413 LEGENDS TO SUPPLEMENTARY FIGURES

414 Figure S1. Comparison of HoxD regulatory landscapes in mammals and fishes. a. Hoxd gene 415 expression and regulation in mouse limb buds at E12.5. The HoxD cluster is flanked by two gene deserts, named according to their relative position (3' or 5') with respect to Hoxd gene orientation. The 416 417 3DOM regulatory landscape activates *Hoxd4* to *Hoxd11* in the proximal limb territory (green). The 5DOM activates *Hoxd10* to *Hoxd13* in the distal limb territory (blue). Schemes are based on ref.¹⁵. **b.** 418 Gene expression in fin buds at 40-60 hpf in the cognate zebrafish hoxda cluster. The fish cluster is also 419 420 flanked by two gene deserts but their regulatory potentials are unknown (question marks). Fish hoxd9a 421 to hoxdlla are expressed in the preaxial fin territory (purple) whereas hoxdlla to hoxdl3a are expressed in a postaxial domain (orange). Schemes and WISH are inspired from^{14,53,54}. 422

423

424 Figure S2. 3D chromatin conformation at the mouse and fish HoxD loci. Contact frequency heatmaps at the mouse HoxD (E18.5 male UGS, one representative replicate out of two) and fish hoxda 425 426 (24 hpf and 48 hpf total embryos^{41,55}) loci (top and bottom, respectively). The similarities in the 427 constitutive structural organization of the mouse and the fish loci are underlined either by the position 428 and relative extents of TADs (thick black lines), the presence of a sub-TAD boundary within 3DOM 429 (asterisk), as well as by the positions and orientation of CTCF binding sites (red and blue arrowheads). 430 Hox genes are in purple-scale rectangles and other genes are grey rectangles. Bin size is 10 kb. The 431 scales on the x axes were adjusted to comparable sizes for ease of comparison, yet the fish locus is more 432 compact. Scale bars in both cases; 100 kb.

433

434 Figure S3. The HoxD locus is part of a large syntenic interval. a. The mouse HoxD locus (mm39) 435 is on top and the zebrafish *hoxda* locus (danRer11) is shown below. *Hox* genes are in purple-scale 436 rectangles and annotated mouse enhancers are shown as either blue (5DOM) or green (3DOM) 437 rectangles. Conserved sequences between the two gene deserts are shown as vertical black bars. Those 438 conserved sequences overlapping with known murine enhancers were used to annotate the 439 corresponding elements in zebrafish (blue rectangles). b. Synteny plot representing sequences 440 conserved between the mouse and the zebrafish HoxD loci. On the x axis is the mouse locus (mm10, 441 chr2: 73605690-75662521) and on the y axis is the zebrafish locus (danRer11, chr9: 1639965-2393397, 442 inverted v axis). Despite a mouse locus that is in average 2.6 times larger than its zebrafish counterpart, 443 the order of most conserved sequences is maintained, showing the absence of substantial genomic 444 rearrangement at these gene deserts. c. Size comparisons between different regions of the zebrafish 445 hoxda and the mouse HoxD loci. The left panel shows that the Hox clusters have maintained a similar 446 size over time, while gene deserts have expanded in mouse and/or contracted in zebrafish. The right 447 panel shows that the ratio between the sizes of 5DOM versus 3DOM is inverted in the two species.

448

449 Figure S4. Chromatin profiles in zebrafish embryos. a. Expression of hoxd13a, hoxd10a and hoxd4a 450 in control zebrafish embryos by WISH. Stages are indicated on top of the panels. Scale bars; 200 µm. 451 **b.** Dissection plan used for panel (c). PT, posterior trunk. c. ATAC-seq profile and both H3K27ac and 452 H3K27me3 CUT&RUN profiles over the zebrafish hoxda locus in 16 hpf dissected heads (grey, one 453 representative condition out of three) and 16 hpf posterior trunk cells (PT, blue, one representative 454 replicate out of three). Both the *hoxda* cluster and 3DOM show specific open sites in posterior trunk, 455 where *hoxda* genes are expressed, when compared to forebrain. The CUT&RUN profiles in posterior 456 trunk cells show enrichment for H3K27ac (green coverage) on the central and anterior parts of the 457 *hoxda* cluster, while H3K27me3 (red coverage) is enriched on the posterior part and on *evx2*. Scale bar; 458 100 kb.

459

Figure S5. *Hoxd13a* expression in control, heterozygous and homozygous mutant fin buds at 60 and 72 hpf. a. Schematic of the deletion and spatial orientation of the fin buds. b. Various samples are shown to illustrate the variability observed. While a clear tendency is observed in the loss of the distal most expression in homozygous mutants, expression is still observed in some samples as well as in post-axial cells, unlike the situation in developing limb buds where expression is entirely absent in the comparable deletion. Scale bar: 50 μm.

466

467 Figure S6. WISH of *hoxd13a*, *hoxd10a* or *hoxd4a* in zebrafish embryos lacking either 3DOM (a),

or 5DOM (b). The genotypes (in red, top) and genes analyzed (left) are shown as well as the stages (up 468 469 left). a. Deletion of 3DOM. Black arrowheads (empty for no expression and full for expression) indicate 470 differential gene expression in the cloacal region, whereas red arrowheads (empty for no expression 471 and full for expression) point to the pectoral fin buds. Control and homozygote mutant embryos are 472 shown side by side for each condition, except for *hoxd4a* where a heterozygous (Het) mutant is shown. 473 Wild-type and homozygous embryos originate from the same clutch of eggs and were processed 474 together. In Del(3DOM) mutant embryos (a), Hoxd10a and hoxd4a transcription is lost in fin buds, 475 whereas *hoxd13a* transcripts in the cloaca are not affected. B, branchial arches; R, rhombomeres; Scale 476 bars; 200 µm. b. In contrast, hoxd13a mRNAs are lost from the cloacal region in Del(5DOM) mutant 477 animals at 36 hpf (red arrowheads), while still clearly detected in the fin buds, indicating that the 5DOM 478 is necessary for *hoxd13a* transcription in the pseudo-cloacal region.

479

Figure S7. *Hoxd* gene expression in the mouse urogenital system. a. Schematic representations of
male and female urogenital systems. K: Kidney, B: Bladder, O: Ovary, T: Testis. The urogenital sinus
(UGS) is indicated with a red circle. b. WISH of *Hoxd* genes in representative female and male
urogenital systems. All *Hoxd* genes are expressed in anterior portions of the UGS including kidneys,
the uterus, deferens ducts and the bladder, except *Hoxd13* transcripts, which are restricted to the UGS

485 (see Fig. 3b). c-d. Schematic representation of two HoxD genomic configurations, The first one is a 486 deletion of the entire *HoxD* cluster (c), whereas the second one is a random integration of a transgene 487 carrying the same HoxD transgene plus some flanking sequences in 5' (d, thick red bar). Hox genes as 488 in shades of purple and the deletion breakpoints are shown as vertical dashed red lines. Scale bar; 100 489 kb. c. WISH of *Hoxd13* in UGS from a transgenic *HoxD* cluster (TgBAC), while lacking both 490 endogenous copies of the HoxD cluster. Expression is not detected from the transgenic cluster. d. 491 Likewise, β -gal staining of UGS transgenic for the *HoxD* cluster containing a *LacZ* reporter displays no 492 activity in the UGS. By contrast, LacZ staining of mutant Inv(nsi-Itga6)d11lac embryos, which also 493 includes a *lacZ* reporter confirms that 5DOM is necessary and sufficient to drive expression in the UGS. 494 Scale bar: 1 mm.

495

496 Figure S8. Regulatory potential of sub-regions within 5DOM. a. RNA-seq FPKM values for various 497 mouse Hoxd genes in E18.5 UGS obtained from either wild-type or Inv(nsi-Itga6)d11lac mutant 498 embryos (see schematic in Fig. 3c). Data are shown separately for females (n=3, dots) and males (n=3, dots)499 triangles). Drastic decreases are observed for Hoxd10, Hoxd12 and Hoxd13 when 5DOM is 500 disconnected from the HoxD cluster. Hoxd11 could not be assessed due to the presence of a transgenic 501 copy of this gene in the *LacZ* reporter cassette. **b.** On top is a scheme of the 5DOM regulatory landscape 502 on mm39 with Hox genes in purple. Blue rectangles indicate previously described 5DOM enhancers. 503 The red arrowheads delimit the serial deletion breakpoints. The three consecutive deletions are depicted 504 by red dashed lines. Below are RT-qPCR quantifications of expression levels relative to wild-type (n=4) 505 in three mutant lines carrying serial deletions of 5DOM (n=3). The horizontal red line represents the 506 value of 1 for reference. Severe reductions are observed for both the *Del(Rel5-SB1)* and *Del(Rel1-Rel5)* 507 conditions, unlike in the *Del(SB1-Atf2)* deletion. Scale bar; 100 kb.

508

Figure S9. Sequence conservation in vertebrates of the GT2, islE and CsB UGS enhancers. All
three sequences are comprised in the box highlighted in Fig. 4a. The ATAC-seq and H3K27ac ChIPseq profiles are shown with, below, their sequence conservation from fishes and mammals. The thick
blue lines below the H3k27ac profiles indicate the extent of the transgenes assayed in Fig. 4. Scale bars;
1 kb.

514

Figure S10. hox13 gene expression in the Daniocell atlas. a. UMAP of endoderm cells using matrices extracted from ref.⁵⁶, colored by tissue. The black rectangle indicates the UMAP region which contains cellular clusters from the cloacal region. All other panels in the figure correspond to this rectangle. b. UMAP of endodermal cells and identities of their clusters. The colors indicate the identities of cells from both the cloacal region (red arrow) and the posterior intestine (dark green, arrow). c. UMAP of selected endoderm, clustered by developmental stages (color code below). d. UMAP as in panel b, with the expression in red of the various hox13 paralogous genes. All cells with a normalized expression

level above 2 are displayed in red. In panels c and d, arrowheads indicate *hox13* expressing cells in the
cloacal region either at early (red) or late (black) timepoints. The black arrows point to *hox13* expression
in intestinal cells.

525

526 Figure S11. Cloacal region phenotypes in hox13 mutant zebrafish. a-f. Confocal micrographs of 527 mutant cloacal regions at 6 dpf shown in single channel (a-c) and pseudo color (d-f). d. Triple 528 hoxa13a:hoxa13b:hoxd13a heterozygotes (n=6) exhibit wild-type patterning with separate openings for 529 the hindgut (blue) and pronephric duct (yellow). e. Homozygous hoxa13a single mutants show wild-530 type patterning (n=4). f. Homozygous *hoxa13b* single mutants have wild-type patterning (n=4). g-h. Length and width of the hindgut and pronephric duct in wild-type and *hoxa13* mutant zebrafish embryos 531 532 at 3 dpf. g. The length (red dotted lines) and width (white dotted lines) of the hindgut and pronephric 533 complex at the median fin fold level were quantified in wild-type (n=4, left) and hoxa13a;hoxa13b 534 double mutant embryos (n=5, right). h. The length difference of the hindgut and pronephric complex between wild-type and *hoxa13* double mutant embryos is statistically significant (*p = 0.0101, two-535 536 sided Welch's t-test). The error bars indicate the standard error of the mean. Scale bar length is 30 µm 537 in **a-f** and 100 µm in **g**.

538

Table S1. Extent of the mouse and zebrafish domains. Sizes are indicated in base pairs and weredetermined based on the transcription start sites of genes.

541 Table S2. Accession numbers for re-analyzed data. SRA accession numbers and reference of

542 publications for the re-analyzed data when previously published data was used.

543 Table S3. RT-qPCR primers. Lists of primers used in RT-qPCR experiments.

544 File S1. Sequences of the zebrafish probes used for WISH

545 File S2. Sequences of the mouse probes used for WISH

546 File S3. Sequences of the zebrafish $hoxda^{Del(3DOM)}$ and $hoxda^{Del(5DOM)}$ founder alleles

Hintermann*, Bolt* et al.

Sequences for zebrafish ISH probes

>hoxD4a_probe_danRer

GAGTGTGTGCGCGATCTCGATGCGACGCCGTCTTGTTAGATACCTGTTAAAATGAAACTCCTTCTCTAGTTCGAGAACCTGCTGTC TTGTGTAGGCTGTCCGAGAACGTTTGGGTTCAGGTCCTGTGTAATCCGGGTTCACCGTAGTAACGTGCACTTTCTTCATCCACGG GTAAACTACAGCAGGCTGCTTCGTTGGTATCCCGTTCTGGGTCTTTGTGTTGTTGTCGCCACCAGTCCTCGATCCGGAAATCT GGACCGCGGGACACTGCTCTGTCTGTGCAGGGAAAGGGCTAGGGGTGCTGGCTTGATCCTGCACATGACCCCGCGGCTGCACC GACGAGCCCTGGACAGTGCTACAACTGTAAGGCTGTTCAGAGTAGTTTGACCGTGAATAGATTCCGGGATGCTGGAAATCAGTG TCCTGCGACGGACTGTAGTAGCCTGGGCTCTGTTCAGGTATATAGCTGTTCTGAGAATATCCTCGCAAGGAGGAAATTTGGGATC CACATACTTGGAGTTCACCATGTACGAACTCATGGCCATTAATTTCTGAAGGTAGGAAATACTAATTTTTCTCGAGTTGTCTTTTTT CCTCCCTCCATAAAGCCCTCC

>hoxD10a_probe_danRer

>hoxD13a_probe_danRer

Hintermann*, Bolt* et al.

Sequences for mouse ISH probes

>Hoxd4 probe mouse

>Hoxd8 probe mouse

>Hoxd9_probe_mouse

>Hoxd10_probe_mouse

>Hoxd11_probe_mouse

>Hoxd12 probe mouse

TGGACAGATTCTATAACAGGCGTAGAGCAACTTCATTCACAATTCAGAAAACCTAGGTTTCTCAAGGT AAACCTGGCAGGGCTTGGGGGCCTTAAAAGCTTTACAAGAGCTGACCACCAGTCTCTGAGAAGAGACA CTTCAAGAGCAGCAACTACAGTCTGAGAATCTGAGAGGTTTCTTCTCCCACCCTTCAGACTCCTCAAGG ATATGGATAACTTCATTCATTCAAGAGGAGAGAGTCGTGGTTACAGAGTGCAGATCCTCCTCCGCCTCGCT TACTCTTCTTCTTCCCTGTGCAGCCAAGCCTCAAAACAGGCCAGCAGCTCCCCTCACCCATAGCTCAG TTCTGGGGATCTAGTTACAGAGTGCTTGGCCTTGGCTCAGGGATAGGTGAGGCTGGAGCAGGGGAATT ATGACAGTCTAGAGACCATACTTTGTTTTGGAGTCCCAGTTTCTCTCCCTGTCTCTGAGAAGGAGATCT TCCAGCCTGTTTTACTCAGCAGGAGAACCTTTGAAGCGCTGAGGTTCCAGGGTATCCTTTCCTCCCCCC ${\tt CCCCCCACAAGTCTGAAGGTCTAGGGTAGCTTTTGTCCTCCCAAATCATTCAGGGCAGATGGGGGGTTG}$ TGGAATCAGGCCCTTTCCTTCCTGCAGAGTGGAGAGCCCAGCTTTGTCACAAAGGGCTTCTGCTGCGA AGGGGCTAGAGTTATCCCCAGCCCCTTGCACTGCAGCGGGGTCTCAGGGCCTTTCTACCTGCACTTATA CCCGGAGCTCTAGCTAGGCTCCTGTTTCATGCAGAAAGAGCTGGATAGAGAAAAGAAAAAGAAAAAGA ACACGTTGAAAAACCGGAAAAAACAAACCCTCATACAGTGTTTCAATAGTGAGCCCCGGATGTAAACAT CATAGACAAGGACAGGTGACCCCCAGACACCATGCTGAATGTTTAAAGCCAGTGTTAGATTGCAATTC CCAAACACCTCTCAGGAGGGTCCCAAAGAGAGCTGAAAGCGAAGGGGGGCTCCACTGGCCTCATC

>Hoxd13_probe_mouse

Hintermann*, Bolt* et al. 2024

Sanger sequences of the zebrafish founders for hoxda^{Del(3DOM)} and hoxda^{Del(5DOM)}

>del3DOM_founder1

>del3DOM_founder2

>del5DOM_founder1

>del5DOM_founder2

Hintermann^{*}, Bolt^{*} et al. Table S1: Sizes of mouse and zebrafish domains

mm39_short_na	mm20 Deffer ID	mm39_transcript	danRer11_short	danRer11_RefSeq_	danRer11_transcript
me	IIIIIS9_Keiseq_iD	_start _chr2	_name	ID	_start_chr9
Hoxd4	NM_010469.2	74552322	hoxd4a	NM_001126445.2	1951004
Hoxd13	NM_008275.4	74498569	hoxd13a	NM_131169.3	1990311
Nfe2l2	NM_010902.5	75534860	nfe2l2a	NM_182889.1	1654399
Atp5g3	NM_001301721.1	73741670	atp5mc3a	NM_201176.1	2333895

Domain	Domain_name	mm39	danRer11	mm39/danRer11
Atp5g3-Hoxd13	5DOM	756899	343584	2.2
Hoxd4-Nfe2l2	3DOM	982538	296605	3.3
Hoxd13-Hoxd4	cluster	53753	39307	1.4
whole genome	assembly_Gb	2.7	1.4	1.9

Ratios	mm39	danRer11
5DOM/cluster	14.1	8.7
3DOM/cluster	18.3	7.5
5DOM/3DOM	0.8	1.2

Name	Assembly	Ratio
5DOM/cluster	mm39	14.1
3DOM/cluster	mm39	18.3
5DOM/3DOM	mm39	0.8
5DOM/cluster	danRer11	8.7
3DOM/cluster	danRer11	7.5
5DOM/3DOM	danRer11	1.2
5DOM	mm39/danRer11	2.2
3DOM	mm39/danRer11	3.3
cluster	mm39/danRer11	1.4
assembly	mm39/danRer11	1.9

Assembly	Annotation source	Release
dan Port 1	NCBI RefSeq genes,	Annotation Release NCBI Danio rerio Annotation Release
uannerii	curated subset	106 (2019-10-28)
	NCBI RefSeq genes,	
mm 20	curated subset	Annotation Release NCBI RefSeq GCF_000001635.27-
1111139	(NM_*, NR_*, NP_*	RS_2023_04 (2023-04-11)
	or YP_*)	

Hintermann*, Bolt* et al. Table S2: Accession numbers for re-analysed data

Name	SRA number	Publication	DOI
CTCF_ChIP_E105_PT_rep1	SRR17750150	(Hintermann et al. 2022)	https://doi.org/10.1242/dev.200594
Franke_CTCF_ChIP_24hpf_rep1	SRR12435909	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Franke_CTCF_ChIP_24hpf_rep2	SRR14670351	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Franke_CTCF_ChIP_48hpf_rep1	SRR14670354	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Franke_CTCF_ChIP_48hpf_rep2	SRR14670355	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Franke_48hpf_wt_rep1	SRR12435867	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Franke_48hpf_wt_rep2	SRR12435868	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Franke_24hpf_wt_rep1	SRR14670388	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Franke_24hpf_wt_rep2	SRR14670389	(Franke et al. 2021)	10.1038/s41467-021-25604-5
Wike_24hpf_seq1	SRR12044304	(Wike et al. 2021)	10.1101/gr.269860.120
Wike_24hpf_seq2	SRR12044305	(Wike et al. 2021)	10.1101/gr.269860.120
Wike_24hpf_seq3	SRR12044306	(Wike et al. 2021)	10.1101/gr.269860.120
Wike_24hpf_seq4	SRR12044307	(Wike et al. 2021)	10.1101/gr.269860.120
Wike_24hpf_seq5	SRR12044308	(Wike et al. 2021)	10.1101/gr.269860.120
Wike_24hpf_seq6	SRR12044309	(Wike et al. 2021)	10.1101/gr.269860.120

Hintermann*, Bolt* et al. Table S3: Sequences for primers and guides

ZEBRAFISH

Genotyping primers

Name	Sequence (5' to 3')
5DOM_WT_f	GAAAATGGCTGGGCAGGACA
5DOM_WT_r	GACGGTGTGTTCAATCGGGT
5DOM_Del_f	AATGGCTGGGCAGGACATAC
5DOM_Del_r	GTGGTCCTGTTGTGGAGCAT
3DOM_WT_f	GACACAATGACCCACAATTC
3DOM_WT_r	ACGGCACATTTGTGATGTTTAG
3DOM_Del_f	CCTTCAAAACTCAAGGCCCATC
3DOM_Del_r	CTCCCGGATTTGCTGTAACAC
evx2_f	CGCACTGGCATTCCTCTGTTTT
evx2_r	GGAAGTGTTGTCGTTGTGGTGG
zf_CsA_f	CAGCCCGCAAAGCCTCATTTTA
zf_CsA_r	GTGTCAACGAGAGGAGAAGGCT
zf_CsB_f	ACCAGGAGAAACACCACACACA
zf_CsB_r	TGACCAACTGATAACCCCACCC
zf_islandV_f	CTCATTTGCGCCGCTGTCTTTA
zf_islandV_r	GGTTAGATGTGGGGTTTGGGGA
zf_islandII_f	AGCAAAGCCCGGCTAATAGACA
zf_islandII_r	TGACGCGTGGGCTTAAAATCAC
hoxa13a_8_del_f	GCCAAGGAGTTTGCCTTGTA
hoxa13a_8_del_r	TGACGACTTCCACACGTTTC
hoxa13b_14_ins_f	GATTGACCCGGTGATGTTTC
hoxa13b_14_ins_r	TACACTGGTTCGCAGCAAAA
hoxd13a_f	AAGCCGGTGTACATCAGGAG
hoxd13a_r	GTGGCCTTCCATTGTCAAAC

crRNA

Name	Sequence
hoxd13a_crRNA	CTGAGAGGATCCCATTGCGAAACACCTGGG
atp5g3a_crRNA	AACCATATCCACTCTTCAGGAGGTCATGTG
hoxd3a_crRNA	TGATGCTGCACCCTAAATGG
hnrnpa3_crRNA	ATAATCTAGTCATAGCTGGA

MOUSE

Genotyping primers

primer name	Sequence	Reference	
Inv(Itga6-nsi)d11lac			
Inv(Itga6-nsi)d11lac_WT_f	GCAAGCCACTTGGAAACAACTGTTAATGG		
Inv(Itga6-nsi)d11lac_WT_r	CCGTCCAATGTGCGTGTTTTCC	(Techann and Dubaula 2011)	
Inv(Itga6-nsi)d11lac_Inv_f	GAGTTTCTCTTTGCTGTAATGAAGAGCTG	(Tschopp and Duboule 2011)	
Inv(Itga6-nsi)d11lac_Inv_r	CCGTCCAATGTGCGTGTTTTCC		
Inv(Itga6-attP)			
Inv(nsi-itga6)d11lac_WT_f	GCAAGCCACTTGGAAACAACTGTTAATGG		
Inv(nsi-itga6)d11lac_WT_r	CCGTCCAATGTGCGTGTTTTCC	(Schop of al. 2016)	
Inv(nsi-itga6)d11lac_Inv_f	GAGTTTCTCTTTGCTGTAATGAAGAGCTG	(3010)	
Inv(nsi-itga6)d11lac_Inv_r	CCGTCCAATGTGCGTGTTTTCC		
Del(HoxD)			
Del(HoxD)_WT_f	GAGCCCGACGCATCGAGATAGC		
Del(HoxD)_WT_r	CAAGGTCCTCAGCCTTAAGAGTGG	(Spitz et al. 2001)	
Del(HoxD)_Del_f	AGGGATCCGGAGCATACCACTG	(Spitz et al. 2001)	
Del(HoxD)_Del_r	CTCTCTCTACGAGGGAATGTGGAG		
tgBAC(HoxD), tg(GT2), tg(islandE), t	rg(CsB)		
tgLacZ_PCRb_f	CCTGCTGATGAAGCAGAACA	tgBAC(HoxD) in (Schep et al.	
tgLacZ_PCRb_r	CAGCGACCAGATGATCACAC	2016)	
Del(Atf2-SB1)			
Del(Atf2-SB1)_WT_f	GACAATCGTATGCATGGCATACTCGG		
Del(Atf2-SB1)_WT_r	GATAGGAGTGACATTCAGACACGGC	(Montayon of al. 2011)	
Del(Atf2-SB1)_Del_f	GTTTTCCCAGTCACGACGTTG		
Del(Atf2-SB1)_Del_r	GCCACTGGCCGAATATTACCTATTTGTG		
Del(SB1-Rel5)			
Del(SB1-Rel5)_WT_f	GACAATCGTATGCATGGCATACTCGG		
Del(SB1-Rel5)_WT_r	GATAGGAGTGACATTCAGACACGGC	(Montayon et al. 2011)	
Del(SB1-Rel5)_Del_f	CAGACTAGGCTTGCCTTACGG		
Del(SB1-Rel5)_Del_r	CCTGCTGCAGGGGTTGGAG		
Del(Rel5-Rel1)			
Del(Rel5-Rel1)_WT_f	CTAGAGAGTACAGCAATGACTTTTGGGC		
Del(Rel5-Rel1)_WT_r	CAGACTAGGCTTGCCTTACGG	(Montavon et al. 2011)	
Del(Rel5-Rel1)_Del_f	ACGTGGAGTGGAGTGATGGTTG		
Del(Rel5-Rel1)_Del_r	GGCTGCTTTGGACAATGCTGG		

RT-qPCR primers

Name	Sequence
Hoxd13_F	AAGGATCAGCCACAGGGGTCCC
Hoxd13_R	GTAGACGCACATGTCCGGCTGG
Hoxd12_F	CTATGTGGGCTCGCTTCTGAA
Hoxd12_R	GGCTCTCAGGTTGGAAAAGTAG
Hoxd11_F	AAAAGACTCCAACTCTCTCGGA
Hoxd11_R	AGACGGTCCCTGTTCAGTTTC
Hoxd10_F	GCTGGTCCCCGAGTCTTGTCCT
Hoxd10_R	CCGGTGGCGTAGGTCTGACTCA
Hoxd9_F	CTCCACCCGGAAAAAGCGCTGT
Hoxd9_R	CGGTCCCGGGTGAGGTACATGT
Hoxd8_F_	TTCCCTGGATGAGACCACAAG
Hoxd8_R_	CTAGGGTTTGGAAGCGACTGT
Tbp_F	CCTTGTACCCTTCACCAATGAC
Tbp_R	ACAGCCAAGATTCACGGTAGA

Primers to clone transgenes

Name	Sequence
GT2_F	tccggtcgacTGTCACCACCATCGACAAGT
GT2_R	tccggtcgacATGCATTTCACCGTCTTTC
IsE_F1	cccccctcgagCTCAAGCCAGACAGGGATGATTA
IsE_R1	cgataccgtcgacGTGGGCTGTTTACTGGCAA
CsB_F1	cccccctcgagAACTGCAGGGCTTAAACCGAT
CsB_R1	cgataccgtcgacTGGGCCCAAGTGCCTTAATC