20, 40]).
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Supplementary Figure 7: Validation cross-entropy loss of different training schemes of RiboTIE. Eight datasets
were evaluated following three approaches. This is achieved by training a model from scratch (no pre-training) or using a
pre-trained model fit on a selection of eight separate datasets (see Extended Data Table 1). Pre-trained models include both
those fit following a supervised learning objective (supervised pre-training) on identifying translation initiation sites, and those
fit following a self-supervised learning objective, similar to those found in language processing (see Supplementary Figure 6).
This figure shows the models trained on chromosomes 3, 5, 7, 11, 13, 15, 19, 21, and X with chromosomes 1, 9, and 17 used as
validation set.
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Supplementary Figure 8: Validation cross-entropy loss of different training schemes of RiboTIE. Eight datasets
were evaluated following three approaches. This is achieved by training a model from scratch (no pre-training) or using a
pre-trained model fit on a selection of eight separate datasets (see Extended Data Table 1). Pre-trained models include both
those fit following a supervised learning objective (supervised pre-training) on identifying translation initiation sites, and those
fit following a self-supervised learning objective, similar to those found in language processing (see Supplementary Figure 6).
This figure shows the models trained on chromosomes 2, 6, 8, 10, 14, 16, 18, 22, and Y with chromosomes 4, 12, and 20 used
as validation set.

14



References

[21] Clauwaert, J., McVey, Z., Gupta, R. & Menschaert, G. TIS Transformer: Remapping the human
proteome using deep learning. NAR genomics and bioinformatics 5, lqad021 (2023).

[22] Choromanski, K. et al. Rethinking Attention with Performers. arXiv:2009.14794 [cs, stat] (2021).
2009.14794.

[23] Su, J. et al. RoFormer: Enhanced Transformer with Rotary Position Embedding (2022). 2104.09864.

[24] Choudhary, S., Li, W. & D. Smith, A. Accurate detection of short and long active ORFs using Ribo-seq
data. Bioinformatics 36, 2053–2059 (2020).

[25] Ahmed, N. et al. Identifying A- and P-site locations on ribosome-protected mRNA fragments using
Integer Programming. Scientific Reports 9, 6256 (2019).

[26] Lauria, F. et al. riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data.
PLOS Computational Biology 14, e1006169 (2018).

[27] Ji, Z. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using Ribosome Profiling.
Current Protocols in Molecular Biology 124, e67 (2018).

[28] Xiao, Z. et al. De novo annotation and characterization of the translatome with ribosome profiling data.
Nucleic Acids Research 46, e61 (2018).

[29] Xu, Z. et al. Ribosome elongating footprints denoised by wavelet transform comprehensively characterize
dynamic cellular translation events. Nucleic Acids Research 46, e109 (2018).

[30] Fang, H. et al. Scikit-ribo Enables Accurate Estimation and Robust Modeling of Translation Dynamics
at Codon Resolution. Cell Systems 6, 180–191.e4 (2018).

[31] Malone, B. et al. Bayesian prediction of RNA translation from ribosome profiling. Nucleic Acids
Research 45, 2960–2972 (2017).

[32] Zhang, P. et al. Genome-wide identification and differential analysis of translational initiation. Nature
Communications 8, 1749 (2017).

[33] Dunn, J. G. & Weissman, J. S. Plastid: nucleotide-resolution analysis of next-generation sequenc-
ing and genomics data. BMC Genomics 17, 958 (2016). URL http://dx.doi.org/10.1186/
s12864-016-3278-x.

[34] Erhard, F. et al. Improved Ribo-seq enables identification of cryptic translation events. Nature Methods
15, 363–366 (2018).

[35] Chun, S. Y., Rodriguez, C. M., Todd, P. K. & Mills, R. E. SPECtre: A spectral coherence-based
classifier of actively translated transcripts from ribosome profiling sequence data. BMC Bioinformatics
17, 482 (2016).

[36] Raj, A. et al. Thousands of novel translated open reading frames in humans inferred by ribosome
footprint profiling. eLife 5, e13328 (2016).

[37] Popa, A. et al. RiboProfiling: A Bioconductor package for standard Ribo-seq pipeline processing [version
1; peer review: 3 approved]. F1000Research 5 (2016).

[38] Calviello, L. et al. Detecting actively translated open reading frames in ribosome profiling data. Nature
Methods 13, 165–170 (2016).

[39] Fields, A. P. et al. A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved
Complexity to Mammalian Translation. Molecular Cell 60, 816–827 (2015).

[40] Crappé, J. et al. PROTEOFORMER: Deep proteome coverage through ribosome profiling and MS
integration. Nucleic Acids Research 43, e29 (2015).

15

2009.14794
2104.09864
http://dx.doi.org/10.1186/s12864-016-3278-x
http://dx.doi.org/10.1186/s12864-016-3278-x

	Supplementary Methods
	Ribosome profiling processing
	RiboTIE
	Data processing
	Input embedding strategies
	Model architecture
	Attention

	Training and Evaluation
	Hyperparameter selection
	Input token strategy
	Fine-tuning
	Benchmark


	Supplementary Tables
	Supplementary Figures

