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 22 

Supplementary Fig. 1: Library design 23 

Shown are the sequence structures at various stages of the process of creating and operating the 24 

chemical random function. First, a pool comprising several milligrams of single-stranded 25 

oligonucleotides is obtained from solid-state synthesis, comprising both sequence-determined and 26 

random segments. A subset of this library (e.g. 108 – 1011 sequences) is then amplified via PCR using 27 

the outer handles as primers. The orDNA pool can then be operated using a set of input primers. The 28 

two inputs comprise a few bases (number may vary between 6 and 9), which selectively bind to the 29 

sequences in the pool with complementary matching segments in their randomly synthesized regions. 30 

Aside from the bases binding to the input regions, the primer further contains a part of the handle 31 

sequences to guide the input towards the correct binding position and to add enough length to the 32 
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primers for successful amplification. The selected sequences are only a very small subset of the 33 

orDNA pool and are identified via next generation sequencing. To prepare sequencing, three further 34 

PCR reactions are conducted. First, the sequences are trimmed using the two adapter primers. The 35 

vast majority of the resulting pool then only contains the two adapters with the output section in 36 

between. In two subsequent steps the Illumina sequencing overhang adapters are introduced, which 37 

then allow readout of the output. Representative gel images of the different stages can be found in 38 

Supplementary Fig. 4. 39 

  40 



4 
 

 41 

Supplementary Fig. 2: Library design with cleavable handles.  42 

Shown are the sequence structures at various stages of the process of creating and operating the 43 

chemical random function. The working principle is identical as described for the library described in 44 

Supplementary Fig. 1, but there are additional steps to make the orDNA not only operable, but 45 

unclonable. The double-stranded (ds) PCR pool is treated with a type IIS restriction enzyme, PleI, that 46 

removes a large part of the handle and leaves a 5’ overhang of a degenerate nucleotide. The sticky 47 
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end is blunted using Sequenase, which incorporates the complementary nucleotide with a dideoxy 48 

modification.   49 
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 50 

Supplementary Fig. 3: Raw data analysis of proliferation CRPs 51 

Position-dependent raw data analysis of experiments 1 and 6-10, comprising the Illumina sequence 52 

reads resulting from the same input applied to five generations of the same CUF, i.e. the same orDNA 53 

pool, showing a high qualitative similarity between all generations (also refer to Fig. 3 (b), (c)). Each 54 

generation was created by copying the previous generation using PCR. A) Color-coded visualization of 55 

the occurrence of the four nucleobases A, C, G and T across the 21 positions of the output 56 

sequences. Shown are the first 160 reads out of the respective FASTQ file after filtering for the 57 
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presence of the constant adapter regions. The selection is thus arbitrary without any applied order. B) 58 

Relative frequency of the four nucleobases A, C, G and T across the 21 positions of the output across 59 

the entire sequence set resulting from Illumina sequencing. Source data are provided as a Source 60 

Data file.  61 
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 62 

Supplementary Fig. 4 63 

Extended data for generations P0-P5 (experiments 40-54, refer to Suplementary Tables 4-5), using 64 

four different inputs. Inputs 2-4 with generations P1-P5 were measured 20 months after the CRPs 65 

generated with P0. a shows the Jaccard similarity of CRPs comparing P0-P5 outputs. Jaccard 66 

similarity across generations as well as the 20-month time gap among like inputs is still well above 67 

Jaccard similarity of any CRP generated with unlike inputs, including the ones differing by a 68 

Levenshtein distance of 1. b Corresponding truth matrix to (a). c Histograms of Hamming distances 69 

after MinHashing showing the distributions of like and unlike inputs for experiments as shown in (a). n 70 

= 357 comparisons for unlike distribution, n = 98 for like distribution. d Boxplot showing average 71 
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relative Hamming distances, as per the distributions in (c). Indicated are the median (middle line), 72 

mean (circled dot), 25th and 75th percentile (box) and 1.5 interquartile range (whiskers), with outliers 73 

marked as black dots. n = 357 comparisons for unlike distribution, n = 98 for like distribution. Source 74 

data are provided as a Source Data file. 75 

  76 
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 77 

 78 

Supplementary Fig. 5 79 

Agarose gel electrophoresis photographs of the different steps of function generation and operation, 80 

showing all stages of experiment 1. Images were converted from color to greyscale and edited in 81 

brightness and contrast using Adobe Photoshop.  82 



11 
 

Supplementary Note 1: Random DNA synthesis 83 

Solid-support synthesis of DNA is commercially widely available. In standard chemical synthesis of 84 

DNA, the strands are grown nucleotide by nucleotide in an iterative reaction, where each cycle 85 

consists of several steps and adds a single base to each growing chain (Fig. 5). For most use cases, 86 

this is done in a controlled manner, meaning only one type of building block (dNTP) at a time is added 87 

to achieve billions of identical strands of constant length and known sequence. However, it is possible 88 

to instead add mixtures of the four nucleobases A, C, G and T. In this case each growing chain will 89 

incorporate only one of the four possible building blocks. It has been shown that this process is 90 

random1, meaning the entropy of a mixture can be exploited in a chemical reaction resulting in DNA 91 

molecules of random sequence. Each sequence can thus be understood as a random (binary) 92 

number, where every base contributes two bits. As the synthesis is stepwise, it can be individually 93 

decided for each position along a synthesized sequence whether that specific position will contain a 94 

determined or a randomly incorporated building block. 95 

 96 

Supplementary Fig. 6: Schematic representation of chemical DNA synthesis.  97 

The cyclic process adding a single nucleotide to each growing chain consists of an activation step, 98 

followed by coupling, capping/oxidation. The cycle is followed until the desired chain length is 99 

achieved, after which the synthesized oligonucleotide is released from the solid support. In the case of 100 

sequence-determined synthesis, only a single type of nucleotide is added during the coupling step, 101 
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while for random synthesis, all four building blocks are mixed previous to addition, with each growing 102 

chain incorporating only one of the four. 103 

  104 
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Supplementary Note 2: Unpredictability and unknowability of sequence composition 105 

As in chemical unclonable functions each DNA strand contains segments that are randomly 106 

synthesized, given the stochasticity of the process, it is a priori impossible to know the composition of 107 

any given strand. For a chemical unclonable function based on operable random DNA this 108 

unpredictability is key, as it translates to a random combination of input and output sequences. 109 

Therefore, a given output sequence does not confer any information about the base composition of 110 

the input and vice versa (see also Supplementary Note 3).  111 

  112 
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Supplementary Note 3: Expected distribution of sequences within random pools and pool 113 

entropy 114 

There are 4n possible sequences for a randomly synthesized batch of DNA, where n corresponds to 115 

the number of synthetic cycles using a dNTP mixture. The cycles using a single dNTP type, i.e. the 116 

cycles for synthesis of the sequence-determined parts, are not included in the calculation, as they do 117 

not contribute to the possibility space (aside from a negligible contribution by errors).  As in this work, 118 

libraries with a total of 40 random positions in the input and output segments were implemented, there 119 

are 440 = ca 1024 possible sequences, corresponding to approx. 1.66 mol of DNA. With an average of 120 

330 g/mol/base∙121 bases (random and constant combined) this corresponds to a molecular weight of 121 

ca. 40’000 g/mol for the single-stranded synthesis product of our library. This means to synthesize 122 

every possible combination on average at least once, ca. 40’000 g/mol∙1.66 mol = 66 kg of DNA would 123 

have to be produced. Around 4 mg of DNA were synthesized in total, equivalent to ca. 6∙1016 124 

sequences. Importantly, the synthesis process only comprises individually growing chains without 125 

copies (the sequences are only copied post-synthetically in a PCR reaction). This means any 126 

duplicates only exist by chance and not by design. The probability for a specified pair of two individual 127 

sequences being the same equals to 0.2540 = 8.27∙10-25.  128 

From the synthesized pool, 108 sequences, 1.6∙109 and 2.6∙1010 sequences were arbitrarily extracted 129 

to generate the three CUF sizes (with prefixes S, M and L).  The extraction was performed by 130 

dissolving the dried pool in ultrapure water to a known concentration. Using dilution series, it is then 131 

possible to draw a volume that approximately corresponds to the number of desired sequences, which 132 

are then subjected to PCR for function generation. With this ratio of function-determining vs. possible 133 

combinations, the vast majority of the sequences is expected to be unique, with the overall average 134 

copy number being very close to one. 135 

As there are four possible building blocks per randomly synthesized sequence position, two bits of 136 

entropy are encoded in a single base (translating to assigning binary numbers 00, 01, 10, 11 to the 137 

four bases). As there are 40 random bases per sequence, this corresponds to 80 bits of random 138 

information. As established above, ca 4 mg (6∙1016 sequences or 100 nmol) of an orDNA library were 139 

synthesized by a commercial supplier. This results in a total entropy of 80 bits/sequence x 6∙1016 140 

sequences = 5 ∙ 1018 bits = 0.5 Exabyte (rounded to the first decimal position) in the pool.  141 
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Supplementary Note 4: Design considerations for input primers 142 

Not all conceivable PCR primers are suitable input primers. Most importantly, the ratio between the 143 

function size (= number of unique DNA sequences in a selection PCR, e.g. 108) and the chosen input 144 

length in base pairs is relevant: If the input is too long, a given primer may not find any complementary 145 

sequence in the pool to bind to, leading to an unspecific signal, or no amplification at all. If it is too 146 

short, too many sequences may be amplified for successful signal extraction. This relationship is 147 

shown in Fig. 6, which plots the expected number of output sequences against the input length for 148 

three different pool sizes. For the pilot experiments, the input length was selected such that the 149 

expected number of sequences that perfectly match to a given input primer sequence in the pool is 150 

approx. 1.5. The actual number of matches varies between experiments and is expected to be 151 

Poisson-distributed. For a pool of 108 sequences, the input length corresponding to this value is 13 152 

random bases in total (413 = 6.7 · 107). The input was distributed over the forward and reverse primers 153 

with 6 and 7 input bases, respectively. For the primers to reach high enough melting temperatures, 14 154 

additional nucleotides were added, which were chosen to overlap with the respective outer handle 155 

sequences (see Supplementary Fig. 1). This partial overlap with the constant regions of the orDNA is 156 

additionally desirable, as this encourages binding at the intended positions, i.e. the random input 157 

segments and not the random output segment. This results in amplicons of constant length and 158 

ensures the amplified sequences contain the output segment, which is the chemical readout of the 159 

function necessary to calculate a valid output. 160 

However, inputs with a higher number of selective nucleotides have been shown to still generate 161 

reproducible outputs in the test setting, even though no perfect counterpart is expected to be present 162 

in the pool. This can be explained by the fact that there are always primer-template hybrids that are 163 

thermodynamically more favored than others, and the corresponding sequences are thus favorably 164 

amplified, even if the match is imperfect. As the readout of the function is generated by the entirety of 165 

the amplified sequences and their frequency of occurrence, this distribution still works as a 166 

reproducible signature. However, with an increased input length, a lower proportion of the nucleotides 167 

is expected to contribute to the specificity of the readout and the noise increases, potentially leading to 168 

the occurrence of collisions with shorter inputs. Therefore, depending on the application scenario, it is 169 

advantageous to restrict the input length to conform to the respective pool size (see also 170 

Supplementary Note 8. 171 
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 172 

Supplementary Fig. 7  173 

Relationship of the expected number of matching output sequences in a pool related to the input 174 

length in basepairs (bp) at different orDNA pool diversities. The red area approximately marks the 175 

range this work operated in. Source data are provided as a Source Data file. 176 

  177 
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Supplementary Note 5: Filtering of the sequencing reads 178 

Before applying k-mer extraction and computation of similarity, the reads were filtered to remove any 179 

artefacts and potential contaminations. All correctly amplified orDNA sequences are expected to have 180 

the same overall arrangement of their constant and random regions. Therefore, using the BBmap 181 

(v38.99) command below, the reads were filtered for the presence of the constant primer region, 182 

allowing a maximum Hamming distance of 3. Of the reads passing the first filter, those were excluded 183 

that did not contain a 21-bp long insert between the expected constant segments. Only these inserts 184 

of the passing reads, comprising the randomly synthesized ‘output’ portions, were included for further 185 

analysis. 186 

bbduk.sh in=<input.fq.gz> outm=stdout.fq ref=primer.fasta k=21 hdist=3 | bbduk.sh in=stdin.fq 187 

out=<output.fq.gz> ref=primer.fasta ktrim=r interleaved=f k=21 hdist=3 maxlength=21 mininsert=21 188 

minlength=21 189 

 190 

  191 
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Supplementary Note 6: Choice of k-mer extraction and Jaccard similarity as data processing 192 

methods 193 

In contrast to mathematical operations, data collected from real-world experiments are noisy. For the 194 

assessment of chemical unclonable functions, this is an issue, as two individual operations of the 195 

function will almost never lead to the exact same result, even if the equivalent inputs were used. 196 

Physical unclonable functions and biometric data processing, e.g. human fingerprint analysis, face the 197 

same issue. As a consequence, such datasets are analyzed in terms of their similarity instead of 198 

perfect identity, with a defined similarity threshold above which the noisy datasets are considered 199 

identical.  200 

A k-mer-based method is suitable, as k-mers are commonly utilized in bioinformatics and, more 201 

specifically, applied for genome comparisons2. As the sequences of interest (the ‘output’ segments of 202 

the sequences amplified during PCR selection with the input primers) are only 21 nt long, a circular k-203 

mer extraction was applied. This approach can be described by virtually circularizing the sequence of 204 

interest and forming k-mers around the circle, as explained in Supplementary Fig. . For a sequence of 205 

length n this leads to n k-mers independently of k, while linear extraction only yields n-k+1 k-mers. 206 

Circular analysis therefore puts equal weight on all sequence positions, while a linear analysis would 207 

over-emphasize the center nucleotides relative to the edges.  208 

Further, to compare the k-mer sets extracted from the sequencing data, Jaccard similarity was used. 209 

This index is widely used in machine learning, computational genomics and other fields 3. It is 210 

calculated by the ratio between the size of the intersection of two sets A and B divided by their union: 211 

J(𝐴𝐴, 𝐵𝐵) =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| 212 

Furthermore, the Jaccard coefficient can be weighted: 213 

J(𝐴𝐴, 𝐵𝐵) =
+ min	(𝐴𝐴! , 𝐵𝐵!)!

+ max	(𝐴𝐴! , 𝐵𝐵!)!
 214 

While the unweighted coefficient only considers the presence or absence of a given k-mer, the 215 

weighted coefficient considers the frequency of occurrence and thus the contribution of each k-mer to 216 

the overall ‘fingerprint’. Applying a weighted coefficient is therefore more comprehensive. 217 
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 218 

Supplementary Fig. 8: k-mer analysis 219 

Schematic sketch of extracting all 21 possible 16-mers from a 21-mer in a circular k-mer extraction 220 

procedure.  221 
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Supplementary Note 7: Parameter choice and robustness  222 

The chosen methods of k-mer extraction and Jaccard similarity comprise several parameters that have 223 

to be selected before data processing. Namely, k has to be selected, and optionally a weighting 224 

regimen for the Jaccard coefficient as well as the choice of how many reads to include in the analysis. 225 

The latter is designed to exclude the reads with the lowest counts from the analysis and is expressed 226 

as a percentage threshold. I.e. a threshold of 0.7 only includes the reads that cumulatively make up 227 

70% of the read count (starting with the highest frequency), and vice versa excludes the 30% lowest-228 

frequency reads. This is an additional measure to remove artefacts and noise while still utilizing the 229 

relevant information. 230 

These parameters influence the performance of the algorithm in correctly categorizing the compared 231 

sets as belonging to like, or unlike inputs. In order to find well-performing parameters, they were 232 

screened by combinatorically applying them to the collected original dataset of 39 individual 233 

experiments (refer to Fig. 3(a), (c), and (d)). The screened values were k = [4, 6, 8, 10, 12], weighting 234 

= [none, linear, logarithmic] and read frequency threshold = [0.5, 0.7, 0.9]. The optimized metric was 235 

the relative distance d of the Jaccard similarity score between the most similar sets resulting from 236 

different inputs and the most dissimilar sets resulting from the same input. The parameters achieving 237 

the highest distance between the two distributions (same and different inputs) were k = 8, linear 238 

weighting and a read frequency threshold of 0.7 (70%). The separation between the like and unlike 239 

input distributions is d = 0.256 when applying the selected parameters. The separation only slightly to 240 

moderately decreases when changing the values of k and the threshold (Fig. 8a, b). However, the 241 

separation is not maintained when switching the weighting regime (Fig. 8c). Reducing (by logarithm) or 242 

removing the weighting does not significantly affect the similarity of unlike inputs but leads to a 243 

broadening of the like input similarity distribution. This highlights that the read frequency information is 244 

highly relevant for response generation, and that the differentiation of similar inputs is significantly 245 

derived from changing frequencies rather than the mere presence of different k-mers.  246 
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 247 

Supplementary Fig. 9: Parameter robustness 248 

Histograms of similarity scores of all like (yellow distribution) and unlike (blue distribution) inputs 249 

across experiments 1-39 when using different parameters for k-mer extraction and similarity 250 

computation. The parameters and resulting distance d between the two distributions are indicated for 251 

each histogram, KMR referring to the value of k, WGT to the weighting applied (linear, logarithmic or 252 

none) and TSH to the relative read frequency threshold. A) Histograms showing the effect of varying 253 

the read frequency cut at k=8 with linear weighting. B) Histograms showing the effect of varying k 254 

while keeping the other parameters constant at TSH=0.7 and WGT=linear. C) Histograms showing the 255 
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effect of varying the weighting at constant k=8 and TSH=0.7. Source data are provided as a Source 256 

Data file. 257 

Supplementary Note 8: Discussion of the parameters and input constraints 258 

It can be argued that a dataset comprising 39 experiments is not comprehensive and, therefore, that 259 

the parameters emerging from the optimization are arbitrary. While this is a valid concern, the dataset 260 

on which the parameters were optimized is heavily biased towards sets that are difficult to 261 

differentiate. Many of the cross-compared inputs have a minimal Levenshtein distance of 1. Among 262 

them were input primers that only differ in their length by a single nucleotide but were otherwise 263 

identical, which are expected to draw a highly similar sequence set from the pool in the selection PCR. 264 

The chosen parameters perform well in distinguishing these edge cases, showing an error rate of 265 

zero. Moreover, they separate the like from the unlike input distribution by a large margin (the minimal 266 

distance of Jaccard similarities being d=0.256, and the distance of the means d=0.797). Therefore, 267 

these parameters can be expected to perform robustly over all potential inputs.  268 

However, in a use case scenario, it may still be desirable to constrain the allowed inputs to a constant 269 

primer length and to limit their GC-content for practical reasons. For example, this would allow running 270 

all PCR reactions under the same conditions. When applying the length constraint in accordance with 271 

the pool size (as discussed in Supplementary Note 4), the inputs are limited to 13 nucleotides in total, 272 

distributed over the two primers. A common recommendation for optimal primer GC-content is 273 

approximately 40-60%. Considering that in the current design the input primers contain a constant 274 

portion with a fixed GC-content of 50%, the 13 nucleotides thus have to contain at least 3 and max. 10 275 

G/C nucleotides. When applying these constraints to the existing dataset, the poly-T and the variable-276 

length inputs are excluded. The resulting distributions calculated with the previously selected 277 

parameters (k = 8, linear weighting and a read frequency threshold of 0.7) are shown in Fig. 9. The 278 

distance between the distributions approximately doubles from d=0.256 for the case without 279 

constraints to d=0.542 when the length requirement and limited GC content are implemented. Notably, 280 

this scenario still includes several inputs differing from each other by a Levenshtein distance of 1. This 281 

further highlights the robustness of the chosen method of data processing. 282 
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 283 

Supplementary Fig. 10: Similarity scores with input constraints 284 

Histograms of similarity scores of all like (yellow distribution) and unlike (blue distribution) inputs 285 

across 24 experiments when applying input constraints regarding length and GC-content of the 286 

primers and using the parameters k=8, linear weighting and a read frequency threshold of 0.7. Source 287 

data are provided as a Source Data file. 288 

  289 
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Supplementary Note 9: Down-sampling simulation 290 

There are experimental factors that lead to varying read numbers and quality per experiment. To 291 

increase efficiency and extrapolate the limits of the system, down-sampling simulations were 292 

conducted to find the average minimum number of reads per execution of the CUF that still allows for 293 

correct output assignment with high fidelity. The simulation was performed with experiments 1-39 294 

using a python pipeline and comprised stochastically drawing sets of different sizes out of the actual 295 

number of reads using the python random number generator and performing feature extraction with 296 

the drawn sets. The number of simulations per set size was 30. For samples with less reads than the 297 

specified set size the entire read set was included in the analysis. The average distance of separation 298 

between similarity scores of like and unlike outputs was then investigated with respect to the drawn set 299 

size, the results of which are shown in Fig. 10. A distance of >0 indicates that the similarity 300 

distributions of responses stemming from like and unlike inputs are entirely separable, meaning all 301 

outputs can be correctly assigned. In contrast, a negative distance implies that certain edge cases 302 

would be incorrectly assigned, i.e. two outputs stemming from the same input would be incorrectly 303 

assigned as belonging to a different input, or vice versa. From the draws, the probability for one or 304 

more response out of the generated dataset being incorrectly assigned was calculated with a one-305 

sided t-test, assuming a normal distribution. The simulations showed that below 10’000 reads, the 306 

probability for a distance <0 becomes practically relevant in the case where variable-length inputs are 307 

allowed. If length and GC-content constraints are applied (as discussed in Supplementary Note 9), 308 

down-sampling indicates that even a read set comprising 1000 sequences can be assigned with a 309 

success rate of close to 100%, even with the experiments including inputs with the minimal possible 310 

distance from each other. This has a positive impact on affordability, as the sequencing cost 311 

associated with 1000 reads is in the range of 10 cents. 312 
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 313 

Supplementary Fig. 11: Distance (d) after downsampling to the respective number of reads.  314 

The distance refers to the minimal difference in similarity score between the sets resulting from like 315 

and unlike inputs after k-mer analysis using the entire dataset with parameters k=8, weight=linear, 316 

threshold=0.7. The number of draws per read was n=30. The error bars represent the 95% confidence 317 

intervals for the distance resulting from all draws. The curve shows the probability that at a given 318 

number of reads the resulting set distance using the indicated parameters will be ≤0, whereby a 319 

negative distance means that like and unlike inputs can no longer be completely distinguished. For 320 

read numbers lacking a probability indicator the probability exceeded the float limit and thus shows as 321 

zero, i.e. is not represented in the log chart. A) Distance d after downsampling to the respective 322 

number of reads without applying input constraints. B) Distance d after downsampling to the 323 

respective number of reads in the case where the input is constrained with respect to GC-content and 324 

length. Source data are provided as a Source Data file.  325 
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Supplementary Note 10: Use of MinHash signatures and fuzzy extraction for key generation 326 

A CUF outputs a set S of DNA sequences as a response to an input primer. If the function is evaluated 327 

again with the same input primer, it outputs a set of DNA sequences that is similar to the previously 328 

generated set S, and if the function is evaluated again with a different input primer, it outputs a set that 329 

is different from S. In order to map a response sequence set S to an output of bits (or bytes), we use a 330 

MinHash signature4, 5 followed by a fuzzy vault system6, which is a variant of a fuzzy extractor7. 331 

MinHash-based tools are widely used, with numerous applications in genomics, such as taxonomic 332 

diversity assessment8 and metagenome distance estimation9. A MinHash maps a set – in this case the 333 

k-mers and associated abundances that comprise a response of a CUF – to a signature in form of a 334 

vector. The vector dimensions are pre-defined and constant, irrespective of the set size, and the 335 

similarity of two compared vectors approximately matches the Jaccard similarity of the respective k-336 

mer sets, from which the signatures were derived.  337 

Specifically, our MinHash function uses a weighted MinHash implementation (datasketch Python 338 

library) with the relative abundances of k-mers as weights. This, together with the same selection of k-339 

mer size and threshold, most accurately represents the analysis based on weighted Jaccard similarity 340 

of Supplementary Note 7. Each result of the 255 MinHash permutations is converted to one byte by 341 

modulo 256, yielding a signature of 255 bytes. 342 

The vectors are then converted to binary keys by the fuzzy vault. This works as follows: Let w be the 343 

data from a noisy process - in our setup w is generated from the MinHash signatures obtained from 344 

the CUF. A fuzzy vault system generates a random key c, and uses it to generate the helper data h 345 

from the data w. The helper data is publicly stored and provides redundancy for error correction but 346 

does not give any advantage for reconstructing the original data w or the key c on its own. The original 347 

data w is not stored, instead the generated random key c is used for authentication. If new data w' is 348 

collected the fuzzy vault system attempts to reconstruct the original key c from the new data w' and 349 

the original helper data h. If the new data w' is close (i.e., has a high similarity) to the original data w, 350 

then the redundancy included in the helper data h suffices to recover the same key c from w’. 351 

More specifically, based on experiments 1-39, we implemented a fuzzy vault system with a so-called 352 

code offset construction6. Given the original data w, we generate a 256-bit key c (i.e., 32 bytes) and 353 

encode it with a with a Reed-Solomon code (reedsolo Python library, 255-32=223 bytes of 354 
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redundancy), which yields a byte string c* of equal length to the MinHash. We then store the helper 355 

information h = w – c*, where subtraction is in the finite field the letters of the codeword are in (i.e., 356 

bytes in our setup).  357 

At the reconstruction phase, we are given the helper information h and data w', and we compute 358 

𝑐𝑐′ = 	𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑤𝑤" − ℎ) = 𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑤𝑤" −𝑤𝑤 + 𝑐𝑐∗) 359 

where decode is the Reed-Solomon decoder. We have that c’= c if the data w' is sufficiently close to 360 

the original data w, since then, the redundancy afforded by the Reed-Solomon code allows 361 

reconstruction of c = decode(w’ – w + c*). Otherwise, reconstruction of c will fail, and no key is 362 

generated. 363 

See the code supplement for an implementation of the fuzzy vault system, which correctly reconstructs 364 

all code words in the dataset stemming from experiments 1-39 (refer to Fig. 3g).  365 
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Supplementary Note 11: Discussion of potential inverse operation and brute force attacks 366 

The response of a CUF to a challenge is the result of the random chemical composition of the orDNA 367 

pool. This is a sufficient condition for the CRPs unpredictability. However, for cryptographic security, 368 

irreversibility in analogy to a one-way function is needed. This means that a publicly stored output (and 369 

the helper data) should not reveal information that can be used to infer the corresponding input. By the 370 

CUF’s materiality and random design, this is intrinsically the case. This is even further strengthened by 371 

the fact that the chemical response – i.e. the sequence reads – is masked by k-mer analysis, 372 

MinHashing and Fuzzy extraction, which are computationally infeasible to invert. So not only can the 373 

input not be inferred from the output, but it is with current means even infeasible to unambiguously 374 

infer the chemical response from the numerical output. This leads to a combination of digital and 375 

materially manifested security layers. 376 

However, the possibility of brute force attacks is unavoidable for any one-way function, PUF, or CUF. 377 

For our CUF, the most straightforward way to prevent successful guessing of CRPs is to make the 378 

pool so large that trial and error to find a given CRP is infeasible within reasonable time and cost. 379 

Already at the currently used size of 2.6 · 1010 sequences, a successful attack to find a CRP by trial 380 

and error is unlikely, and CUFs even larger than the ones applied in this work would be conceivable. 381 

To read all CRPs with the previously calculated 10’000 reads and at a pool size of 2.6 · 1010 382 

sequences, one would need ca 260 trillion reads (the equivalent of reading roughly half a million 383 

human genomes at a depth of 30). Using state-of-the-art high-throughput sequencing such as the 384 

NovaSeq X platform by Illumina, the estimated cost would approach half a billion USD for sequencing 385 

alone, not accounting for PCR, time and labor, infrastructure, and other costs. 386 

Additionally, this would require that an adversary malignantly gains physical access to the entire pool 387 

in large enough quantities and knows the orDNA’s general design. In our practical implementation of 388 

the non-copiable CUF tokens, brute force attacks are therefore already prevented by the fact that only 389 

a limited number of operations can be performed on a given token.  390 
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Supplementary Note 12: Discussion of 2’,3’-dideoxy end modification to introduce 391 

unclonability 392 

As discussed in the main manuscript, a major constraint for re-creation of a chemical unclonable 393 

function is the massive number of sequences, resulting in exorbitant cost of reading and recreating the 394 

function. However, should an adversary gain physical access to a given CUF, using the outer handle 395 

such an adversary could not only sequence, but also copy the pool using PCR. 396 

Unclonability in the sense of uncopiability is a therefore desirable additional feature in the application 397 

of a chemical random function. In order to switch an orDNA pool from the clonable (i.e. copiable) to the 398 

unclonable (i.e. uncopiable) state, the constant handles at either end of the sequences are removed 399 

via restriction digest. In the chosen implementation, only very short handles of 6 and 7 nucleotides, 400 

respectively, remain on both ends. These are too short to function as universal PCR primer binding 401 

regions due to their low melting temperature - the optimal Tm of primers being between 55 and 60 ⁰C 402 

with a recommended length of 18-30 nucleotides10.  403 

To prevent the re-addition of longer handles for PCR amplification, the sticky ends resulting from the 404 

restriction digest are subsequently blunted using 2’,3’-dideoxy nucleotides. Such dideoxy nucleotides 405 

are used in Sanger sequencing11 and their incorporation results in a 3’ end without a free hydroxy 406 

group. This means no ligation can performed, as the 3’-hydroxy group is necessary for the formation of 407 

a phosphodiester bond. The incorporation of dideoxy nucleotides is stable, i.e. cannot be efficiently 408 

removed.12 409 

To demonstrate that ligation is no longer possible, a CUF comprising approx. 108 unique sequences 410 

treated with PleI and blunted with dideoxy nucleotides was sent to FASTERIS SA, an external service 411 

provider, where it underwent a standard ligation procedure for genomic library preparation. The 412 

selected ligation protocol is thus optimized for wide application and performs well in adding adapter 413 

sequences to diverse libraries. Two controls were treated along with the test sample, one consisting of 414 

the untreated orDNA library, the second one being digested and blunted, but using regular dNTPs 415 

instead of dideoxy analogs. The total amount of DNA provided to the service provider was approx. 200 416 

ng for all three samples, which is several orders of magnitude more than would be used for a PCR 417 

reaction.  418 
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The ligation results and quality control data are shown in Supplementary Fig. . S11. While both control 419 

libraries were successfully ligated with high yields, the dideoxy-treated CUF yielded no significant 420 

product amounts of the expected length, as evidenced by the gel and the electropherogram. This 421 

indicates that dideoxy blunting is indeed a suitable measure to make cloning of the function 422 

impossible, or at least extremely difficult. Any intruder who attempts to copy such a CUF would not 423 

only have to get physical access to an unrealistically high amount of the original function, but is likely 424 

to introduce bias and change the structure of the orDNA in a way that would be evident and impair its 425 

functionality. 426 

The modification additionally introduces obstacles to simultaneous sequencing of the entire pool, as 427 

this typically involves library preparation by adding adapters, either by PCR or by ligation. This also 428 

includes “PCR-free” methods, such as nanopore sequencing. The truncated and modified 3’-ends 429 

would need to be circumvented, which, even if possible, would increase the complexity and cost of 430 

sequencing and copying further.  431 

In conclusion, it can be shown that, aside from the necessity of gaining access to the pool with 432 

malicious intent, there is no straightforward way to read and copy the pool. Any such attempt would 433 

increase the effort, cost and complexity, and introduce the risk of altering the pool in a way that 434 

hampers its performance as a random function. 435 

 436 

Supplementary Fig. 12: Ligation results 437 

 A) gel image and B) electropherogram, as received from FASTERIS SA. The expected length of the 438 

fully ligated fragments is 263 bp for samples 1 and 2, and 289 bp for sample 3. The fragments araund 439 
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185 and 210 bp correspond to the one-ended ligation. The labels were added to the gel image by the 440 

authors. The electropherograms were plotted from the raw data provided by FASTERIS SA. Source 441 

data are provided as a Source Data file. 442 

  443 
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Supplementary Note 13: Cost estimation 444 

The cost of a CUF is composed of the cost for the function itself and of its operation. For this study, 445 

0.5 exabyte (4g of an orDNA library) were commercially ordered for a price of ca 90 USD. This 446 

corresponds to less than 20 cents per 1000 Terabyte of entropy in the form of operable random DNA. 447 

This amount of orDNA in theory suffices for billions of individual CUFs as implemented in this study, 448 

meaning the cost of random synthesis is insignificant in any realistic scenario at scale. However, 449 

generating a CUF from orDNA requires a PCR reaction to generate multiple copies, followed by 450 

chemical modifications to switch the function from the clonable to the unclonable state. Within the 451 

scales applied in this study, the costs for these steps approximately follow a linear relationship with 452 

regards to the function size. For a CUF comprising 108 unique sequences, the singleplex qPCR using 453 

an intercalating dye in 20 µl reaction volume with standard primers costs ca 50 cents in reagents and 454 

consumables at scale. The material generated by a single PCR reaction was on average sufficient for 455 

ca. 200 executions of the CUF, but this is scalable.  456 

The restriction digest with PleI costs ca 1 USD/assay in reagents and consumables, again for the 457 

amount needed for 200 executions of the function. End blunting with ddNTPs costs ca. 3 USD; 458 

although this calculation takes a prudent approach with the ddNTPs and enzyme added in large 459 

excess. It is therefore likely that further process optimization would cut the cost significantly. 460 

Adding up all cost items for function generation – from DNA synthesis to generating the double-461 

stranded orDNA to switching it to the unclonable state – results in a price of around 4.6 USD per CUF.  462 

At least wo executions are performed per input (one for registration, one or more for authentication 463 

events). For a single function execution, 4 consecutive PCR reactions, including adding the 464 

sequencing adapters, are performed, followed by Illumina sequencing. The cost for one operation from 465 

input to output is comprised of reagents and consumables for PCR and next generation sequencing 466 

(see Supplementary Table 1). For the sequencing cost, it was assumed that 10’000 reads are needed 467 

for a single execution, which is a prudent estimate based on the down-sampling experiments 468 

assuming no input constraints (as discussed in Supplementary Note 9). The current price of an iSeq 469 

100 reagent kit was taken as a benchmark and broken down to the defined number of required reads.  470 

In summary, the cost of generating the function lies below 1% and is thus insignificant. The combined 471 

cost is instead dominated by the price for sequencing and PCR reagents, which currently make up 472 
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80% of the entire amount per function execution. It is important to note that the assumptions 473 

underlying the sequencing cost estimate are deliberately conservative and based on the current 474 

procedure; when reducing the required reads to 1000 and assuming the use of a large-scale 475 

sequencing platform, the sequencing costs would drop by approx. two orders of magnitude. In that 476 

case, the costs for PCR reagents and consumables would dominate the overall price at approx. 2 477 

USD. 478 

A caveat of the above calculations is that most of the items do not involve labor, as this is hard to 479 

estimate in the setting of a research laboratory. Moreover, an assessment of the current labor 480 

requirement would not be a realistic benchmark, as most of the operations are of low complexity and 481 

would be automatized in a large-scale setting. The remaining hands-on work can easily be parallelized 482 

in large multi-well plates, processing many function operations at the same time. Thus, at scale, labor 483 

is not expected to have a large impact on the overall cost. 484 

  485 
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Supplementary Table 1  486 

Approximated item-by-item cost compilation for generation of a function comprising ca 108 sequences. 487 

Step Cost item 
Approximated cost at 

scale (USD) 

Cost per execution* 

Synthesis Library <0.01 <0.0001 

orDNA generation 

Mastermix (e.g. KAPA SYBR 

FAST,  KAPA Biosystems, 

Wilmington, USA) 0.35 

<0.01 

PCR primers <0.01 <0.0001 

Consumables 0.15 0.0015 

Other reagents 0.10 0.001 

End modification 

Restriction enzyme 0.80 0.008 

Consumables 0.20 0.002 

Sequenase (e.g. ThermoFisher) 1.30 0.0013 

ddNTP mix 1.80 0.0018 

Other reagents 0.10 0.001 

Total 
 

4.80 0.048 

*calculated based on the assumption of 200 executions per function 488 

  489 
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Supplementary Table 2  490 

Approximated item-by-item cost compilation for a single execution of a function comprising ca 108 491 

sequences. 492 

Step Cost item 

Approximated cost 

per function 

execution 

Function 

operation 

Mastermix (e.g. KAPA SYBR 

FAST,  KAPA Biosystems, 

Wilmington, USA) 1.40 

PCR primers 0.05 

Consumables 0.60 

Illumina sequencing (iSeq 100 

reagent kit) 1.50 

Other reagents 0.10 

Total 
 

3.65 

 493 

  494 
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Supplementary Table 3: Sequence and primer list 495 

Name Sequence 5'-3' 

Library 1 

ATGCGATGCAGTAAGCACTCNNNNNNNNNACACGACGCTCTTCCGATCTN

NNNNNNNNNNNNNNNNNNNNGCTCAGGATACCAAGCTGTCCNNNNNNNN

NNGATATCTGCTCGGACCGCTA 

Library 2 

ATGCGAGTCAGATNGCACTCNNNNNNNNNACACGACGCTCTTCCGATCTN

NNNNNNNNNNNNNNNNNNNNGCTCAGGATACCAAGCTGTCCNNNNNNNN

NNGACATNGGACGACTCAGCTA 

Library 1 Handle 

primer fw 
ATGCGATGCAGTAAGCACTC 

Library 1 Handle 

primer rv 
TAGCGGTCCGAGCAGATATC 

Library 2 Handle 

primer fw 
ATGCGAGTCAGATNGCACTC 

Library 2 Handle 

primer rv 
TAGCTGAGTCGTCCNATGTC 

Input primer infw1 AGT AAG CAC TCG CTT ACG AC 

Input primer inrv1 GAG CAG ATA TCA TTG GCA ACG 

Input primer infw4 TGCAGTAAGCACTCTACGAC 

Input primer inrv5 TCCGAGCAGATATCGGCAACG 

Input primer infw4.1 TGCAGTAAGCACTCTACGAT 

Input primer inrv5.2 TCCGAGCAGATATCAGCAACG 

Input primer infw4.3 TGCAGTAAGCACTCAGGTCG 

Input primer inrv5.3 TCCGAGCAGATATCATTCTTC 

Input primer infw4.4 TGC AGT AAG CAC TCT TTT TT 

Input primer inrv5.4 TCC GAG CAG ATA TCT TTT TTT 

Input primer infw5 GCAGTAAGCACTCTTACGAC 

Input primer inrv6 CCGAGCAGATATCTGGCAACG 

Input primer infw6 CAGTAAGCACTCGTTACGAC 
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Input primer inrv7 CGAGCAGATATCTTGGCAACG 

Input primer inrv8 GTCCGAGCAGATATCGCAACG 

Input primer infw9 ATGCAGTAAGCACTCTACGA 

Input primer inrv9 ATGCAGTAAGCACTCTACGA 

Trimming primer fw ACACGACGCTCTTCCGATCT 

Trimming primer rv GGACAGCTTGGTATCCTGAGC 

Illumina primer 1F ACACTCTTTCCCTACACGACGCTCTTCCGATCT 

Illumina primer 1R-

AL 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACAGCTTGGTATCCT

GAGC 

Illumina primer 2FU AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC 

Illumina primer 2RI 

Index 1 

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 2 

CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 3 

CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 4 

CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 5 

CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 6 

CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 7 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 8 

CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 9 

CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 10 

CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTG

T 
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Illumina primer 2RI 

Index 11 

CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 12 

CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 13 

CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 14 

CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 15 

CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCAGACGTG

T 

Illumina primer 2RI 

Index 16 

CAAGCAGAAGACGGCATACGAGATGGACGGGTGACTGGAGTTCAGACGT

GT 

Illumina primer 2RI 

Index 17 

CAAGCAGAAGACGGCATACGAGATCTCTACGTGACTGGAGTTCAGACGTG

T 

  496 
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Supplementary Table 4: List of experiments 497 

Experi

-ment 

numbe

r 

Experi

-ment 

desig-

nation 

CUF 

description 

Input 

primers 

Input bases Sequencing file name 

1 1 CUF S1, 10^8 

sequences 

infw4/inrv5 TACGAC / 

GGCAACG 

Sp1-Infw4-Inrv5-

1_S5_L001_R1_001.fastq 

2 2 CUF S1, 10^8 

sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

Sp1-Infw4-Inrv5-

2_S6_L001_R1_001.fastq 

3 3 CUF S1, 10^8 

sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

Infw4-Inrv5-

1_S1_L001_R1_001.fastq 

4 4 CUF S1, 10^8 

sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

Infw4-Inrv5-

2_S2_L001_R1_001.fastq 

5 P1.1 CUF S1 , 

Proliferation 1, 

10^8 sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

Sp1-amp-Infw4-Inrv5-

1_S11_L001_R1_001.fastq 

6 P1.2 CUF S1 , 

Proliferation 1, 

10^8 sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

Sp1-amp-Infw4-Inrv5-

2_S12_L001_R1_001.fastq 

7 P2 CUF S1 , 

Proliferation 2, 

10^8 sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

0_S1_L001_R1_001.fastq 

8 P3 CUF S1 , 

Proliferation 3, 

10^8 sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

1_S2_L001_R1_001.fastq 

9 P4 CUF S1 , 

Proliferation 4, 

10^8 sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

2_S3_L001_R1_001.fastq 
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10 P5 CUF S1 , 

Proliferation 5, 

10^8 sequences 

infw4/inrv5 TACGAC/ 

GGCAACG 

3_S4_L001_R1_001.fastq 

11 5 CUF S1, 10^8 

sequences 

infw4.1/inrv5 TACGAT/ 

GGCAACG 

Sp1-Infw4-1-Inrv5-

1_S9_L001_R1_001.fastq 

12 6 CUF S1, 10^8 

sequences 

infw4.1/inrv5 TACGAT/ 

GGCAACG 

Sp1-Infw4-1-Inrv5-

2_S10_L001_R1_001.fastq 

13 7 CUF S1, 10^8 

sequences 

infw4/inrv5.2 TACGAC/ 

AGCAACG 

Sp1-Infw4-Inrv5-2-

1_S11_L001_R1_001.fastq 

14 8 CUF S1, 10^8 

sequences 

infw4/inrv5.2 TACGAC/ 

AGCAACG 

Sp1-Infw4-Inrv5-2-

2_S12_L001_R1_001.fastq 

15 9 CUF S1, 10^8 

sequences 

infw4.3/inrv5.

3 

AGGTCG/ 

AATCATG 

Sp1-Infw4-3-Inrv5-3-

2_S14_L001_R1_001.fastq 

16 10 CUF S1, 10^8 

sequences 

infw4.3/inrv5.

3 

AGGTCG/ 

AATCATG 

Sp1-Infw4-3-Inrv5-3-

2_S14_L001_R1_001.fastq 

17 11 CUF S1, 10^8 

sequences 

infw4.4/inrv5.

4 

TTTTTT/ 

TTTTTTT 

Lib4-Sp1-G2-infw4-4-inrv5-

4-

1_S13_L001_R1_001.fastq 

18 12 CUF S1, 10^8 

sequences 

infw4.4/inrv5.

4 

TTTTTT/ 

TTTTTTT 

Lib4-Sp1-G2-infw4-4-inrv5-

4-

2_S14_L001_R1_001.fastq 

19 13 CUF S1, 10^8 

sequences 

infw4/inrv8 TACGAC/ 

GCAACG 

Sp1-Infw4-Inrv8-

1_S9_L001_R1_001.fastq 

20 14 CUF S1, 10^8 

sequences 

infw4/inrv8 TACGAC / 

GCAACG 

Sp1-Infw4-Inrv8-

2_S10_L001_R1_001.fastq 

21 15 CUF S1, 10^8 

sequences 

infw9/inrv9 TACGA / 

GGCAAC 

8_S9_L001_R1_001.fastq 

22 16 CUF S1, 10^8 

sequences 

infw9/inrv9 TACGA / 

GGCAAC 

9_S10_L001_R1_001.fastq 
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23 17 CUF S1, 10^8 

sequences 

infw1/inrv1 GCTTACGAC 

/ 

ATTGGCAAC

G 

Infw1-Inrv1-

2_S3_L001_R1_001.fastq 

24 18 CUF S1, 10^8 

sequences 

infw1/inrv1 GCTTACGAC 

/ 

ATTGGCAAC

G 

Sp1-Infw1-Inrv1-

1_S7_L001_R1_001.fastq 

25 19 CUF S1, 10^8 

sequences 

infw1/inrv1 GCTTACGAC 

/ 

ATTGGCAAC

G 

Sp1-Infw1-Inrv1-

2_S8_L001_R1_001.fastq 

26 20 CUF S2, 10^8 

sequences 

infw4/inrv5 TACGAC / 

GGCAACG 

Sp2-Infw4-Inrv5-

1_S1_L001_R1_001.fastq 

27 21 CUF S2, 10^8 

sequences 

infw4/inrv5 TACGAC / 

GGCAACG 

Sp2-Infw4-Inrv5-

2_S2_L001_R1_001.fastq 

28 22 CUF S2, 10^8 

sequences 

infw1/inrv1 GCTTACGAC 

/ 

ATTGGCAAC

G 

Sp2-Infw1-Inrv1-

1_S3_L001_R1_001.fastq 

29 23 CUF S2, 10^8 

sequences 

infw1/inrv1 GCTTACGAC 

/ 

ATTGGCAAC

G 

Sp2-Infw1-Inrv1-

2_S4_L001_R1_001.fastq 

30 24 CUF S3, 10^8 

sequences 

infw4/inrv5 TACGAC / 

GGCAACG 

Sp3-Infw4-Inrv5-

1_S3_L001_R1_001.fastq 

31 25 CUF S3, 10^8 

sequences 

infw4/inrv5 TACGAC / 

GGCAACG 

Sp3-Infw4-Inrv5-

2_S4_L001_R1_001.fastq 

32 26 CUF M1, 1.6 x 

10^9 sequences 

infw5/inrv6 TTACGAC / 

TGGCAACG 

Sp-e9-Inrv5-Inrv6-

1_S5_L001_R1_001.fastq 
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33 27 CUF M1, 1.6 x 

10^9 sequences 

infw5/inrv6 TTACGAC / 

TGGCAACG 

Sp-e9-Inrv5-Inrv6-

2_S6_L001_R1_001.fastq 

34 28 CUF M1, 1.6 x 

10^9 sequences 

infw5/inrv5 TTACGAC / 

GGCAACG 

Sp-e9-Inrv5-Inrv5-

1_S7_L001_R1_001.fastq 

35 29 CUF M1, 1.6 x 

10^9 sequences 

infw5/inrv5 TTACGAC / 

GGCAACG 

Sp-e9-Inrv5-Inrv5-

2_S8_L001_R1_001.fastq 

36 30 CUF L1, 2.6 x 

10^10 

sequences 

infw6/inrv7 GTTACGAC / 

TTGGCAACG 

Sp-e10-Infw6-Inrv7-

1_S15_L001_R1_001.fastq 

37 31 CUF L1, 2.6 x 

10^10 

sequences 

infw6/inrv7 GTTACGAC / 

TTGGCAACG 

Sp-e10-Infw6-Inrv7-

2_S16_L001_R1_001.fastq 

38 32 CUF L1, 2.6 x 

10^10 

sequences 

infw6/inrv6 GTTACGAC / 

TGGCAACG 

Sp-e10-Infw6-Inrv6-

1_S13_L001_R1_001.fastq 

39 33 CUF L1, 2.6 x 

10^10 

sequences 

infw6/inrv6 GTTACGAC / 

TGGCAACG 

Sp-e10-Infw6-Inrv6-

2_S14_L001_R1_001.fastq 

40 

C2 

P1* 

CUF S1 , 

Proliferation 1, 

10^8 sequences 

infw4.1/inrv5 TACGAT/ 

GGCAACG 

P1-infw4-

1inrv5_S4_L001_R1_001.fa

stq 

41 

C2 

P2* 

CUF S1 , 

Proliferation 2, 

10^8 sequences 

infw4.1/inrv5 TACGAT/ 

GGCAACG 

P1-infw4-

1inrv5_S5_L001_R1_001.fa

stq 

42 

C2 

P3* 

CUF S1 , 

Proliferation 3, 

10^8 sequences 

infw4.1/inrv5 TACGAT/ 

GGCAACG 

P1-infw4-

1inrv5_S6_L001_R1_001.fa

stq 

43 

C2 

P4* 

CUF S1 , 

Proliferation 4, 

10^8 sequences 

infw4.1/inrv5 TACGAT/ 

GGCAACG 

P1-infw4-

1inrv5_S7_L001_R1_001.fa

stq 
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44 

C2 

P5* 

CUF S1 , 

Proliferation 5, 

10^8 sequences 

infw4.1/inrv5 TACGAT/ 

GGCAACG 

P1-infw4-

1inrv5_S8_L001_R1_001.fa

stq 

45 

C4 

P1* 

CUF S1 , 

Proliferation 1, 

10^8 sequences 

infw4.3/inrv5.

3 

AGGTCG/ 

AATCATG 

P1-infw4-3inrv5-

3_S14_L001_R1_001.fastq 

46 

C4 

P2* 

CUF S1 , 

Proliferation 2, 

10^8 sequences 

infw4.3/inrv5.

3 

AGGTCG/ 

AATCATG 

P1-infw4-3inrv5-

3_S15_L001_R1_001.fastq 

47 

C4 

P3* 

CUF S1 , 

Proliferation 3, 

10^8 sequences 

infw4.3/inrv5.

3 

AGGTCG/ 

AATCATG 

P1-infw4-3inrv5-

3_S16_L001_R1_001.fastq 

48 

C4 

P4* 

CUF S1 , 

Proliferation 4, 

10^8 sequences 

infw4.3/inrv5.

3 

AGGTCG/ 

AATCATG 

P1-infw4-3inrv5-

3_S17_L001_R1_001.fastq 

49 

C4 

P5* 

CUF S1 , 

Proliferation 5, 

10^8 sequences 

infw4.3/inrv5.

3 

AGGTCG/ 

AATCATG 

P1-infw4-3inrv5-

3_S18_L001_R1_001.fastq 

50 

C3 

P1* 

CUF S1 , 

Proliferation 1, 

10^8 sequences 

infw4/inrv5.2 TACGAC/ 

AGCAACG 

P1-infw4inrv5-

2_S9_L001_R1_001.fastq 

51 

C3 

P2* 

CUF S1 , 

Proliferation 2, 

10^8 sequences 

infw4/inrv5.2 TACGAC/ 

AGCAACG 

P1-infw4inrv5-

2_S10_L001_R1_001.fastq 

52 

C3 

P3* 

CUF S1 , 

Proliferation 3, 

10^8 sequences 

infw4/inrv5.2 TACGAC/ 

AGCAACG 

P1-infw4inrv5-

2_S11_L001_R1_001.fastq 

53 

C3 

P4* 

CUF S1 , 

Proliferation 4, 

10^8 sequences 

infw4/inrv5.2 TACGAC/ 

AGCAACG 

P1-infw4inrv5-

2_S12_L001_R1_001.fastq 
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54 

C3 

P5* 

CUF S1 , 

Proliferation 5, 

10^8 sequences 

infw4/inrv5.2 TACGAC/ 

AGCAACG 

P1-infw4inrv5-

2_S13_L001_R1_001.fastq 

Experiment designation corresponds to the nomenclature used in the main manuscript.  498 
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Supplementary Table 5: List of Selection PCR parameters and results 499 

Experiment 

number 

Experi-ment 

designation Input primers Input bases 

Selection 

PCR 

cycles Ct 

Annealing 

temp. (Ta) 

1 1 infw4/inrv5 

TACGAC / 

GGC AACG 29 17.54 62 

2 2 infw4/inrv5 

TACGAC / 

GGCAACG 29 17.54 62 

3 3 infw4/inrv5 

TACGAC /  

GGCAACG 29 17.43 62 

4 4 infw4/inrv5 

TACGAC / 

GGCAACG 29 17.51 62 

5 P1.1 infw4/inrv5 

TACGAC /  

GGCAACG 30 14.4 62 

6 P1.2 infw4/inrv5 

TACGAC /  

GGCAACG 30 14.08 62 

7 P2 infw4/inrv5 

TACGAC /  

GGCAACG 25 16.25 62 

8 P3 infw4/inrv5 

TACGAC /  

GGCAACG 25 16.49 62 

9 P4 infw4/inrv5 

TACGAC /  

GGCAACG 25 16.68 62 

10 P5 infw4/inrv5 

TACGAC / 

GGCAACG 25 15.72 62 

11 5 infw4.1/inrv5 

TACGAT /  

GGCAACG 50 21.12 62 

12 6 infw4.1/inrv5 

TACGAT /  

GGCAACG 50 21.89 62 

13 7 infw4/inrv5.2 

TACGAC /  

AGCAACG 50 20.04 62 
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14 8 infw4/inrv5.2 

TACGAC /  

AGCAACG 50 19.78 62 

15 9 infw4.3/inrv5.3 

AGGTCG /  

AATCATG 50 21.88 62 

16 10 infw4.3/inrv5.3 

AGGTCG /  

AATCATG 50 20.86 62 

17 11 infw4.4/inrv5.4 

TTTTTT /  

TTTTTTT 36 19.78 56 

18 12 infw4.4/inrv5.4 

TTTTTT /  

TTTTTTT 36 19.65 56 

19 13 infw4/inrv8 

TACGAC / 

GCAACG 25 15.5 62 

20 14 infw4/inrv8 

TACGAC / 

GCAACG 25 15.59 62 

21 15 infw9/inrv9 

TACGA / 

GGCAAC 24 11.9 62 

22 16 infw9/inrv9 

TACGA / 

GGCAAC 24 12.13 62 

23 17 infw1/inrv1 

GCTTACGAC / 

ATTGGCAACG 45 39.43 62 

24 18 infw1/inrv1 

GCTTACGAC / 

ATTGGCAACG 50 41.4 62 

25 19 infw1/inrv1 

GCTTACGAC / 

ATTGGCAACG 50 39.71 62 

26 20 infw4/inrv5 

TACGAC /  

GGCAACG 30 17.27 62 

27 21 infw4/inrv5 

TACGAC /  

GGCAACG 30 17.2 62 

28 22 infw1/inrv1 

GCTTACGAC / 

ATTGGCAACG 50 35.71 62 
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29 23 infw1/inrv1 

GCTTACGAC / 

ATTGGCAACG 50 35.61 62 

30 24 infw4/inrv5 

TACGAC /  

GGCAACG 25 16.31 62 

31 25 infw4/inrv5 

TACGAC /  

GGCAACG 25 16.82 62 

32 26 infw5/inrv6 

TTACGAC /  

TGGCAACG 25 17.23 62 

33 27 infw5/inrv6 

TTACGAC /  

TGGCAACG 25 18.15 62 

34 28 infw5/inrv5 

TTACGAC /  

GGCAACG 25 17.35 62 

35 29 infw5/inrv5 

TTACGAC /  

GGCAACG 25 17.93 62 

36 30 infw6/inrv7 

GTTACGAC / 

TTGGCAACG 25 19.9 62 

37 31 infw6/inrv7 

GTTACGAC / 

TTGGCAACG 25 19.99 62 

38 32 infw6/inrv6 

GTTACGAC / 

TGGCAACG 25 18.69 62 

39 33 infw6/inrv6 

GTTACGAC / 

TGGCAACG 25 18.53 62 

       

40 C2 P1* 

infw4.1/inrv5 TACGAT/ 

GGCAACG 30 17.27 62 

41 C2 P2* 

infw4.1/inrv5 TACGAT/ 

GGCAACG 30 17.01 62 

42 C2 P3* 

infw4.1/inrv5 TACGAT/ 

GGCAACG 30 18.19 62 
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43 C2 P4* 

infw4.1/inrv5 TACGAT/ 

GGCAACG 30 18.12 62 

44 C2 P5* 

infw4.1/inrv5 TACGAT/ 

GGCAACG 30 19.14 62 

45 C4 P1* 

infw4.3/inrv5.3 AGGTCG/ 

AATCATG 30 19.65 62 

46 C4 P2* 

infw4.3/inrv5.3 AGGTCG/ 

AATCATG 30 19.47 62 

47 C4 P3* 

infw4.3/inrv5.3 AGGTCG/ 

AATCATG 30 19.97 62 

48 C4 P4* 

infw4.3/inrv5.3 AGGTCG/ 

AATCATG 30 18.87 62 

49 C4 P5* 

infw4.3/inrv5.3 AGGTCG/ 

AATCATG 30 19.47 62 

50 C3 P1* 

infw4/inrv5.2 TACGAC/ 

AGCAACG 30 19.70 62 

51 C3 P2* 

infw4/inrv5.2 TACGAC/ 

AGCAACG 30 20.32 62 

52 C3 P3* 

infw4/inrv5.2 TACGAC/ 

AGCAACG 30 20.53 62 

53 C3 P4* 

infw4/inrv5.2 TACGAC/ 

AGCAACG 30 20.72 62 

54 C3 P5* 

infw4/inrv5.2 TACGAC/ 

AGCAACG 30 20.58 62 

 500 

  501 



49 
 

 502 

Supplementary Fig. 13 503 

Agarose gel electrophoresis of experiments 1-10 (purified samples for sequencing). The image was 504 

converted to grayscale and adjusted for brightness and contrast.  505 
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 506 

Supplementary Fig. 14 507 

Agarose gel electrophoresis experiments 11-19 (purified samples for sequencing). The image was 508 

converted to grayscale and adjusted for brightness and contrast. 509 

510 
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 511 

Supplementary Fig. 15 512 

Agarose gel electrophoresis experiments 20-25 (purified samples for sequencing). The image was 513 

converted to grayscale and adjusted for brightness and contrast. 514 

  515 
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 516 

Supplementary Fig.  16 517 

Agarose gel electrophoresis experiments 26-31 (purified samples for sequencing). The image was 518 

converted to grayscale and adjusted for brightness and contrast. 519 

  520 
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 521 

Supplementary Fig. 4 522 

Agarose gel electrophoresis experiments 32-39 (purified samples for sequencing). The image was 523 

converted to grayscale and adjusted for brightness and contrast. 524 

  525 
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