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Supplementary Materials 

Supplementary Methods 1: Dose Response Curves 

For each herbicide applied in our model we downloaded dose response data for all species from the 

crop protection online portal ( https://plantevaernonline.dlbr.dk/). These data are at the level of 

herbicide products rather than active ingredients and so we determined which products would give 

the correct field use rating as determined by Ritz et al 2015 in Supplementary Methods 2. These data 

are specific not only to the herbicide product but also to the timing of the application and the crop in 

which the herbicide is applied. We assigned each of these herbicide applications into one of 4 

windows: pre-sowing, pre-emergence, post-emergence (autumn) and post-emergence (spring). We 

did not include any herbicides used as a pre-harvest desiccant. For post-emergence herbicides, the 

crop growth stage was assumed to be 13 if the herbicide was applied in the autumn (for winter 

crops) otherwise, for post-emergence herbicides applied in the spring the crop growth stage was 

assumed to be 29. For post-emergence herbicide applied in sugar beet, the growth stage was 

assumed to be 15.  The downloaded data provide percentage kills for quarter, half, full, and double 

rate applications (of the recommended field rate application). 

We took these dose-response data for all species of weed simulated in our model and fitted a dose-

response curve using the {drc} package (Ritz et al 2015). For a given herbicide we chose the best 

fitting model from the following options: 3- 4- or 5-parameter log-linear, 4-parameter Cedergreen-

Ritz-Streibig, 2- 3- or 4-parameter Weibull functions and allowed parameters to vary for each weed 

species. For species where data were not available, we took the average value for each parameter 

(b, d, and e) across all weed species of the same phylogenetic type (grass/broadleaf). Where there 

were no species of the same type, we assumed that the product in question was not effective 

against weeds of that type and so no individuals of that type are killed by that product in our model. 
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No data were available for herbicides applied outside of the cropping period (pre-sowing herbicide 

application window). In our standard herbicide programs, the only herbicide applied in this window 

was glyphosate applied as part of a “stale seedbed” management practice. As there are no known 

cases of herbicide resistance and susceptibility to this active ingredient in the UK remains high, we 

assumed 100% control. 

Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. (2015) Dose-Response Analysis Using R PLOS ONE, 10(12), 

e0146021 

Supplementary Methods 2: Standard Herbicide Programs. 

We determined standard herbicide regimes (typical applications for the UK) for each crop in the RLM 

(Table 1). These regimes consist of the most likely combination of products used based on the data 

recorded by Defra in their pesticide usage survey (see Table 1 for references). For each crop we have 

looked at the average number of herbicides applied and combined this information with the most 

commonly applied products to deduce a likely regime. For many of the crops there were a range of 

similar products applied in similar quantities on average and so we chose only one of those and 

made sure to cover all the modes of action commonly included.  

For each active ingredient (there may be multiple active ingredients within one herbicide product) 

we then calculated a field use rating (F, g ha-1): 

𝑓 = 𝑛 × 𝑝 × 𝑟 × ℎ (1)   

where: 𝑛, is the number of times the product is applied in the growing season; 𝑝, is the proportion of 

the recommended field rate that is applied in each application; 𝑟, is the recommended field rate 

(l ha-1) for the product; and, ℎ, is the amount of active ingredient present in the product (g l-1) and 

present in the product. 
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Table 1: Standard pesticide programs derived for crops included in RLM. Grass crops as part of an arable rotation were 

determined to not receive any pesticides (Grassland and fodder crops in the UK 2017).  

Crop Reference Application window a.i. 𝑓 

Winter Wheat Arable crops in the UK 2018 pre-sowing glyphosate 1080 

pre-emergence diflufenican 60 

post-emergence Autumn mesosulfuron-methyl 12 

iodosulfuron-methyl-

sodium 

2.4 

post-emergence Spring florasulam 4.5 

fluroxypyr 180 

Winter barley Arable crops in the UK 2018 pre-sowing glyphosate 1080 

pre-emergence diflufenican 60 

post-emergence Spring florasulam 4.5 

fluroxypyr 180 

Oilseed rape Arable crops in the UK 2018 pre-emergence clomazone 118.8 

post-emergence Autumn propaquizafop 150 

propyzamide 850 

Beans Outdoor vegetable crops in the UK 

2017 

pre-sowing glyphosate 270 

pre-emergence  clomazone 118.8 

Spring barley Arable crops in the UK 2018 pre-sowing glyphosate 1080 

Post-emergence Spring metsulfuron-methyl 4.76 

thifensulfuron-methyl 47.74 

Spring wheat Arable crops in the UK 2018 pre-sowing glyphosate 1080 

post-emergence Spring metsulfuron-methyl 4.76 

thifensulfuron-methyl 47.74 

Sugar Beet Arable crops in the UK 2018 pre-sowing glyphosate 270 

post-emergence (Spring) metamitron 1400 

phenmedipham 135 
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desmedipham 135 

ethofumesate 168.75 

maize Grassland and fodder crops in the 

UK 2017 

pre-sowing Glyphosate 270 

post-emergence (Spring) Mesotrione 78.75 
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Supplementary Methods 3: Environmental Impact Quotients 

For each active ingredient we can calculate environmental impact scores to represent the 

environmental impact of that active ingredient. We wanted to be able to measure the impact of 

each pesticide program on various environmental properties. We followed the methods established 

by Kovach et al (1992) to calculate environmental impact quotients (EIQ) for groundwater, fish, 

birds, bees, and beneficial arthropods. As we were looking at typical products and therefore active 

ingredients in use in the UK, not all products were available within the EIQ database provided by the 

authors which was built in the US and so we calculated these scores using data from the ‘Pesticide 

properties database’ (Lewis et al., 2016) as follows: 

The groundwater score (𝐸𝐼𝑄ீ) is given according to the leaching potential (L) of the active 

ingredient. L takes a value of either 1, 3 or 5 depending on the GUS leaching potential index of the 

active ingredient (<0.1=1, 0-3=3, >3=5). 

The fish score (𝐸𝐼𝑄ி) is given by the product of the surface loss potential (R) and the fish toxicity (F) 

of the active ingredient. R takes values of 1, 3 or 5 depending on the solubility of the active 

ingredient in water at 20oC (mg l-1) (<1=1, 1-1000=3, >1000=5) and F takes values of 1, 2 or 3 

according to the fish acute 96 hour LC50 (mg l-1) of the active ingredient (>10=1, 1-10=2, <1=3). 

The bird score (𝐸𝐼𝑄) is calculated by 𝐸𝐼𝑄 = D ×
ୗା

ଶ
× 3 where D is the bird toxicity, S is the soil 

half-life and P is the plant surface half-life. We assigned values of D according to the birds acute 

LD50 (mg kg-1) (>1000=1, 100-1000=3, 1-100=5), S scores of 1, 3 or 5 were assigned according to the 

Soil degradation (days) (aerobic) DT50 (typical) (<30=1, 30-100=3, >100=5) and P scores were 

assigned according to the dissipation rate RL50 on and in plant matrix (<14=1, 14-28=3, >28=5) of 

the active ingredient. 
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The bee score (𝐸𝐼𝑄) is given by 𝐸𝐼𝑄 = 𝑍 × 𝑃 × 3 where Z is the bee toxicity which is given a score 

of 1, 3 or 5 according to the value of the honeybees (Apis spp.) oral acute LD50 (worst case from 24, 

48 and 72 hour values - μg bee-1) (>100=1, 1-100=3, <1=5). 

Finally, the beneficial arthropod score (𝐸𝐼𝑄) is given by 𝐸𝐼𝑄 = 𝐵 × 𝑃 × 5 where B is the 

arthropod toxicity which is assigned a score of 1, 3 or 5 according to the arthropod LR50 g ha-1 

(>1000=1, 100-1000=3, 1-100=5). 

We also computed a comprehensive EIQ score (𝐸𝐼𝑄) by summing across the five individual EIQ 

scores: 𝐸𝐼𝑄 = 𝐸𝐼𝑄ீ + 𝐸𝐼𝑄ி + 𝐸𝐼𝑄 + 𝐸𝐼𝑄 + 𝐸𝐼𝑄. 

Where any data were missing, the middle score value was assigned to that metric. 

For each product used in the standard pesticide programs we calculate the typical field use rating for 

each active ingredient by multiplying the typical number of applications by the recommended rate of 

application for the product (l/Ha) by the dose of the active ingredient within the product (g a.i. /l). 

We can multiply the field use rating for each active ingredient by each EIQ score (G, F, D, Z, and B) in 

turn to give the typical environmental impact on each type. We can sum across all active ingredients 

applied in a crop to give the typical environmental impact of pesticide use in that crop (total EIQ). 

The EIQ scores for each of our standard pesticide programs in each crop are shown in Figure 1. 
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Figure 1: The EIQ scores for arthropods, bees, birds, fish and groundwater for the standard pesticide program determined 

for each crop, without (blue) and with (yellow) glyphosate. BE= sugarbeet, FB=fieldbeans, MA=maize, OSR=oilseed rape, 

SB=spring barley, SW=spring wheat, WB=winter barley, WW=winter wheat. 
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Supplementary Results 1: Weed Abundance 

 

a 

 

b 

 

c 

 

Figure 2: Weed Abundance in each scenario after (a) 3, (b) 5, and (c) 10 years of simulation. Farm S has a weed 

community dominated by Poa annua and Farm R has a weed community dominated by Alopecurus myosuroides. 
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Scenarios are: glyphosate (G), no glyphosate (NG), increased frequency of grass leys (RG), increased frequency of 

spring crops (RS), delayed drilling of winter wheat crops by 3 weeks (SD) and, switch from minimum tillage to 

ploughing (SP). 
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Supplementary Results 2: Weed Species Richness 

 

a 

 

b 

 

c   

 

Figure 3: Weed Species richness in each scenario after (a) 3, (b) 5, and (c) 10 years of simulation. Farm S has a weed 

community dominated by Poa annua and Farm R has a weed community dominated by Alopecurus myosuroides. 

Scenarios are: glyphosate (G), no glyphosate (NG), increased frequency of grass leys (RG), increased frequency of 
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spring crops (RS), delayed drilling of winter wheat crops by 3 weeks (SD) and, switch from minimum tillage to 

ploughing (SP). 
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Supplementary Results 3: Food Production 

 

a 

 

b 

 

c 

 

Figure 4: Cumulative food produced (Mcal) in each scenario after (a) 3, (b) 5, and (c) 10 years of simulation. Farm S 

has a weed community dominated by Poa annua and Farm R has a weed community dominated by Alopecurus 
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myosuroides. Scenarios are: glyphosate (G), no glyphosate (NG), increased frequency of grass leys (RG), increased 

frequency of spring crops (RS), delayed drilling of winter wheat crops by 3 weeks (SD) and, switch from minimum 

tillage to ploughing (SP). 
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Supplementary Results 4: Profit 

 

a 

 

b 

 

c 

 

Figure 5: Cumulative profit made in each scenario after (a) 3, (b) 5, and (c) 10 years of simulation. Farm S has a weed 

community dominated by Poa annua and Farm R has a weed community dominated by Alopecurus myosuroides. 
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Scenarios are: glyphosate (G), no glyphosate (NG), increased frequency of grass leys (RG), increased frequency of 

spring crops (RS), delayed drilling of winter wheat crops by 3 weeks (SD) and, switch from minimum tillage to 

ploughing (SP). 

  



16 
 
 

 

Supplementary Results 5: EIQ 

 

a 

 

b 

 

c 

 

Figure 6: Total EIQ in each scenario after (a) 3, (b) 5, and (c) 10 years of simulation. Farm S has a weed community 

dominated by Poa annua and Farm R has a weed community dominated by Alopecurus myosuroides. Scenarios are: 

glyphosate (G), no glyphosate (NG), increased frequency of grass leys (RG), increased frequency of spring crops (RS), 

delayed drilling of winter wheat crops by 3 weeks (SD) and, switch from minimum tillage to ploughing (SP). 
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Supplementary Results 6: Crop Yields 

In some cases the following figures show all levels to be not-significantly different according to 
Tukey tests despite a significant effect of the main effect in the lmm and a separation of the 
predicted means by an amount greater than the LSD. This is due to the lack of data at this scale and 
so estimation of the errors and LSDs may be inaccurate. 

Spring Barley 

   

Figure 7: Predicted Spring Barley Yield (t ha-1) from a linear model. Significant model terms were Scenario (P<0.001), Farm 

(P<0.001), and Farm:Timescale (P<0.001). Predictions are classified by the main effects of the Scenario and the interaction 

between the Farm and the Simulation year. Predictions are averaged over all levels of other terms included in the model. 

The error bar shows the approximate average LSD. Means within a single panel labelled with different letters indicates they 

are significantly different (P<0.05, post-hoc Tukey test). 
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Winter Barley 

   

Figure 8: Predicted Spring Barley Yield (t ha-1) from a linear model. Significant model terms were Farm (P<0.001), and 

Timescale (P<0.001) and Farm:Timescale (P<0.001). Predictions are classified by the main effects of the Scenario and the 

interaction between the Farm and the Simulation year. Predictions are averaged over all levels of other terms included in 

the model. The error bar shows the approximate average LSD. Means within a single panel labelled with different letters 

indicates they are significantly different (P<0.05, post-hoc Tukey test). 
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Beans 

 

Figure 9: Predicted Bean Yield (t ha-1) from a linear model. Significant model terms were Scenario (P<0.001), and Timescale 

(P<0.001). Predictions are classified by the main effects of the Scenario and the interaction between the Farm and the 

Simulation year. Predictions are averaged over all levels of other terms included in the model. The error bar shows the 

approximate average LSD. Means within a single panel labelled with different letters indicates they are significantly 

different (P<0.05, post-hoc Tukey test). 
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Maize 

 

Figure 10: Predicted Maize Yield (t ha-1) from a linear model. Significant model terms were Scenario (P<0.001), and 

Timescale (P<0.001). Predictions are classified by the main effects of the Scenario and the interaction between the Farm 

and the Simulation year. Predictions are averaged over all levels of other terms included in the model. The error bar shows 

the approximate average LSD. Means within a single panel labelled with different letters indicates they are significantly 

different (P<0.05, post-hoc Tukey test). 
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Oilseed Rape 

 

Figure 11: Predicted oilseed rape Yield (t ha-1) from a linear model. Significant model terms were Scenario (P<0.001), Farm 

(P<0.001) and Timescale (P<0.001). Predictions are classified by the main effects of the Scenario and the interaction 

between the Farm and the Simulation year. Predictions are averaged over all levels of other terms included in the model. 

The error bar shows the approximate average LSD. Means within a single panel labelled with different letters indicates they 

are significantly different (P<0.05, post-hoc Tukey test). 
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Sugar Beet 

 

Figure 12: Predicted Sugarbeet Yield (t ha-1) from a linear model. Significant model terms were Scenario (P<0.001), Farm 

(P<0.001) and Timescale (P<0.001), Scenario:Timescale (P<0.05) and Farm:Timescale(P<0.001). Predictions are classified by 

the main effects of the Scenario and the interaction between the Farm and the Simulation year. Predictions are averaged 

over all levels of other terms included in the model. The error bar shows the approximate average LSD.  
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Winter Wheat 

 

Figure 13: Predicted winter wheat Yield (t ha-1) from a linear model. Significant model terms were Scenario (P<0.001), 

Timescale (P<0.001), Scenario:Timescale (P<0.001). Predictions are classified by the main effects of the Scenario and the 

interaction between the Farm and the Simulation year. Predictions are averaged over all levels of other terms included in 

the model. The error bar shows the approximate average LSD.  
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Spring Wheat 

 

Figure 14: Predicted spring wheat Yield (t ha-1) from a linear model. Significant model terms were Scenario (P<0.001), 

Timescale (P<0.001), Scenario:Timescale (P<0.001). Predictions are classified by the main effects of the Scenario and the 

interaction between the Farm and the Simulation year. Predictions are averaged over all levels of other terms included in 

the model. The error bar shows the approximate average LSD.  

 




