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Fig. S1. Efficacy of endogenous MAPK15 knockdown by specific siRNA, in different cell 
lines. Cells were transfected with siSCR or siMAPK15. Seventy-two hours after siRNA 
transfection, cells were collected and subjected to western blot analysis, to monitor 
endogenous MAPK15 protein levels or to RT-qPCR, to monitor mRNA expression in HeLa (A), 
293T (B), hAEC (C), and NCI-H358 (D) cells. 
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Fig. S2. Effect of MAPK15 knockdown on NRF2 mRNA expression. 293T (A) and HeLa 
(B) cells were transfected with siSCR or siMAPK15. Seventy-two hours after siRNA 
transfection, cells were collected and subjected to RT-qPCR, to monitor NRF2 mRNA 
expression. 
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Fig. S3. List of phosphorylation sites identified in NRF2 in control and MAPK15-treated 
samples. The first column shows the peptide sequence in which a phosphorylation is found. 
The phosphorylated amino acid residues are reported in the column “Site”. “Delta (ppm)” 
indicates the mass difference between the theoretical mass of the peptide and the 
experimental measured mass computed by using the following formula: Delta (ppm) = 
1.000.000 x ([Mono Mass Exp. – Mono Mass Theo.] x Mono Mass Theo.). “RT” shows the 
retention time range with the most abundant MS area. The only phosphorylation sites showing 
different amounts (MS areas) between the control and the MAPK15-containing kinase 
reactions are T425 and T439, while phosphorylation of T395 was detected only in presence 
of MAPK15 (see corresponding Fig. 3C). Proline-directed threonine phosphorylation sites are 
indicated in red. No proline-directed serine phosphorylation site has been detected. 
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Fig. S4. MAPK15 regulates NFR2 nuclear translocation. 293T cells were transfected with 
siSCR or siMAPK15. After 72 h, cells were treated with 15 µM FCCP for 1 h and then subjected 
to cell fractionation, using the NE-PER fractionation kit. Lysates were analyzed by WB. 
Cytosolic NRF2 were normalized with IKBα, while nuclear NRF2 was normalized with 53BP1. 
One experiment, representative of 3 independent experiments is shown. Densitometric 
analysis of bands is shown. 
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Fig. S5. Pharmacological inhibition of MAPK15 decreases NRF2 protein expression.  
293T cells were treated with vehicle or 2 µM Ro-318220 for 6 h (A), 10 µM Sorafenib for 6 h 
(B) or 10 µM TMCB for 24 h (C). During the last 4 hour of drug treatment, samples were also 
treated with 1% or 2.5% CSE. Then samples were collected and analyzed by WB. One 
experiment, representative of 3 independent experiments is shown. Densitometric analysis of 
bands is shown. 
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Fig. S6. AKR1B10 is regulated by MAPK15 in hAEC cells. (A) AKR1B10 protein expression 
evaluation by WB analysis, in the different cell lines used throughout the study. A549 cells 
were used as positive control. (B) hAEC cells were transfected with siSCR or siMAPK15. After 
72 h, cells were first treated for 4 h with 1% CSE, and then subjected to SDS-PAGE followed 
by WB. One experiment, representative of 3 independent experiments, is shown. 
Densitometric analysis of bands is shown. 
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Fig. S7. Comparative analysis of the regulation of NRF2 transactivation by different 
members of the MAP kinase family. 293T cells were transiently co-transfected with the ARE 
luciferase reporter vector and the indicated dominant negative mutants for the different MAP 
kinase pathways. After 24 h, cells were treated for 4h with 1% CSE. Samples were next lysed 
and luciferase activity measured in cell extracts. Data are presented as fold induction of the 
normalized luciferase activity compared to control cells transfected with GFP. All luciferase 
results represent the average ± S.D. of three independent experiments. All samples were 
measured in triplicate.  
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Fig. S8. Proposed model for the control of NRF2 phosphorylation by MAPK15. MAPK15 
is able to directly phosphorylate different residues (T395; T425 and T439) at the C-terminus 
of NRF2 while contemporarily stimulating the activity of PKC which, in turn, phosphorylates 
Ser40 of NRF2. These two converging mechanisms allow to increase NRF2 nuclear 
translocation and protein stabilization, finely modulating the extent and accuracy of NRF2 
responses. 
 


