Supplementary Scheme 1: Conventional peptide thioester synthesis at the sulfonamide "safety-catch" resin 4
Supplementary Scheme 2: Conventional peptide thioester synthesis at the NDbz "safety-catch" resin
Peptide Thioesters Used in This Study
Supplementary Table 1: Ulm16 total turnover assays
Supplementary Table 2: Ulm16 Mutant total turnover assays
Supplementary Table 3: Crystallography Table 40
Supplementary Table 4: Primers used for site directed mutagenesis
Supplementary Fig. 1: Multiple sequence alignment of predicted and validated PBP-TEs
Supplementary Fig. 2 Phylogenetic tree of PBP-TEs43
Supplementary Fig. 3: Zoom in of Phylogenetic tree the PBP-TEs
Supplementary Fig. 5: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with Ulm- SMMP (2)
Supplementary Fig. 6: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with Ulm- SMMP where L-Orn replaced by L-Gln (6)
Supplementary Fig. 7: In vitro reaction of UIm16 with UIm-SBMP (3)
Supplementary Fig. 8: In vitro reaction of UIm16 with UIm-SBMP where D-GIn was replaced by L-GIn (4) 46
Supplementary Fig. 9: In vitro reaction of Ulm16 with Ulm-SBMP where D-GIn was replaced by D-Ala (5) 47
Supplementary Fig. 10: In vitro reaction of UIm16 with UIm-SBMP where L-IIe was replaced by L-Ala (7) 47
Supplementary Fig. 11: In vitro reaction of UIm16 with UIm-SBMP where D-Leu was replaced by D-Ala (8)48
Supplementary Fig. 12: In vitro reaction of UIm16 with UIm-SBMP where D-Val was replaced by D-Ala (9)48
Supplementary Fig. 13: In vitro reaction of UIm16 with UIm-SBMP where L-Trp was replaced by L-Ala (10)49
Supplementary Fig. 14: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of UIm16 with substrate 11
Supplementary Fig. 15: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of UIm16 with substrate 12-SNAC
Supplementary Fig. 16: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of UIm16 with substrate 12-SMMP
Supplementary Fig. 17: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of SurE with substrate 12-SNAC
Supplementary Fig. 18: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of Ulm16 with a substrate of a known PBP-TE PenA (13)
Supplementary Fig. 19: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of SurE with a substrate of a known PBP-TE PenA (13)
Supplementary Fig. 20: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrate 14
Supplementary Fig. 21: Spiking with synthetic standard to confirm cyclic tetrapeptide
Supplementary Fig. 22: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrate 15
Supplementary Fig. 23: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrate 16

Supplementary Fig. 24: Spiking with synthetic standard to confirm cyclic tetrapeptide	ł
Supplementary Fig. 25: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrate 17	5
Supplementary Fig. 26: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrate 18	5
Supplementary Fig. 27: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 19	3
Supplementary Fig. 28: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 20	7
Supplementary Fig. 29: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 21	7
Supplementary Fig. 30: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 22	7
Supplementary Fig. 31: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 23	3
Supplementary Fig. 32: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 24	3
Supplementary Fig. 34: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 26)
Supplementary Fig. 35: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 27)
Supplementary Fig. 36: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 28)
Supplementary Fig. 39: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with tetrapeptide substrates 31	2
Supplementary Fig. 40: Expression of Ulm16 and SurE	2
Supplementary Fig. 41: Covalent docking of tetrapeptides to the Ulm16 crystal structure	3
Supplementary Fig. 42: Covalent docking of hexapeptides to the Ulm16 crystal structure	ł
Supplementary Fig. 43: Residues mutated in SDM studies	5
Supplementary Fig. 44. Purification gels for GST tagged Ulm16 FL, Ulm16 FL mutants, and Ulm16 12-44066	3
Supplementary Fig. 45. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 12-MMP	7
Supplementary Fig. 46. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 14	7
Supplementary Fig. 47. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of Ulm16 mutant reactions with peptide 16	3
Supplementary Fig. 48. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of Ulm16 mutant reactions with peptide 29)
Supplementary Fig. 49. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 30	•

Supplementary Fig. 50. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of Ulm16 ^{D297N} mutant reaction with peptide 19	70
Supplementary note 1: Gene sequence for Ulm16	70
Supplementary note 2: Gene sequence for SurE	71
Supplementary Fig. 51: MS2 spectrum for	72
Supplementary Fig. 52: MS2 spectrum for	74
Supplementary Fig. 53: MS2 spectrum for Cyclic Peptide 6 (Cyc 6)	75
Supplementary Fig. 54: MS2 spectrum for Cyclic Peptide 7 (Cyc 7)	75
Supplementary Fig. 55: MS2 spectrum for Cyclic Peptide 8 (Cyc 8)	77
Supplementary Fig. 56: MS2 spectrum for Cyclic peptide 9 (Cyc 9)	78
Supplementary Fig. 57: MS2 spectrum for Cyclic Peptide 10 (Cyc 10)	79
Supplementary Fig. 58: MS2 spectrum for Cyclic Peptide 11 (Cyc11)	80
Supplementary Fig. 59: MS2 spectrum for Cyclic Peptide 12 (Cyc12)	81
Supplementary Fig. 60: MS2 spectrum for Cyclic Peptide 13 (Cyc13)	82
Supplementary Fig. 61: MS2 spectrum for Cyclic Peptide 14 (Cyc14)	83
Supplementary Fig. 62: MS2 spectrum for Cyclic Peptide 15 (Cyc15)	84
Supplementary Fig. 63: MS2 spectrum for Cyclic Peptide 16 (Cyc16)	85
Supplementary Fig. 64: MS2 spectrum for Cyclic Peptide 17 (Cyc17)	86
Supplementary Fig. 66: MS2 spectrum for Cyclic Peptide 20 (Cyc20)	88
Supplementary Fig. 67: MS2 spectrum for Cyclic Peptide 21 (Cyc21)	89
Supplementary Fig. 68: MS2 spectrum for Cyclic Peptide 22 (Cyc22)	90
Supplementary Fig. 69: MS2 spectrum for Cyclic Peptide 23 (Cyc23)	91
Supplementary Fig. 70: MS2 spectrum for Cyclic Peptide 24 (Cyc24)	92
Supplementary Fig. 71: MS2 spectrum for Cyclic Peptide 25 (Cyc25)	93
Supplementary Fig. 72: MS2 spectrum for Cyclic Peptide 26 (Cyc26))	94
Supplementary Fig. 73: MS2 spectrum for Cyclic Peptide 27 (Cyc27)	95
Supplementary Fig. 74: MS2 spectrum for Cyclic Peptide 28 (Cyc28)	96
Supplementary Fig. 75: MS2 spectrum for Cyclic Peptide 29 (Cyc29)	97
Supplementary Fig. 76: MS2 spectrum for Cyclic Peptide 30 (Cyc30)	98
Supplementary Fig. 77-106: NMR Spectra99	9-130
Supplementary References	131

Supplementary Methods

Supplementary Scheme 1: Conventional peptide thioester synthesis at the sulfonamide "safety-catch" resin

Supplementary Scheme 2: Conventional peptide thioester synthesis at the NDbz "safety-catch" resin

Peptide Thioesters Used in This Study

In this study, UPLC and/or analytical HPLC were utilized to assess the purity of the peptide prior to assay or purification by monitoring absorbance at 214 nm. The analytical HPLC analysis was performed on a Luna Omega 5 µm Polar C18 100 Å 150x4.6 mm (Phenomenex) column, while the UPLC analysis was carried out on a CORTECS T3 Column, 120Å, 1.6 µm, 2.1 mm X 50 mm (Waters) column. For purification, semi-preparative HPLC was employed using a Luna Omega 5 µm Polar C18 100 Å 150x21.2 mm (Phenomenex) column. The specific gradient and flow rate for each peptide can be found in their respective sections.

Synthesis of 1

Peptide **1** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from 4-sulfamylbuyryl resin preloaded with Fmoc-D-Gln(Trt)-OH **S1** (0.05 mmol)

using the following amino acids (Fmoc-L-Orn(Boc)-OH, Fmoc-L-IIe-OH, Fmoc-D-Leu-OH, Fmoc-D-Val-OH, Boc-L-Trp(Boc)-OH) and N-Aceytlcysteamine as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (30.3 mg, 55% yield) analyzed via RP-UPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 11.03 (s, 1H), 8.64 (q, J = 6.8 Hz, 2H), 8.20 (dd, J = 8.2, 8.2 Hz, 2H), 8.07 (t, J = 6.1 Hz, 1H), 7.91 – 7.68 (m, 6H), 7.36 (d, J = 7.5 Hz, 1H), 7.27 (s, 1H), 7.23 (s, 1H), 7.09 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 8.2 Hz, 1H), 6.81 (s, 1H), 4.40 (p, J = 5.4 Hz, 2H), 4.34 – 4.26 (m, 2H), 4.23 (t, J = 7.5 Hz, 1H), 4.15 (t, J = 5.6 Hz, 1H), 3.31 (q, J = 8.2 Hz, 1H), 3.25 (dd, J = 6.8, 5.4 Hz, 1H), 3.11 (q, J = 7.0 Hz, 2H), 3.02 (q, J = 9.6 Hz, 1H), 2.87 – 2.73 (m, 4H), 2.17 – 2.05 (m, 2H), 1.97 (h, J = 6.1 Hz, 1H), 1.92 (h, J = 5.4 Hz, 1H), 1.82 – 1.65 (m, 7H), 1.62 – 1.49 (m, 4H), 1.46 (t, J = 4.9 Hz, 2H), 1.42 – 1.35 (m, 1H), 1.05 (hept, J = 6.1 Hz, 1H), 0.87 (d, J = 7.5 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 5.6 Hz, 3H), 0.78 – 0.71 (m, 9H).

¹³**C NMR** (201 MHz, DMSO) δ 200.6, 173.2, 171.7, 171.6, 170.8, 170.4, 169.3, 136.3, 127.1, 124.9, 121.1, 118.7, 118.3, 111.4, 107.2, 58.7, 57.6, 56.5, 52.8, 51.7, 51.2, 42.2, 41.1, 38.5, 38.1, 38.0, 37.3, 36.8, 30.9, 30.9, 29.1, 28.3, 27.6, 27.0, 24.2, 24.1, 23.5, 23.0, 22.6, 22.5, 21.5, 19.1, 17.8, 15.3, 10.9.

Mass spec: expected neutral mass for $C_{42}H_{68}N_{10}O_8S$ (Da): 872.4942, observed neutral mass (Da): 872.4967, mass error (ppm) 2.8.

UPLC Trace: Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and after the gradient. The crude peptide purity was determined to be 96%

Synthesis of 2

Peptide **2** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from 4-sulfamylbuyryl resin preloaded with Fmoc-D-Gln(Trt)-OH **S1** (0.05 mmol) using the following amino acids (Fmoc-L-Orn(Boc)-OH, Fmoc-L-Ile-OH, Fmoc-D-Leu-OH, Fmoc-D-Val-OH, Boc-L-Trp(Boc)-OH) and methyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (27.2 mg, 49% yield) analyzed via RP-UPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 11.03 (s, 1H), 8.64 (dd, *J* = 335.2, 4.7 Hz, 2H), 8.20 (dd, *J* = 9.1, 9.1 Hz, 2H), 7.83 (d, *J* = 9.1 Hz, 2H), 7.74 (d, *J* = 9.1 Hz, 6H), 7.34 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 24.4 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.00 (t, *J* = 6.3 Hz, 1H), 6.81 (s, 1H), 4.40 (p, *J* = 7.9 Hz, 2H), 4.33 – 4.26 (m, 2H), 4.24 (t, *J* = 7.5 Hz, 1H), 4.14 (t, *J* = 9.1 Hz, 1H), 3.60 (s, 4H), 3.24 (dd, *J* = 6.3, 5.9 Hz, 1H), 3.04 – 2.92 (m, 4H), 2.79 (t, *J* = 9.4 Hz, 2H), 2.56 (q, *J* = 5.9 Hz, 2H), 2.11 (h, *J* = 5.9 Hz, 2H), 1.99 – 1.89 (m, 2H), 1.77 – 1.66 (m, 4H), 1.61 – 1.50 (m, 5H), 1.46 (t, *J* = 7.5 Hz, 3H), 1.42 – 1.35 (m, 1H), 1.05 (h, *J* = 4.7 Hz, 1H), 0.90 – 0.69 (m, 24H). ¹³**C NMR** (201 MHz, DMSO) δ 200.6, 173.1, 171.7, 171.6, 171.6, 170.8, 170.4, 136.4, 127.1, 124.9, 121.1, 118.7, 118.3, 111.4, 107.3, 58.6, 57.6, 56.5, 52.8, 51.7, 51.6, 51.2, 41.1, 38.5, 36.8, 33.5, 30.9, 30.8, 29.1, 28.3, 26.9, 24.2, 24.1, 23.5, 23.2, 23.0, 21.5, 19.1, 17.8, 15.3, 10.9.

Mass spec: expected neutral mass for $C_{42}H_{67}N_9O_9S$ (Da): 873.4782, observed neutral mass (Da): 873.4809, mass error (ppm) 3.1.

UPLC Trace: Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and after the gradient. The crude peptide purity was determined to be 97%.

Synthesis of 3

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & &$

Peptide **3** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from 4-sulfamylbuyryl resin preloaded with Fmoc-D-Gln(Trt)-OH **S1** (0.05 mmol) using the following amino acids (Fmoc-L-Orn(Boc)-OH, Fmoc-L-Ile-OH, Fmoc-D-Leu-OH, Fmoc-D-Val-OH, Boc-L-Trp(Boc)-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (22.3 mg, 39% yield) analyzed via RP-UPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 10.87 (s, 1H), 8.66 (d, J = 8.4 Hz, 1H), 8.45 (s, 1H), 8.20 (dd, J = 6.2, 4.3 Hz, 3H), 7.98 (d, J = 7.3 Hz, 1H), 7.56 (d, J = 7.3 Hz, 1H), 7.38 (s, 1H), 7.33 (d, J = 7.3 Hz, 1H), 7.17 (s, 1H), 7.05 (t, J = 6.5 Hz, 1H), 6.97 (t, J = 6.2 Hz, 1H), 6.77 (s, 1H), 4.41 – 4.33 (m, 2H), 4.31 – 4.25 (m, 1H), 4.20 (t, J = 8.6 Hz, 1H), 4.14 (t, J = 6.5 Hz, 1H), 4.02 (t, J = 6.5 Hz, 2H), 3.60 (t, J = 5.4 Hz, 1H), 3.10 (dd, J = 6.5, 5.4 Hz, 1H), 3.00 – 2.90 (m, 2H), 2.74 – 2.65 (m, 3H), 2.54 (dd, J = 962.0, 6.2 Hz, 2H), 2.16 – 2.06 (m, 2H), 2.00 – 1.92 (m, 2H),

1.79 - 1.67 (m, 3H), 1.61 - 1.43 (m, 9H), 1.42 - 1.35 (m, 1H), 1.31 (dd, J = 181.8, 7.5 Hz, 2H), 1.07 (p, J = 8.4 Hz, 1H), 0.88 (t, J = 7.3 Hz, 7H), 0.83 (d, J = 7.3 Hz, 4H), 0.79 (q, J = 6.5 Hz, 8H), 0.77 (t, J = 2.2 Hz, 6H).

¹³**C NMR** (201 MHz, DMSO) δ 201.15, 174.93, 173.48, 172.19, 171.49, 171.38, 171.21, 166.30, 136.66, 127.70, 124.16, 121.25, 118.82, 118.57, 111.70, 111.01, 70.17, 64.29, 59.08, 58.02, 57.04, 55.46, 52.10, 51.66, 41.26, 39.00, 36.73, 34.02, 31.23, 30.91, 30.51, 29.59, 27.27, 24.62, 23.62, 23.37, 21.89, 19.61, 18.98, 18.41, 15.74, 13.94, 11.24.

Mass spec: expected neutral mass for $C_{45}H_{73}N_9O_9S$ (Da): 915.5250, observed neutral mass (Da): 915.5249, mass error (ppm) 0.3.

UPLC Trace: Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and after the gradient. The crude peptide purity was determined to be 99%.

Synthesis of 4

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Peptide **4** was synthesized using the sulfonamide "safety-catch" resin following the general protocol described earlier. The synthesis was started from 4-sulfamylbuyryl resin preloaded with Fmoc-L-Gln(Trt)-OH **S2** (0.05 mmol) and utilized the following amino acids: Fmoc-L-Orn(Boc)-OH, Fmoc-L-Ile-OH, Fmoc-D-Leu-OH, Fmoc-D-Val-OH, and Boc-D-Trp-OH, with Butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 55% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (8.1 mg, 16% yield).

¹**H NMR** (800 MHz, DMSO) δ 10.91 (s, 1H), 8.72 (s, 1H), 8.45 (s, 2H), 8.34 – 7.97 (m, 6H), 7.56 (s, 1H), 7.33 (s, 3H), 7.19 (s, 2H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 6.9 Hz, 2H), 6.78 (s, 1H), 6.16 (t, *J* = 56.3 Hz, 2H), 4.33

(d, *J* = 42.5 Hz, 5H), 4.20 (dd, *J* = 136.6, 17.8 Hz, 4H), 4.02 (d, *J* = 5.7 Hz, 3H), 3.60 – 3.43 (m, 2H), 3.17 – 3.02 (m, 1H), 2.97 (d, *J* = 6.3 Hz, 3H), 2.74 (d, *J* = 6.9 Hz, 5H), 2.55 (d, *J* = 7.5 Hz, 3H), 2.13 (d, *J* = 7.7 Hz, 3H), 1.95 (s, 3H), 1.87 – 1.67 (m, 5H), 1.66 – 1.17 (m, 29H), 1.06 (s, 1H), 0.94 – 0.58 (m, 42H).

¹³**C NMR** (201 MHz, DMSO)δ 200.8, 174.1, 173.2, 171.8, 171.7, 171.2, 171.0, 171.0, 166.0, 136.3, 118.2, 117.4, 116.2, 115.0, 111.3, 110.4, 63.9, 58.8, 57.2, 56.6, 55.1, 51.6, 51.4, 40.8, 38.2, 36.3, 33.6, 31.0, 30.8, 30.6, 30.1, 28.4, 27.1, 24.3, 24.2, 23.9, 23.2, 22.9, 21.5, 20.5, 20.4, 20.2, 19.2, 18.6, 17.9, 15.4, 13.5, 10.8.

Mass spec: expected neutral mass for $C_{45}H_{73}N_9O_9S$ (Da): 915.5251, observed neutral mass (Da): 915.5215, mass error (ppm) 6.0.

HPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 1 ml/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5 minutes after the gradient. The peptide purity was determined to be 99%.

Synthesis of 5

Peptide **5** was synthesized using the sulfonamide "safety-catch" resin according to the general protocol described earlier. The synthesis was initiated from 4-sulfamylbutryl resin preloaded with Fmoc-D-Ala-OH **S3** (0.05 mmol) and utilized the following amino acids: Fmoc-L-Orn(Boc)-OH, Fmoc-L-IIe-OH, Fmoc-D-Leu-OH, Fmoc-D-Val-OH, and Boc-L-Trp(Boc)-OH, with butyl 3-mercaptopropionate used as the cleaving thiol. The crude peptide was obtained as an off-white solid (15.5 mg, 29% yield) and was analyzed via RP-UPLC. It was used in further enzyme assays without undergoing further purification.

¹**H NMR** (800 MHz, DMSO) δ 11.04 (s, 1H), 8.68 (dd, J = 36.9, 8.6 Hz, 2H), 8.21 (dd, J = 24.9, 7.9 Hz, 2H), 8.06 (bs, 3H), 7.85 (bs, 3H), 7.82 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.24 (s, 1H), 7.09 (t, J = 7.3 Hz, 1H), 7.01 (t, J = 7.2 Hz, 1H), 4.42 – 4.31 (m, 4H), 4.29 (d, J = 7.2 Hz, 1H), 4.25 (t, J = 7.6 Hz, 1H), 4.19 (s, 1H), 4.02 (t, J = 6.3 Hz, 2H), 3.35 (bs, 3H), 3.26 (dd, J = 14.3, 5.6 Hz, 1H), 3.05 (dd, J = 14.6, 8.9 Hz, 1H), 3.00 – 2.92 (m, 2H), 2.78 (s, 2H), 2.54 (t, J = 6.6 Hz, 2H), 2.50 (s, 2H), 1.93 (h, J = 6.9 Hz, 1H), 1.74 (s, 1H), 1.69 (s, 1H), 1.61 – 1.49 (m, 8H), 1.46 (t, J = 6.9 Hz, 2H), 1.38 (s, 1H), 1.32 (h, J = 7.3 Hz, 3H), 1.26 (d, J = 7.3 Hz, 4H), 1.05 (hept, J = 7.3 Hz, 1H), 0.88 (quint, J = 7.2, 4.3 Hz, 8H), 0.84 (d, J = 6.3 Hz, 4H), 0.81 – 0.71 (m, 16H).

¹³**C NMR** (201 MHz, DMSO) δ 201.2, 171.6, 171.3, 171.1, 170.8, 170.3, 168.7, 136.4, 127.0, 125.0, 121.1, 118.7, 118.3, 111.4, 106.9, 63.9, 57.6, 56.4, 54.7, 52.6, 51.7, 51.2, 41.0, 38.5, 36.9, 33.6, 31.0, 30.1, 29.0, 28.0, 24.2, 24.1, 23.5, 23.2, 23.0, 21.6, 19.1, 18.6, 17.8, 17.3, 15.3, 13.5, 10.9.

Mass spec: expected neutral mass for $C_{43}H_{70}N_8O_8S$ (Da): 858.5037, observed neutral mass (Da): 858.5063, mass error (ppm) 3.0.

UPLC Trace Obtained using mobile phases of H₂O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 60% over 18 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and after the gradient. The crude peptide purity was determined to be 96%

Peptide **6** was synthesized following the general protocol outlined above for the NDbz "safety-catch" resin. The synthesis was initiated from **S4** (0.15 mmol) using the following amino acids (Fmoc-L-Gln(Trt)-OH, Fmoc-L-Ile-OH, Fmoc-D-Val-OH, Boc-L-Trp(Boc)-OH) and methyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 60% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (82.5 mg, 53% yield).

¹**H NMR** (800 MHz, DMSO) δ 11.04 (s, 1H), 8.68 (d, J = 8.4 Hz, 1H), 8.52 (d, J = 9.5 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.07 (s, 3H), 7.81 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.26 (t, J = 25.5 Hz, 3H), 7.09 (dd, J = 50.4, 7.0 Hz, 1H), 7.01 (t, J = 8.1 Hz, 1H), 6.79 (d, J = 6.7 Hz, 2H), 4.40 (q, J = 7.0 Hz, 1H), 4.35 – 4.27 (m, 3H), 4.26 – 4.18 (m, 2H), 3.59 (s, 3H), 3.26 (dd, J = 5.3, 5.3 Hz, 1H), 3.06 (q, J = 6.7 Hz, 1H), 3.01 – 2.92 (m, 2H), 2.55 (t, J = 6.7 Hz, 2H), 2.17 – 2.03 (m, 4H), 2.01 – 1.91 (m, 2H), 1.89 – 1.83 (m, 1H), 1.82 – 1.70 (m, 3H), 1.58 (h, J = 8.1 Hz, 1H), 1.51 – 1.42 (m, 2H), 1.42 – 1.36 (m, 1H), 1.06 (h, J = 7.0 Hz, 1H), 0.87 (d, J = 8.1 Hz, 3H), 0.82 (d, J = 7.0 Hz, 3H), 0.82 – 0.70 (m, 13H).

¹³**C NMR** (201 MHz, DMSO) δ 201.07, 174.08, 173.57, 172.03, 171.94, 171.15, 170.66, 169.10, 136.74, 127.43, 125.41, 121.53, 119.09, 118.71, 111.81, 107.29, 59.07, 58.04, 56.90, 52.96, 52.68, 51.94, 51.65, 41.36, 36.99, 33.85, 31.83, 31.35, 31.20, 28.53, 28.36, 27.28, 24.58 (d, *J* = 14.8 Hz), 23.60, 23.29, 22.03, 19.44, 18.11, 15.69, 11.23.

Mass spec: expected neutral mass for $C_{45}H_{71}N_9O_{10}S$ (Da): 887.4575, observed neutral mass (Da): 887.4599, mass error (ppm) 2.7.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and after the gradient. The crude peptide purity was determined to be 99%

Peptide **7** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids (Boc-L-Trp(Boc)-OH, Fmoc-D-Val-OH, Fmoc-D-Leu-OH, Fmoc-L-Ala-OH, Fmoc-L-Orn(Boc)-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white sold (26.9 mg, 49% yield) analyzed via RP-UPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 10.99 (s, 1H), 8.59 (d, J = 7.2 Hz, 1H), 8.49 (s, 1H), 8.16 (d, J = 8.6 Hz, 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 5.6 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.25 (s, 1H), 7.21 (s, 1H), 7.08 (t, J = 5.6 Hz, 1H), 7.00 (t, J = 7.8 Hz, 1H), 6.80 (s, 1H), 4.38 – 4.27 (m, 4H), 4.23 (t, J = 5.4 Hz, 1H), 4.01 (t, J = 4.8 Hz, 3H), 3.20 (d, J = 10.2 Hz, 1H), 3.07 (s, 1H), 3.00 – 2.91 (m, 3H), 2.79 (t, J = 6.4 Hz, 2H), 2.55 (t, J = 6.2 Hz, 2H), 2.10 (hept, J = 7.2 Hz, 2H), 2.01 – 1.91 (m, 2H), 1.78 – 1.69 (m, 2H), 1.62 – 1.50 (m, 6H), 1.50 – 1.40 (m, 2H), 1.31 (h, J = 4.8 Hz, 2H), 1.18 (d, J = 6.2 Hz, 3H), 1.10 (s, 2H), 0.87 (t, J = 6.2 Hz, 6H), 0.84 (d, J = 7.0 Hz, 3H), 0.76 (dd, J = 8.6, 6.2 Hz, 6H).

¹³**C NMR** (201 MHz, DMSO) δ 201.0, 173.6, 172.4, 172.0, 171.9, 171.5, 171.0, 136.7, 127.5, 125.0, 121.5, 119.0, 118.7, 111.8, 64.3, 59.1, 58.1, 53.7, 52.2, 51.6, 49.1, 48.4, 41.1, 38.9, 34.0, 31.2, 31.2, 30.5, 29.3, 29.3, 27.3, 27.2, 24.6, 23.9, 23.6, 23.4, 21.9, 19.5, 19.0, 18.8, 18.2, 13.9.

Mass spec: expected neutral mass for $C_{42}H_{67}N_9O_9S$ (Da): 873.4782, observed neutral mass (Da): 873.4791, mass error (ppm) 1.0.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 97%.

Peptide **8** was synthesized using the sulfonamide "safety-catch" resin according to the general protocol described earlier. The synthesis was initiated from **S1** (0.05 mmol) and utilized the following amino acids: Fmoc-L-Orn(Boc)-OH, Fmoc-L-IIe-OH, Fmoc-D-Ala-OH, Fmoc-D-Val-OH, and Boc-L-Trp(Boc)-OH, with butyl 3-mercaptopropionate used as the cleaving thiol. The obtained crude peptide was obtained as an off-white solid (22.48 mg, 41% yield) and was analyzed via RP-UPLC. It was used in further enzyme assays without undergoing further purification.

¹**H NMR** (800 MHz, DMSO) δ 11.00 (s, 1H), 8.64 (d, J = 5.1 Hz, 1H), 8.54 (d, J = 5.9 Hz, 1H), 8.29 (d, J = 5.1 Hz, 1H), 8.18 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.71 (d, J = 6.9 Hz, 1H), 7.48 (s, 3H), 7.35 (d, J = 6.9 Hz, 1H), 7.22 (d, J = 30.9 Hz, 2H), 7.08 (t, J = 6.4 Hz, 1H), 7.00 (t, J = 8.1 Hz, 1H), 6.80 (s, 1H), 4.41 (p, J = 4.5 Hz, 1H), 4.35 (p, J = 5.1 Hz, 1H), 4.33 – 4.21 (m, 3H), 4.02 (t, J = 6.4 Hz, 3H), 3.22 (dd, J = 5.3, 3.5 Hz, 1H), 3.07 – 2.92 (m, 3H), 2.79 (t, J = 6.3 Hz, 2H), 2.57 – 2.52 (m, 2H), 2.23 – 2.07 (m, 2H), 1.97 (h, J = 5.1 Hz, 1H), 1.90 (h, J = 5.7 Hz, 1H), 1.78 – 1.64 (m, 3H), 1.60 – 1.46 (m, 5H), 1.41 – 1.35 (m, 1H), 1.32 (h, J = 7.5 Hz, 2H), 1.22 (d, J = 6.9 Hz, 3H), 1.05 (h, J = 7.5 Hz, 1H), 0.88 (t, J = 6.9 Hz, 3H), 0.82 – 0.72 (m, 13H). ¹³**C NMR** (201 MHz, DMSO) δ 200.6, 173.1, 171.8, 171.6, 171.1, 170.8, 170.4, 136.3, 127.1, 124.7, 121.1, 118.6, 118.3, 111.4, 107.8, 63.9, 58.7, 57.5, 56.4, 53.2, 51.6, 48.3, 38.5, 37.1, 33.7, 30.8, 30.8, 30.1, 29.2, 28.7, 26.9, 12.51 Hz, 13.5 Hz, 13.5 Hz, 13.5 Hz, 14.5 Hz, 15.5 Hz,

24.1, 23.6, 23.2, 19.1, 18.6, 17.9, 15.3, 13.5, 11.0.

Mass spec: expected neutral mass for $C_{42}H_{67}N_9O_9S$ (Da): 873.4782, observed neutral mass (Da): 873.4759, mass error (ppm) 2.7.

UPLC Trace Obtained using mobile phases of H₂O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 60% over 18 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 97%.

Peptide **9** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids (Fmoc-L-Orn(Boc)-OH, Fmoc-L-Ile-OH, Fmoc-D-Leu-OH, Fmoc-D-Ala-OH, Boc-L-Trp(Boc)-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off-white solid (21.4 mg, 41% yield) analyzed via RP-UPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 10.98 (s, 1H), 8.61 (d, J = 6.8 Hz, 1H), 8.49 (d, J = 6.8 Hz, 1H), 8.15 (dd, J = 9.1, 7.9 Hz, 2H), 7.84 (d, J = 6.8 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.25 (s, 2H), 7.19 (d, J = 1.8 Hz, 2H), 7.08 (t, J = 7.9 Hz, 2H), 6.99 (t, J = 6.2 Hz, 1H), 6.80 (s, 1H), 4.41 (q, J = 6.1 Hz, 1H), 4.36 – 4.26 (m, 3H), 4.23 (t, J = 6.7 Hz, 1H), 4.02 (t, J = 6.2 Hz, 2H), 3.87 (t, J = 6.2 Hz, 1H), 3.16 (dd, J = 6.2, 6.2 Hz, 1H), 3.01 – 2.90 (m, 3H), 2.79 (t, J = 7.3 Hz, 2H), 2.58 – 2.52 (m, 2H), 2.11 (hept, J = 8.5 Hz, 2H), 1.96 (h, J = 4.6 Hz, 1H), 1.61 – 1.50 (m, 7H), 1.49 – 1.42 (m, 3H), 1.42 – 1.35 (m, 1H), 1.32 (h, J = 6.8 Hz, 3H), 1.11 (d, J = 4.6 Hz, 5H), 1.05 (p, J = 6.1 Hz, 1H), 0.88 (t, J = 7.3 Hz, 7H), 0.83 (d, J = 5.6 Hz, 4H), 0.81 – 0.73 (m, 8H).

¹³**C NMR** (201 MHz, DMSO) δ 200.6, 173.1, 172.0, 171.8, 171.6, 171.1, 170.8, 136.2, 127.2, 124.5, 121.0, 118.5, 118.3, 111.4, 64.7, 63.9, 58.7, 56.5, 53.5, 51.7, 51.3, 48.7, 48.2, 40.8, 38.5, 36.8, 33.6, 30.8, 30.1, 29.1, 26.9, 26.8, 24.3, 24.1, 23.6, 23.2, 23.0, 21.5, 18.8, 18.3, 17.6, 17.5, 15.3, 13.5, 10.9.

Mass spec: expected neutral mass for $C_{43}H_{69}N_9O_9S$ (Da): 887.4939, observed neutral mass (Da): 887.4965, mass error (ppm) 2.9.

UPLC Trace Obtained using mobile phases of H₂O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 45% over 13 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 96%.

Synthesis of 10

Peptide **10** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids (Fmoc-L-Orn(Boc)-OH, Fmoc-L-Ile-OH, Fmoc-D-Leu-OH, Fmoc-D-Val-OH, Boc-L-Ala-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (10.6 mg, 21% yield) analyzed via RP-UPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 8.64 (d, J = 7.3 Hz, 1H), 8.47 (d, J = 8.5 Hz, 1H), 8.21 (d, J = 6.7 Hz, 1H), 8.15 (d, J = 7.3 Hz, 1H), 7.96 (s, 5H), 7.84 (d, J = 8.6 Hz, 2H), 7.25 (s, 1H), 6.80 (s, 1H), 4.39 (p, J = 4.1 Hz, 2H), 4.33 (q, J = 7.0 Hz, 1H), 4.29 (q, J = 5.7 Hz, 1H), 4.24 (t, J = 7.6 Hz, 1H), 4.02 (t, J = 6.7 Hz, 2H), 3.94 (q, J = 5.7 Hz, 1H), 3.00 – 2.91 (m, 2H), 2.79 (t, J = 6.1 Hz, 2H), 2.58 – 2.51 (m, 2H), 2.11 (h, J = 8.2 Hz, 2H), 2.03 – 1.92 (m, 2H), 1.77 – 1.66 (m, 3H), 1.60 – 1.49 (m, 7H), 1.45 (t, J = 6.0 Hz, 3H), 1.37 (d, J = 7.0 Hz, 5H), 1.32 (h, J = 8.0 Hz, 3H), 1.04 (hept, J = 7.6 Hz, 1H), 0.90 – 0.73 (m, 27H).

¹³C NMR (201 MHz, DMSO) δ 200.6, 173.1, 171.6, 171.1, 170.8, 170.4, 169.6, 63.9, 58.7, 57.4, 56.4, 51.6, 51.2, 48.2, 41.0, 38.5, 36.8, 33.6, 31.1, 30.8, 30.1, 29.2, 26.9, 24.2, 24.1, 23.5, 23.2, 23.0, 21.5, 19.2, 18.6, 17.8, 17.7, 15.3, 13.5, 10.9

Mass spec: expected neutral mass for $C_{37}H_{68}N_8O_9S$ (Da): 800.4830, observed neutral mass (Da): 800.4830, mass error (ppm) 1.2.

UPLC Trace Obtained using mobile phases of H₂O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 5% to 60% over 18 minutes at a flow rate of 1 mL/min. The column was equilibrated with 5% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be >99%.

Synthesis of 11

Peptide 11 was synthesized following a previously described method¹.Briefly, Fmoc-Gly-OH (3 eq) and i-Pr₂EtN (6 eq) were loaded onto 2-chlorotritylchloride (2-CTC) resin in DMF. After 2 hours, unreacted resin was capped with MeOH, and solid-phase peptide synthesis (SPPS) was initiated from S5 (0.05 mmol) using Fmoc-L-Asn(Trt)-OH, Fmoc-L-Ile-OH, Fmoc-D-Leu-OH, Fmoc-L-Leu-OH, and Boc-L-Trp(Boc)-OH. To cleave the peptide from the 2-chlorotrityl resin, a solution of 25% hexafluoroisopropanol (HFIP) in DCM (3.0 mL) was added to the resin and shaken for 30 minutes at room temperature. The reaction mixture was filtered, and the filtrate was washed with DCM (10 mL), concentrated, redissolved in a mixture of acetonitrile-water, frozen, and lyophilized. The crude linear peptide was used in the next reaction without further purification. For the next step, the crude peptide was dissolved in DCM/DMF, and N-Aceytlcysteamine (10 equiv.), 2,6 Lutidine (5 equiv.), and HCTU (5 quiv.) were added. The reaction was stirred overnight at room temperature, quenched with 40 mL EtOAc, and washed with saturated aqueous NH₄Cl (2x 15 mL), saturated aqueous NaHCO₃ (2x 10 mL), and brine (3x 20 mL). The product was dried over sodium sulfate, filtered, and concentrated. A cleaving cocktail of TFA/TIPS = 90:10 (3 mL) was added to remove protecting groups, and the mixture was shaken for 90 minutes. The volatiles were removed by a stream of air, and the peptide crashed out with 25 mL -20°C Et₂O. The product was centrifuged at 3200 x g for 10 minutes at 4 °C, and the Et₂O layer was removed by decantation. This procedure was repeated twice. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of H₂O+0.1% Formic acid (A) and acetonitrile+0.1% Formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 10% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 10% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (3.7 mg, 9% yield). **Mass spec:** expected neutral mass for $C_{39}H_{61}N_9O_8S$ (Da): 815.4364, observed neutral mass (Da): 815.4375, mass error (ppm) 1.3.

HPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 5% to 60% over 18 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 5% mobile phase B for 1 minute before and 5 minutes after the gradient. The peptide purity was determined to be 99%.

Peptide **12-SNAC** was synthesized following an identical protocol followed for Peptide 11 however Fmoc-L-Leu-OH was substituted with Fmoc-L-Ala-OH. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 10% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 10% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (2.1 mg, 5% yield).

Mass spec: expected neutral mass for $C_{36}H_{55}N_9O_8S$ (Da): 773.3894, observed neutral mass (Da): 773.3904, mass error (ppm) 1.2.

HPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 5% to 60% over 18 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 5% mobile phase B for 1 minute before and 5 minutes after the gradient. The peptide purity was determined to be 91%.

Synthesis of 12-SMMP

Peptide **12-SMMP** was synthesized following the general protocol outlined above for the NDbz "safety-catch" resin. The synthesis was initiated from **S4** (0.10 mmol) using the following amino acids (Fmoc-Gly-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-Ala-OH, Fmoc-D-Leu-OH, Fmoc-L-Leu-OH, and Boc-L-Trp(Boc)-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.05\%$ Trifluoroacetic acid (A) and acetonitrile+0.05% Trifluoroacetic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (24.8 mg, 28% yield).

1H NMR (800 MHz, DMSO) δ 10.97 (s, 1H), 8.76 (d, J = 6.5 Hz, 1H), 8.42 – 8.32 (m, 2H), 8.21 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 8.02 (s, 3H), 7.73 (d, J = 7.4 Hz, 1H), 7.37 (t, J = 7.4 Hz, 2H), 7.19 (s, 1H), 7.10 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 8.2 Hz, 1H), 6.90 (s, 1H), 4.62 (q, J = 6.2 Hz, 1H), 4.44 (q, J = 6.2 Hz, 1H), 4.39 –

4.34 (m, 1H), 4.30 (p, J = 6.2 Hz, 1H), 4.06 (s, 1H), 3.97 (dd, J = 7.4, 4.2 Hz, 1H), 3.89 (dd, J = 7.4, 5.3 Hz, 1H), 3.60 (s, 3H), 3.28 (dd, J = 5.1, 4.2 Hz, 1H), 3.04 - 2.94 (m, 3H), 2.60 - 2.53 (m, 3H), 2.46 (q, J = 8.5 Hz, 1H), 1.63 (h, 1H), 1.58 (hept, J = 5.3 Hz, 1H), 1.54 - 1.42 (m, 4H), 1.21 (d, J = 6.2 Hz, 3H), 0.93 (d, J = 6.2 Hz, 3H), 0.88 (q, J = 7.4 Hz, 6H), 0.82 (d, J = 5.1 Hz, 3H).

13C NMR (201 MHz, DMSO) δ 198.44, 172.11 (d, J = 24.3 Hz), 171.59, 168.82, 136.74, 127.41, 125.50, 121.54, 118.87 (d, J = 24.3 Hz), 111.91, 107.17, 52.88, 51.96, 51.43, 49.99, 49.33, 48.53, 41.54, 40.00, 39.89, 39.79, 37.17, 33.81, 27.75, 24.59 (d, J = 21.8 Hz), 23.48, 23.40, 23.33, 22.17, 21.72, 18.65.

Mass spec: expected neutral mass for $C_{36}H_{54}N_8O_9S$ (Da): 774.3734, observed neutral mass (Da): 774.3759, mass error (ppm) 3.2.

UPLC Trace Obtained using mobile phases of H2O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 60% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The peptide purity was determined to be >99%.

Synthesis of 13

Peptide **13** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S6** (0.05 mmol) using the following amino acids (Fmoc-L-Arg(Pbf)-OH, Fmoc-L-Trp(Boc)-OH, Fmoc-D-Val-OH, Boc-L-Leu-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (23.7 mg, 43% yield) analyzed via RP-HPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 10.82 (s, 1H), 9.37 (d, J = 528.2 Hz, 1H), 8.70 (d, J = 7.9 Hz, 1H), 8.46 (d, J = 7.5 Hz, 1H), 8.29 (d, J = 8.6 Hz, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.92 (s, 1H), 7.66 (dd, J = 8.1, 7.5 Hz, 3H), 7.42 – 7.22 (m, 4H), 7.14 (s, 1H), 7.03 – 6.82 (m, 4H), 6.65 (d, J = 8.1 Hz, 2H), 4.66 (d, J = 10.3 Hz, 1H), 4.37 (ddt, J = 8.5, 5.7, 5.1 Hz, 2H), 4.06 – 3.87 (m, 2H), 3.78 (s, 1H), 3.51 (s, 1H), 3.44 – 3.28 (m, 1H), 3.15 (d, J = 13.8 Hz, 1H), 3.07 – 2.91 (m, 5H), 2.87 (t, J = 13.2 Hz, 1H), 2.75 – 2.57 (m, 1H), 2.55 (t, J = 6.3 Hz, 1H), 1.71 –

1.58 (m, 2H), 1.56 – 1.37 (m, 8H), 1.37 – 1.03 (m, 5H), 0.85 (d, *J* = 5.7 Hz, 9H), 0.50 (d, *J* = 5.7 Hz, 2H), 0.42 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (201 MHz, DMSO) δ 200.6, 172.2, 172.0, 171.5, 170.6, 157.4, 156.5, 136.6, 130.5, 129.0, 128.1, 127.5, 127.3, 125.9, 124.5, 121.1, 118.3, 116.8, 116.6, 115.5, 111.5, 110.3, 70.1, 64.3, 61.4, 57.7, 53.5, 52.5, 51.5, 41.7, 40.6, 36.5, 33.9, 31.2, 30.5, 29.5, 28.5, 25.3, 24.1, 23.8, 23.1, 22.1, 19.3, 18.9, 17.6, 13.9.

Mass spec: expected neutral mass for $C_{44}H_{65}N_9O_8S$ (Da): 879.4677, observed neutral mass (Da): 879.4673, mass error (ppm) 0.4.

HPLC Trace Obtained using mobile phases of H2O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 55% over 28 minutes at a flow rate of 1 ml/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5 minutes after the gradient. The peptide purity was determined to be >99%.

Synthesis of 14

Peptide **14** was synthesized following the general protocol outlined above for the NDbz "safety-catch" resin. The synthesis was initiated from **S4** (0.10 mmol) using the following amino acids (Fmoc-D-Ser(tBu)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-L-Phe-OH, and Boc-L-Val-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.05\%$ trifluoroacetic acid (A) and acetonitrile+0.05% trifluoroacetic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (17.8 mg, 20% yield).

¹**H NMR** (800 MHz, DMSO) δ 8.66 (d, J = 7.0 Hz, 1H), 8.56 (d, J = 7.3 Hz, 1H), 8.33 (d, J = 7.3 Hz, 1H), 8.07 (s, 4H), 7.77 (s, 1H), 7.44 (s, 2H), 7.32 – 7.06 (m, 10H), 4.70 (p, J = 4.6 Hz, 1H), 4.41 (d, J = 38.4 Hz, 2H), 4.01 (dd, J = 220.7, 6.1 Hz, 3H), 3.72 (p, J = 8.2 Hz, 1H), 3.62 (s, 3H), 3.07 – 2.90 (m, 7H), 2.90 – 2.71 (m, 2H), 2.53 (t, J = 4.9 Hz, 2H), 2.08 (d, J = 4.9 Hz, 1H), 1.68 (d, J = 6.1 Hz, 1H), 1.53 (t, J = 7.0 Hz, 3H), 1.45 (p, J = 7.3 Hz, 1H), 1.31 (p, J = 8.2 Hz, 5H), 0.97 – 0.76 (m, 13H).

¹³**C NMR** (201 MHz, DMSO) δ 199.9, 172.7, 171.6, 169.8, 169.7, 157.4, 138.7, 138.2, 129.7, 129.2, 128.6, 126.6, 70.2, 64.3, 62.8, 61.6, 60.7, 56.0, 55.4, 34.5, 34.1, 30.5, 24.7, 24.3, 23.6, 19.8, 19.0, 17.3, 17.0, 13.9.

Mass spec: expected neutral mass for $C_{30}H_{49}N_7O_7S$ (Da): 651.3414, observed neutral mass (Da): 651.3411, mass error (ppm) 0.5.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 60% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 90.3% the only impurity being epimerized peptide that could not be separated out.

Synthesis of 15

Peptide **15** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S7** (0.05 mmol) using the following amino acids (Fmoc-D-Orn(Boc)-OH, Fmoc-L-Phe-OH, Boc-L-Val-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (30.4 mg, 70% yield) analyzed via RP-HPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 8.63 (d, J = 8.3 Hz, 1H), 8.41 (dd, J = 9.1, 9.1 Hz, 2H), 7.96 (s, 6H), 7.34 – 7.23 (m, 4H), 7.19 (t, J = 6.8 Hz, 1H), 5.12 (s, 1H), 4.74 (q, J = 6.0 Hz, 1H), 4.54 (h, J = 6.8 Hz, 1H), 4.31 (dd, J = 3.1, 3.1 Hz, 1H), 4.22 (s, 1H), 4.02 (t, J = 6.0 Hz, 2H), 3.60 (d, J = 3.9 Hz, 1H), 3.02 – 2.92 (m, 3H), 2.85 (q, J = 8.3

Hz, 1H), 2.73 (h, J = 7.6 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 2.07 (h, J = 7.0 Hz, 1H), 1.81 – 1.74 (m, 1H), 1.56 – 1.42 (m, 5H), 1.32 (h, J = 6.8 Hz, 2H), 0.98 (d, J = 6.0 Hz, 3H), 0.91 – 0.86 (m, 6H), 0.84 (d, J = 6.0 Hz, 3H). ¹³C NMR (201 MHz, DMSO) δ 200.6, 172.6, 171.6, 171.0, 168.2, 137.8, 129.6, 128.5, 126.8, 66.4, 64.9, 64.3, 57.4, 54.3, 51.6, 38.7, 38.4, 34.0, 30.5, 30.3, 29.0, 23.8, 23.7, 20.5, 19.0, 18.7, 17.6, 13.9. Mass spec: expected neutral mass for C₃₀H₄₉N₅O₇S (Da): 623.3352, observed neutral mass (Da): 623.3350, mass error (ppm) 0.4.

UPLC Trace Obtained using mobile phases of H2O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 1 ml/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5 minutes after the gradient. The peptide purity was determined to be 96%

Synthesis of 16

Peptide **16** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from 4-sulfamylbutyryl resin preloaded with Fmoc-D-Tyr(tBu)-OH **S6** (0.05 mmol) using the following amino acids (Fmoc-D-Arg(Pbf)-OH, Fmoc-L-Phe-OH, Boc-L-Val-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (29.6 mg, 61% yield) analyzed via RP-UPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 9.32 (s, 1H), 8.68 (s, 1H), 8.54 (d, J = 4.5 Hz, 1H), 8.27 (s, 1H), 7.98 (s, 2H), 7.83 (s, 1H), 7.44 (s, 2H), 7.26 (d, J = 2.6 Hz, 6H), 7.19 (s, 2H), 6.99 (d, J = 5.2 Hz, 3H), 6.64 (d, J = 5.9 Hz, 2H), 4.68 (d, J = 7.1 Hz, 1H), 4.42 (s, 1H), 4.29 (s, 1H), 3.97 (t, J = 7.0 Hz, 2H), 3.58 (t, J = 4.0 Hz, 1H), 3.38 (s, 1H), 3.03 – 2.89 (m, 8H), 2.87 (t, J = 10.3 Hz, 1H), 2.81 (t, J = 10.3 Hz, 1H), 2.06 (d, J = 5.7 Hz, 1H), 1.64 (d, J = 7.1 Hz, 1H), 1.54 (t, J = 7.1 Hz, 3H), 1.43 (dd, J = 27.3, 6.4 Hz, 1H), 1.39 (s, 1H), 1.32 (q, J = 9.0 Hz, 3H), 1.23 (s, 3H), 0.92 – 0.82 (m, 12H).

¹³**C NMR** (201 MHz, DMSO) δ 200.5, 171.7, 171.5, 170.7, 168.5, 157.3, 156.5, 137.5, 130.3, 129.6, 128.5, 128.1, 127.1, 126.8, 125.8, 115.5, 64.3, 61.4, 57.6, 54.6, 52.1, 40.7, 38.2, 36.5, 34.0, 30.5, 30.4, 29.3, 25.1, 23.7, 19.0, 17.7, 13.9.

Mass spec: expected neutral mass for C₃₆H₅₃N₇O₇S (Da): 727.3727, observed neutral mass (Da): 727.3748, mass error (ppm) 2.9.

HPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 21 minutes at a flow rate of 1 mL/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5 minutes after the gradient. The crude peptide purity was determined to be 96%.

Synthesis of 17

Peptide **17** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids (Fmoc-D-Arg(Pbf)-OH, Fmoc-L-Phe-OH, Boc-L-Val-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of H2O+0.05% Trifluoroacetic acid (A) S22

and acetonitrile+0.05% Trifluoroacetic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (7.8 mg, 17% yield).

¹**H NMR** (800 MHz, DMSO) δ 9.31 (s, 1H), 8.67 (s, 1H), 8.53 (s, 1H), 8.26 (s, 1H), 7.97 (bs, 3H), 7.81 (s, 1H), 7.43 (bs, 2H), 7.24 (d, *J* = 54.6 Hz, 11H), 6.99 (s, 3H), 6.63 (s, 3H), 4.66 (s, 1H), 4.41 (s, 1H), 4.28 (s, 1H), 4.01 (s, 3H), 3.57 (s, 1H), 3.36 (s, 1H), 3.01 – 2.74 (m, 13H), 2.03 (s, 1H), 1.62 (s, 1H), 1.52 (s, 3H), 1.48 – 1.18 (m, 9H), 0.87 (s, 15H).

¹³**C NMR** (201 MHz, DMSO) δ 200.5, 171.7, 171.5, 170.7, 168.5, 157.3, 156.5, 137.5, 130.3, 129.6, 128.5, 128.1, 127.1, 126.8, 125.8, 118.2, 116.7, 115.5, 114.2, 70.2, 65.1, 64.3, 64.0, 61.4, 57.6, 54.6, 52.1, 39.6, 38.2, 36.5, 34.0, 30.4, 29.3, 25.1, 19.0, 17.7, 13.9.

Mass spec: expected neutral mass for $C_{32}HC_{52}N_8O_7S$ (Da): 692.3679, observed neutral mass (Da): 692.3686, mass error (ppm) 0.9.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 98%.

Synthesis of 18

Peptide **14** was synthesized following the general protocol outlined above for the NDbz "safety-catch" resin. The synthesis was initiated from **S4** (0.15 mmol) using the following amino acids (Fmoc-D-Lys(Boc)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-L-Phe-OH, and Boc-L-Val-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.05\%$ Trifluoroacetic acid (A) and acetonitrile+0.05% Trifluoroacetic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (2.31 mg, 2% yield).

1H NMR (800 MHz, DMSO) δ 8.64 (d, J = 8.0 Hz, 1H), 8.29 (dd, J = 8.9, 8.3 Hz, 1H), 8.03 (s, 2H), 7.92 – 7.65 (m, 6H), 7.27 (d, J = 5.6 Hz, 3H), 7.21 (s, 2H), 4.68 (p, J = 7.5 Hz, 1H), 4.30 – 4.19 (m, 1H), 4.13 (s, 1H), 4.02 (q, J = 6.2 Hz, 1H), 3.65 – 3.51 (m, 1H), 3.51 (d, J = 505.9 Hz, 1H), 2.99 – 2.89 (m, 2H), 2.87 (d, J = 253.5 Hz, 1H), 2.76 – 2.57 (m, 3H), 2.54 (d, J = 386.2 Hz, 1H), 2.04 (h, 1H), 1.65 – 1.60 (m, 1H), 1.60 – 1.55 (m, 1H), 1.55 – 1.47 (m, 4H), 1.43 (h, 3H), 1.37 – 1.12 (m, 6H), 1.09 – 0.94 (m, 2H), 0.92 – 0.75 (m, 9H).

13C NMR (201 MHz, DMSO) δ 201.31, 158.55, 158.40, 137.52, 129.62, 128.52, 126.83, 118.40, 116.91, 70.17, 64.29, 59.40, 57.48, 54.47, 52.22, 39.07, 39.02, 38.85, 38.40, 34.02, 31.42, 30.76, 30.50, 30.33, 27.04, 26.83, 23.64, 22.50, 22.40, 18.97, 18.73, 17.79, 13.94

Mass spec: expected neutral mass for $C_{33}H_{56}N_6O_6S$ (Da): 664.3982, observed neutral mass (Da): 664.3973, mass error (ppm) 1.3.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 60% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient.

Using the general protocol described above for the sulfonamide "safety-catch" resin, Peptide **19** was synthesized by initiating the synthesis from **S9** (0.05 mmol) and coupling the following amino acids in the order of Fmoc-D-Arg(Pbf)-OH, Fmoc-L-Phe-OH, and Boc-L-Val-OH. Butyl 3-mercaptopropionate was used as the cleaving thiol. The crude peptide was obtained as an off-white solid with a yield of 36% (16.4 mg) and was analyzed via RP-HPLC. The peptide was used in further enzyme assays without additional purification.

¹**H NMR** (800 MHz, DMSO) δ 8.66 (d, *J* = 7.9 Hz, 1H), 8.60 (d, *J* = 6.1 Hz, 1H), 8.33 (d, *J* = 8.2 Hz, 1H), 7.80 (s, 1H), 7.26 (t, *J* = 6.1 Hz, 5H), 7.21 – 7.18 (m, 1H), 7.15 (s, 1H), 4.67 (q, *J* = 7.9 Hz, 1H), 4.36 – 4.30 (m, 1H),

4.30 - 4.23 (m, 1H), 4.02 (t, J = 6.8 Hz, 2H), 3.58 - 3.46 (m, 1H), 3.07 - 2.90 (m, 5H), 2.87 (q, J = 8.2 Hz, 1H), 2.54 (t, J = 7.1 Hz, 2H), 2.31 - 2.20 (m, 2H), 2.05 - 1.92 (m, 2H), 1.82 - 1.74 (m, 1H), 1.74 - 1.66 (m, 1H), 1.53 (p, J = 6.1 Hz, 2H), 1.47 - 1.35 (m, 2H), 1.32 (hept, J = 7.5 Hz, 2H), 1.25 (p, J = 6.8 Hz, 2H), 0.90 - 0.86 (m, 6H), 0.84 (d, J = 6.7 Hz, 3H).

¹³C NMR (201 MHz, DMSO) δ 200.6, 173.9, 171.7, 171.1, 170.4, 168.6, 156.9, 137.1, 129.2, 128.1, 126.4, 63.9, 58.6, 57.5, 54.2, 51.7, 40.3, 37.9, 33.6, 30.1, 30.1, 29.9, 28.6, 26.4, 24.8, 23.3, 18.6, 18.5, 17.3, 13.5. **Mass spec:** expected neutral mass for $C_{32}H_{51}N_7O_8S$ (Da): 693.3520, observed neutral mass (Da): 693.3529,

mass spec: expected neutral mass for $C_{32}H_{51}N_7O_8S$ (Da): 693.3520, observed neutral mass (Da): 693.3529, mass error (ppm) 1,3.

HPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 60% over 52 minutes at a flow rate of 1 ml/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5 minutes after the gradient. The crude peptide purity was determined to be >99%.

Synthesis of 20

Peptide **20** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids Fmoc-D-Orn(Boc)-OH, Fmoc-L-Phe-OH, Boc-L-Trp(Boc)-OH and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.05\%$ Formic Acid (A) and acetonitrile+0.05% Formic Acid (B). Samples were eluted using a gradient mode with mobile phase B ranging

from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (3.5 mg, 8% yield).

Mass spec: expected neutral mass for $C_{37}H_{51}N_7O_7S$ (Da): 737.3571, observed neutral mass (Da): 737.3567, mass error (ppm) 0.5.

UPLC Trace Obtained using mobile phases of H₂O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The peptide purity was determined to be 98%.

Synthesis of 21

Peptide **21** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids Fmoc-D-Orn(Boc)-OH, Fmoc-L-Phe-OH, Boc-L-Gln(Trt)-OH and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was obtained as an off white sold (28.1 mg ,62% yield) analyzed via RP-HPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 8.79 (d, J = 8.4 Hz, 1H), 8.65 (d, J = 7.6 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 7.99 (s, 5H), 7.43 (s, 1H), 7.36 – 7.07 (m, 6H), 7.00 (s, 1H), 6.81 (s, 1H), 4.65 (q, J = 3.7 Hz, 1H), 4.37 (dt, J = 37.4, 5.5 Hz, 2H), 4.02 (t, J = 6.8 Hz, 2H), 3.77 (d, J = 5.5 Hz, 1H), 3.09 – 2.86 (m, 3H), 2.82 (dd, J = 195.6, 14.4 Hz, 1H), 2.74 (s, 2H), 2.55 (t, J = 6.8 Hz, 2H), 2.33 – 2.18 (m, 2H), 2.15 (s, 2H), 2.00 – 1.81 (m, 3H), 1.78 (q, J = 4.7 Hz, 2H), 1.53 (p, J = 7.0 Hz, 5H), 1.31 (p, J = 7.8 Hz, 2H), 1.10 (s, 1H), 0.88 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (201 MHz, DMSO) δ 200.8, 173.9, 173.4, 171.7, 171.2, 170.9, 168.6, 137.5, 129.3, 128.2, 126.5, 69.8, 63.9, 58.9, 54.5, 51.7, 51.6, 38.5, 37.8, 33.7, 30.8, 30.5, 30.2, 28.8, 27.2, 27.0, 26.9, 23.5, 23.3, 18.6, 13.6. **Mass spec:** expected neutral mass for $C_{31}H_{49}N_7O_8S$ (Da): 679.3363, observed neutral mass (Da): 679.3366, mass error (ppm) 0.4.

HPLC Trace Obtained using mobile phases of H2O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 1 ml/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5 minutes after the gradient. The peptide purity was determined to be 98%.

Synthesis of 22

Peptide **22** was synthesized using the NDbz "safety-catch" resin. The synthesis was initiated from Fmoc-MeDbz-OH loaded resin **S4** (0.15 mmol) and involved the following amino acids: Fmoc-D-Tyr(tBu)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-L-Phe-OH, Boc-L-Asp(OMe)-OH. Butyl 3-mercaptopropionate was used as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of acetonitrile+0.05% TFA (B) and H₂O+0.05% TFA (A). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 5 minutes after and 1 minute before the gradient to yield an off-white solid (65.2 mg, 44% yield).

¹**H NMR** (800 MHz, DMSO) δ 9.32 (s, 1H), 8.73 (d, *J* = 8.7 Hz, 1H), 8.58 (d, *J* = 7.3 Hz, 1H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.22 (s, 2H), 7.80 (t, *J* = 6.7 Hz, 1H), 7.44 (s, 1H), 7.28 – 7.24 (m, 4H), 7.21 – 7.18 (m, 1H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 4.65 (q, *J* = 8.1 Hz, 1H), 4.43 (q, *J* = 8.1 Hz, 1H), 4.32 (h, *J* = 5.1 Hz, 1H), 4.54 (h, *J* = 5.1 Hz, 1H), 4.43 (h, *J* = 8.1 Hz, 1H), 4.32 (h, *J* = 5.1 Hz, 1H), 4.54 (h, *J* = 5.1 Hz, 1H), 4.55 (h, *J* = 5.1 Hz, 1H), 4.54 (h, J = 5.1 Hz, 1H), 5.14 (h, J = 5.14 (h, J = 5.14 (h, J = 5.1

1H), 4.09 (dd, *J* = 4.5, 3.7 Hz, 1H), 4.02 (t, *J* = 6.7 Hz, 2H), 3.61 (s, 3H), 3.12 – 2.84 (m, 7H), 2.84 – 2.75 (m, 3H), 2.52 (t, *J* = 6.7 Hz, 2H), 1.73 – 1.64 (m, 1H), 1.58 (p, *J* = 7.3 Hz, 2H), 1.46 (h, *J* = 9.6 Hz, 1H), 1.36 – 1.21 (m, 4H), 0.88 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (201 MHz, DMSO) δ 200.53, 171.82, 171.53, 170.58, 170.01, 167.86, 157.27, 156.49, 137.57, 130.38, 129.58, 128.52, 127.08, 126.82, 115.48, 64.30, 61.45, 54.80, 52.41, 52.07, 49.04, 40.77, 38.20, 36.58, 35.81, 33.99, 30.51, 29.46, 25.16, 23.68, 18.97, 13.92.

Mass spec: expected neutral mass for $C_{36}H_{51}N_7O_9S$ (Da): 757.3469, observed neutral mass (Da): 757.3480, mass error (ppm) 1.5.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 96%.

Synthesis of 23

Peptide **23** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids Fmoc-D-Gln(Trt)-OH, Fmoc-L-Phe-OH, Boc-L-Val-OH and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was obtained as an off white sold (18.5 mg, 48% yield) analyzed via RP-HPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 8.65 (d, J = 7.8 Hz, 1H), 8.53 (d, J = 5.6 Hz, 1H), 8.36 (d, J = 7.0 Hz, 1H), 7.94 (s, 2H), 7.27 (t, J = 7.1 Hz, 5H), 7.16 (d, J = 29.0 Hz, 2H), 6.75 (d, J = 43.0 Hz, 2H), 4.64 (dd, J = 490.4, 4.0 Hz, 1H), 4.29 (s, 2H), 4.01 (t, J = 6.2 Hz, 2H), 3.59 (s, 1H), 3.50 (s, 1H), 3.35 (s, 1H), 3.07 – 2.93 (m, 3H), 2.87 (q, J = 7.0 Hz, 1H), 2.54 (t, J = 5.4 Hz, 2H), 2.20 – 2.02 (m, 3H), 1.94 (t, J = 16.4 Hz, 4H), 1.80 (s, 1H), 1.67 (t, J = 7.0 Hz, 1H), 1.54 (q, J = 7.8 Hz, 2H), 1.31 (p, J = 5.4 Hz, 2H), 0.99 – 0.64 (m, 10H).

¹³**C NMR** (201 MHz, DMSO) δ 200.8, 173.6, 173.4, 171.7, 171.2, 170.4, 168.2, 137.3, 129.3, 128.2, 126.5, 69.8, 63.9, 58.9, 57.2, 54.4, 52.0, 37.7, 33.7, 31.3, 31.0, 30.1, 30.0, 27.5, 27.1, 23.3, 18.6, 18.5, 17.3, 13.6, 13.6. **Mass spec:** expected neutral mass for $C_{31}H_{48}N_6O_8S$ (Da): 664.3254, observed neutral mass (Da): 664.3247, mass error (ppm) 1.1.

HPLC Trace Obtained using mobile phases of H2O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 1 ml/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5

minutes after the gradient. The crude peptide purity was determined to be >99%

Peptide **24** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids Fmoc-D-Glu(tBu)-OH, Fmoc-L-Phe-OH, Boc-L-Val-OH and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was obtained as an off white sold (11.2 mg, 28% yield) analyzed via RP-HPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 8.64 (s, 1H), 8.51 (d, J = 48.7 Hz, 2H), 7.26 (d, J = 57.6 Hz, 6H), 6.82 (s, 1H), 4.61 (s, 1H), 4.30 (d, J = 19.3 Hz, 2H), 4.01 (d, J = 3.8 Hz, 2H), 3.55 (d, J = 31.7 Hz, 2H), 2.97 (d, J = 59.3 Hz, 4H), 2.54 (d, J = 3.6 Hz, 2H), 2.13 (s, 2H), 2.03 (s, 3H), 1.93 (s, 2H), 1.81 (s, 1H), 1.69 (s, 1H), 1.52 (t, J = 10.2 Hz, 4H), 1.31 (dd, J = 334.3, 5.3 Hz, 2H), 0.88 (d, J = 30.4 Hz, 9H).

¹³**C NMR** (201 MHz, DMSO) δ 201.2, 174.4, 173.8, 171.9, 171.5, 170.7, 169.0, 137.6, 129.6, 128.5, 126.8, 70.2, 64.3, 59.3, 57.8, 54.8, 52.0, 38.0, 34.0, 31.4, 30.5, 30.4, 27.4, 27.2, 23.6, 19.0, 18.9, 17.6, 13.9.

Mass spec: expected neutral mass for $C_{31}H_{47}N_5O_9S$ (Da): 665.3094, observed neutral mass (Da): 665.3090, mass error (ppm) 0.7.

HPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 1 ml/min. The column was equilibrated with 0% mobile phase B for 3 minutes before and 5 minutes after the gradient The crude peptide purity was determined to be >99%

Synthesis of 25

Peptide **25** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids (Fmoc-D-Dab(Boc)-OH, Fmoc-L-Phe-OH, Boc-L-Val-OH) and butyl 3-mercaptopropionate as the cleaving thiol. The obtained crude peptide was obtained as an off white solid (23.3 mg, 54% yield) analyzed via RP-HPLC and was used in further enzyme assays without further purification.

¹**H NMR** (800 MHz, DMSO) δ 8.75 (t, *J* = 6.5 Hz, 1H), 8.56 (t, *J* = 9.4 Hz, 2H), 7.98 (s, 5H), 7.34 – 7.11 (m, 6H), 6.83 (s, 1H), 4.61 (p, *J* = 6.8 Hz, 1H), 4.39 (p, *J* = 4.6 Hz, 1H), 4.29 (p, *J* = 3.6 Hz, 1H), 4.02 (q, *J* = 5.6 Hz, 2H),

3.61 (t, J = 2.7 Hz, 1H), 2.97 (d, J = 3.9 Hz, 3H), 2.91 – 2.82 (m, 1H), 2.66 – 2.57 (m, 1H), 2.57 – 2.51 (m, 2H), 2.21 – 2.08 (m, 2H), 2.06 (h, J = 4.8 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.87 – 1.78 (m, 1H), 1.78 – 1.68 (m, 1H), 1.56 – 1.41 (m, 3H), 1.31 (h, J = 6.5 Hz, 2H), 1.06 (d, J = 3.9 Hz, 1H), 0.91 (t, J = 5.8 Hz, 2H), 0.88 (t, J = 6.8 Hz, 6H). ¹³**C NMR** (201 MHz, DMSO) δ 200.5, 173.4, 171.1, 170.9, 170.7, 168.3, 137.1, 129.2, 128.2, 126.6, 64.0, 59.1, 57.2, 54.5, 50.0, 48.7, 37.5, 36.0, 33.6, 31.0, 30.1, 30.0, 29.6, 27.1, 26.8, 23.2, 18.6, 18.4, 17.4, 13.6. **Mass spec:** expected neutral mass for C₃₀H₄₈N₆O₇S (Da): 636.3305, observed neutral mass (Da): 636.3310, mass error (ppm) 0.8.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 99%.

Peptide **26** was synthesized using the NDbz "safety-catch" resin. The synthesis was initiated from Fmoc-MeDbz-OH loaded resin **S4** (0.1 mmol) and involved the following amino acids: Fmoc-D-Gln(Trt)-OH, Fmoc-D-Dap(Boc)-OH, Fmoc-L-Phe-OH, and Boc-L-Val-OH. Butyl 3-mercaptopropionate was used as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (16.3 mg, 19% yield).

¹**H NMR** (800 MHz, DMSO) δ 8.87 (d, J = 6.6 Hz, 2H), 8.40 (d, J = 7.1 Hz, 1H), 8.08 (s, 6H), 7.34 – 7.25 (m, 4H), 7.22 (dd, J = 2056.0, 7.1 Hz, 1H), 6.89 (s, 1H), 4.63 (p, J = 6.1 Hz, 1H), 4.49 (h, J = 4.8 Hz, 1H), 4.32 – 4.21 (m, 1H), 4.02 (t, J = 6.6 Hz, 2H), 3.60 (s, 1H), 3.23 (dd, J = 5.2, 3.3 Hz, 2H), 3.01 – 2.90 (m, 2H), 2.90 – 2.75 (m, 2H), 2.60 – 2.52 (m, 1H), 2.24 – 1.81 (m, 5H), 1.53 (p, J = 8.7 Hz, 2H), 1.31 (h, J = 7.9 Hz, 2H), 0.95 – 0.68 (m, 9H).

¹³**C NMR** (201 MHz, DMSO) δ 200.77, 174.16, 171.85, 171.60, 170.00, 169.25, 137.91, 129.55, 128.67, 126.95, 70.20, 64.39, 59.62, 57.47, 55.63, 50.52, 39.96, 36.69, 34.05, 31.40, 30.57, 30.47, 27.43, 23.67, 19.04, 18.86, 17.89, 13.99

Mass spec: expected neutral mass for $C_{29}H_{46}N_6O_7S$ (Da): 622.3148, observed neutral mass (Da): 622.3152, mass error (ppm) 0.5.

UPLC Trace Obtained using mobile phases of H₂O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 96%.

Synthesis of 27

The synthesis of Peptide **27** was initiated from **S1** (0.05 mmol) using the following amino acids in the order of Fmoc-D-His(Trt)-OH, Fmoc-L-Phe-OH, and Boc-L-Val-OH, with butyl 3-mercaptopropionate used as the cleaving thiol, following the general protocol outlined above for the sulfonamide 'safety-catch' resin The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (12.1 mg, 27%).

¹**H NMR** (800 MHz, DMSO) δ 8.96 (s, 1H), 8.65 (dd, *J* = 42.6, 6.3 Hz, 3H), 8.05 (s, 2H), 7.39 – 7.05 (m, 7H), 6.83 (s, 1H), 4.64 (dt, *J* = 66.4, 5.7 Hz, 2H), 4.30 (s, 1H), 4.01 (t, *J* = 6.2 Hz, 2H), 3.59 (s, 1H), 3.13 (d, *J* = 13.7 Hz, 1H), 2.95 (s, 2H), 2.84 (q, *J* = 7.4 Hz, 2H), 2.73 (t, *J* = 8.1 Hz, 1H), 2.54 (s, 4H), 2.23 – 2.00 (m, 3H), 2.00 –

1.94 (m, 1H), 1.91 – 1.73 (m, 1H), 1.49 (t, *J* = 7.4 Hz, 2H), 1.31 (q, *J* = 6.2 Hz, 2H), 0.90 (d, *J* = 5.7 Hz, 3H), 0.87 (s, 6H).

¹³**C NMR** (201 MHz, DMSO) δ 200.84, 173.72, 171.51, 171.00, 170.69, 168.50, 137.47, 134.18, 129.51 (d, *J* = 16.1 Hz), 128.47, 126.84, 117.26, 64.30, 59.44, 57.43, 54.69, 51.58, 40.81, 37.71, 33.95, 31.29, 30.49, 30.33, 27.40, 27.15, 23.60, 18.95, 18.76, 17.71, 13.90.

Mass spec: expected neutral mass for $C_{32}H_{47}N_7O_7S$ (Da): 673.3257, observed neutral mass (Da): 673.3257, mass error (ppm) < 0.0.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 98%.

Synthesis of 28

Peptide **28** was synthesized following the general protocol outlined above for the sulfonamide "safety-catch" resin. The synthesis was initiated from **S1** (0.05 mmol) using the following amino acids Fmoc-D-Orn(Boc)-OH, Fmoc-L-Tyr(tBu)-OH, Boc-L-Val-OH and butyl 3-mercaptopropionate as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of H₂O+0.05% TFA (A) and acetonitrile+0.05% TFA (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 5 minutes after the gradient to yield an off-white solid (13.0 mg, 29% yield).

¹**H NMR** (800 MHz, DMSO) δ 9.32 (s, 1H), 8.60 (d, *J* = 6.5 Hz, 1H), 8.52 (d, *J* = 4.7 Hz, 1H), 8.39 (d, *J* = 7.3 Hz, 1H), 8.04 (s, 3H), 7.83 (s, 3H), 7.26 (s, 1H), 7.08 (d, *J* = 7.1 Hz, 2H), 6.82 (s, 1H), 6.67 (d, *J* = 4.7 Hz, 2H), 4.58 (s, 1H), 4.31 (d, *J* = 42.2 Hz, 2H), 4.02 (s, 2H), 3.60 (s, 1H), 2.97 (s, 2H), 2.87 (d, *J* = 12.8 Hz, 1H), 2.54

(d, *J* = 33.4 Hz, 7H), 2.13 (d, *J* = 46.2 Hz, 3H), 1.94 (s, 1H), 1.80 (d, *J* = 39.9 Hz, 2H), 1.54 (s, 2H), 1.51 – 1.37 (m, 3H), 1.32 (d, *J* = 4.7 Hz, 2H), 1.01 – 0.60 (m, 9H).

¹³**C NMR** (201 MHz, DMSO) δ 201.09, 173.72, 171.95, 171.56, 171.10, 168.41, 156.37, 130.58, 127.67, 115.34, 64.29, 59.28, 57.44, 55.11, 51.74, 40.81, 38.86, 37.31, 34.01, 31.34, 30.50, 30.36, 27.49, 23.78, 23.60, 18.97, 18.79, 17.68, 13.93.

Mass spec: expected neutral mass for $C_{31}H_{50}N_6O_8S$ (Da): 666.4311, observed neutral mass (Da): 666.3410, mass error (ppm) 0.1.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The crude peptide purity was determined to be 97%.

Peptide **29** was synthesized using the NDbz "safety-catch" resin. The synthesis was initiated from Fmoc-MeDbz-OH loaded resin **S4** (0.15 mmol) and involved the following amino acids: Fmoc-D-Tyr(tBu)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Phe-OH, Boc-L-Val-OH. Butyl 3-mercaptopropionate was used as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of acetonitrile+0.05% trifluoroacetic Acid (B) and H2O+0.05% trifluoroacetic Acid (A). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 mL/min. The column was equilibrated with 0% mobile phase B for 5 minutes after and 1 minute before the gradient to yield an off-white solid (42.4 mg, 30% yield).

¹**H NMR** (800 MHz, DMSO) δ 8.65 (q, J = 7.7 Hz, 2H), 8.49 (d, J = 7.7 Hz, 1H), 7.94 (d, J = 3.6 Hz, 3H), 7.90 (t, J = 5.4 Hz, 1H), 7.48 (s, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.23 (t, J = 8.0 Hz, 2H), 7.15 (t, J = 8.0 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 6.65 (d, J = 8.4 Hz, 2H), 4.78 (td, J = 5.7, 3.9 Hz, 1H), 4.52 – 4.47 (m, 1H), 4.36 (q, J = 8.1 Hz, 1H), 4.02 (t, J = 6.5 Hz, 2H), 3.59 (t, J = 5.4 Hz, 1H), 3.17 – 3.08 (m, 2H), 3.06 (dd, J = 3.1, 2.7 Hz, 1H), 3.02 – 2.93 (m, 3H), 2.81 (q, J = 9.5 Hz, 1H), 2.66 (t, J = 11.9 Hz, 1H), 2.54 (td, J = 3.1, 2.7 Hz, 4H), 1.81 (h, J = 5.7 Hz, 1H), 1.78 – 1.70 (m, 1H), 1.60 – 1.44 (m, 5H), 1.31 (h, J = 6.9 Hz, 2H), 0.88 (t, J = 6.9 Hz, 3H), 0.65 (d, J = 6.9 Hz, 3H).

¹³**C NMR** (201 MHz, DMSO) δ 200.53, 171.95, 171.53, 171.26, 167.90, 157.31, 156.46, 137.88, 130.36, 129.55, 128.37, 127.14, 126.69, 115.44, 64.30, 61.25, 57.54, 54.04, 52.58, 40.81, 38.62, 36.44, 33.99, 30.50, 30.01, 29.47, 25.58, 23.74, 18.96, 18.55, 16.72, 13.92.

Mass spec: expected neutral mass for $C_{36}H_{53}N_7O_7S$ (Da): 727.3727, observed neutral mass (Da): 727.3740, mass error (ppm) 1.8.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 mL/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The peptides purity was determined to be 98%.

Synthesis of 30

Peptide **30** was synthesized using the NDbz "safety-catch" resin. The synthesis was initiated from Fmoc-MeDbz-OH loaded resin **S4** (0.15 mmol) and involved the following amino acids: Fmoc-D-Tyr(tBu)-OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-D-Phe-OH, Boc-L-Val-OH. Butyl 3-mercaptopropionate was used as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of acetonitrile+0.05% TFA (B) and H₂O+0.05% TFA (A). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 ml/min. The column was equilibrated with 0% mobile phase B for 5 minutes after and 1 minute before the gradient to yield an off-white solid (49.1 mg, 34% yield).

¹**H NMR** (800 MHz, DMSO) δ 8.71 (t, J = 8.8 Hz, 2H), 8.45 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 4.2 Hz, 3H), 7.73 (t, J = 6.0 Hz, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.23 (dd, J = 39.7, 7.3 Hz, 2H), 7.16 (t, J = 7.7 Hz, 1H), 7.01 (d, J = 8.3 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 4.93 – 4.86 (m, 1H), 4.54 – 4.49 (m, 1H), 4.40 (h, J = 4.5 Hz, 1H), 4.03 (t, J = 6.3 Hz, 2H), 3.59 (t, J = 5.2 Hz, 1H), 3.04 – 2.91 (m, 6H), 2.70 (t, J = 10.5 Hz, 2H), 2.61 – 2.52 (m, 2H), 1.81 (h, J = 2.4 Hz, 1H), 1.55 (p, J = 6.9 Hz, 2H), 1.43 – 1.37 (m, 1H), 1.32 (h, J = 7.7 Hz, 2H), 1.29 – 1.23 (m, 1H), 1.18 (p, J = 6.6 Hz, 2H), 0.88 (t, J = 6.9 Hz, 3H), 0.67 (d, J = 7.7 Hz, 3H), 0.42 (d, J = 7.0 Hz, 3H).

¹³C NMR (201 MHz, DMSO) δ 200.35, 171.85, 171.59, 170.92, 167.92, 157.25, 156.52, 137.64, 130.54, 129.63, 128.36, 127.07, 126.73, 115.43, 64.35, 61.19, 57.56, 53.95, 51.88, 40.63, 39.29, 36.83, 33.94, 30.51, 30.13, 29.99, 24.96, 23.82, 18.98, 18.64, 16.82, 13.93.

Mass spec: expected neutral mass for $C_{36}H_{53}N_7O_7S$ (Da): 727.3727, observed neutral mass (Da): 727.3733, mass error (ppm) 0.9.

UPLC Trace Obtained using mobile phases of H₂O+0.1% formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a

flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The peptide purity was determined to be 99%.

Peptide **31** was synthesized using the NDbz "safety-catch" resin. The synthesis was initiated from Fmoc-MeDbz-OH loaded resin **S4** (0.15 mmol) and involved the following amino acids: Fmoc-D-Tyr(tBu)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-L-Phe-OH, Boc-D-isoVal-OH. Butyl 3-mercaptopropionate was used as the cleaving thiol. The crude peptide was purified via reverse-phase semi-preparative HPLC using mobile phases of acetonitrile+0.05% TFA (B) and H₂O+0.05% TFA (A). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 50% over 22 minutes at a flow rate of 20 ml/min. The column was equilibrated with 0% mobile phase B for 5 minutes after and 1 minute before the gradient to yield an off-white solid (65.7 mg, 46% yield).

31

Ĥ

S4

¹**H** NMR (800 MHz, DMSO) δ 9.35 (s, 1H), 8.76 (d, J = 7.2 Hz, 1H), 8.39 (dd, J = 9.7, 9.1 Hz, 2H), 7.98 – 7.88 (m, 4H), 7.47 (s, 1H), 7.32 (d, J = 7.2 Hz, 2H), 7.23 (t, J = 7.2 Hz, 3H), 7.16 (t, J = 7.9 Hz, 1H), 7.02 (d, J = 7.9 Hz, 2H), 6.65 (d, J = 9.1 Hz, 2H), 4.80 (td, J = 3.9, 3.9 Hz, 1H), 4.49 – 4.42 (m, 2H), 4.03 (t, J = 6.5 Hz, 2H), 3.13 – 3.03 (m, 3H), 2.98 (t, J = 7.2 Hz, 2H), 2.92 (dd, J = 5.9, 5.2 Hz, 1H), 2.80 (h, J = 7.2 Hz, 2H), 2.53 (t, J = 6.5 Hz, 2H), 1.79 – 1.73 (m, 1H), 1.67 (h, J = 7.9 Hz, 1H), 1.52 (h, J = 6.5 Hz, 4H), 1.50 – 1.40 (m, 5H), 1.32 (h, J = 7.9 Hz, 2H), 0.88 (t, J = 7.9 Hz, 3H), 0.24 (t, J = 6.5 Hz, 3H).

¹³**C NMR** (201 MHz, DMSO) δ 200.62, 171.94, 171.53, 171.19, 170.68, 157.33, 156.52, 138.22, 130.39, 129.59, 128.37, 127.08, 126.65, 115.51, 64.31, 61.46, 60.47, 54.73, 51.86, 40.78, 37.96, 36.57, 34.01, 30.51, 30.30, 29.93, 25.28, 23.70, 22.63, 18.97, 13.92, 7.45.

Mass spec: expected neutral mass for $C_{36}H_{53}N_7O_7S$ (Da): 727.3727, observed neutral mass (Da): 727.3774, mass error (ppm) 6.4.

UPLC Trace Obtained using mobile phases of $H_2O+0.1\%$ formic acid (A) and acetonitrile+0.1% formic acid (B). Samples were eluted using a gradient mode with mobile phase B ranging from 0% to 40% over 11 minutes at a flow rate of 0.5 ml/min. The column was equilibrated with 0% mobile phase B for 1 minute before and 2 minutes after the gradient. The peptide purity was determined to be 97%.

Supplementary Table 1: UIm16 total turnover assays. Enzymatic reactions were conducted in 20 mM Tris at pH 8.0 with 5% DMSO for 4 hours at 30°C using various concentrations of peptides and UIm16 as indicated by [Peptide] and [UIm16], respectively. The areas of the enzymatic products and starting material were determined by analyzing the UPLC UV Trace at 214 nm. Total turnover numbers were calculated using a formula outlined in the methods section. Red numbers indicate substrates that were neither cyclized nor hydrolyzed.

Substrate	[Ulm16]	[Peptide]	Area Cyclic Peptide	Area Peptide Thioester	Area Hydrolyzed Peptide	Area Hydrolyzed Dimer	Area Cyclic Dimer	Sum	TTN	Cyc/ SM	Cyc/H
2	14 nM	320 µM	2684660	37204	*			2721764	22545	72	>20:1
6	17 nM	320 µM	855364	891865	30967			1778196	9055	1.0	27.6
11	70 nM	280 µM	903688	927094	*			1830782	1974	1.0	>20:1
12-SNAC	70 nM	280 µM	1614745	512012	*			2126758	3037	3.2	>20:1
12-SMMP	70 nM	320 µM	2242929	61585	*			2304514	4449	36	>20:1
13	17 nM	320 µM	2133202	97416	78504			2309122	17389	21.9	27.2
14	70 nM	280 µM	584777	138590	9594			732961	3191	4.2	61
15	70 nM	280 µM	620130	56328	2801			679259	3652	11	221.4
16	11.5 nM	280 µM	1922450	320576	45581	15733	9476	2313817	34679	6.0	42.2
17	45 nM	280 µM	426879	176018	73213			676110	3929	2.4	5.8
18	70 nM	280 µM	439897	7240	5536			452673	3887	60.8	79.5
19	70 nM	280 µM									
20	70 nM	280 µM	1214431	14538	79313			1308282	3713	83.5	15.3
21	70 nM	280 µM	54373	138754	53697			246824	881	0.4	1.0
22	1/ nM	320 µM	697840	227450	53826			9/9116	13416	3.1	13.0
23	70 NM	280 µM	175012	21341	29731			220084	3096	8.Z	5.9
24	70 NM	280 µM	357393	2//8/4	39241			674508	2119	1.3	9.1
25	70 nM	280 µM	346723	32901	21140			400764	3461	10.5	16.4
26	70 nM	280 µM	243137	67031	112373			422541	2302	3.6	2.2
27	70 nM	280 µM	142639	404619	86311			633569	1401	0.4	1.7
28	45 nM	280 µM	138785	296882	N.D			435668	1982	0.5	-
29	17 nM	320 µM	1078614	444170	86863	28754	0	1638401	12392	2.4	12.4
30	17 nM	320 µM	178195	270391	262105	57793	7509	775992	4323	0.7	0.7
31	17 nM	320 µM									

Supplementary Table 2: Ulm16 Mutant total turnover assays. Enzymatic reactions were conducted in 20 mM Tris at pH 8.0 with 5% DMSO for 4 hours at 30°C using various concentrations of peptides and mutated Ulm16 as indicated by [Peptide] and [Ulm16], respectively. The areas of the enzymatic products and starting material were determined by analyzing the UPLC UV Trace at 214 nm. Total turnover numbers were calculated using a formula outlined in the methods section. In some cases, Tris from the reaction buffer was conjugated to the peptide and is indicated by 'Area Tris Peptide'. For Ulm16 R431A peptides 14 and 29 did not cyclize and the hydrolyzed peptide was used for TTN and are indicated with an asterisk.

				Area Cyclic	Area Peptide	Area Hydrolyzed	Hydrolyzed	Area Tris				
Substrate	[Ulm16]	Mutant	[Peptide]	Peptide	Thioester	Peptide	Dimer	Peptide	Sum	TTN	Cyc/SM	Cyc/H
12-MMP	70 nM	R431A	280 µM	76920	1297157	55670	6952	384405	1821105	169	0.1	1.4
12-MMP	70 nM	S429A	280 µM	2243756	463979	330492	-	-	3038226	2757	5	7
12-MMP	70 nM	Y428A	280 µM	337847	2114642	476929	-	-	2929418	431	0.2	0.7
12-MMP	500 nM	1-344	280 µM	34981	1914589	398195	118632	-	2466397	8	0.0	0.1
12-MMP	70 nM	L300G	280 µM	352754	1333933	73655	9596	-	1769938	797	0.3	4.8
12-MMP	70 nM	D297N	280 µM	639759	889575	25572	15839	-	1570745	1629	0.7	25.0
14	70 nM	R431A	280 µM	0	350874	40992	-	-	391866	391*	8.6*	-
14	70 nM	S429A	280 µM	421988	68621	15890	-	-	506499	3110	6	26.6
14	70 nM	Y428A	280 µM	265996	285678	14688	-	-	566362	1753	1	18.1
14	500 nM	1-344	280 µM				-	-				
14	70 nM	L300G	280 µM	92709	320930	14295	-	-	427935	800	0.3	6.5
14	70 nM	D297N	280 µM	46591	325366	13582	-	-	385539	451	0.1	3.4
16	32.5 nM	R431A	280 µM	206670	21343	451015	69447	-	748474	2379	9.7	0.5
16	32.5 nM	S429A	280 µM	1676219	16367	21117	-	-	1713703	8427	102	79
16	32.5 nM	Y428A	280 µM	1077523	510451	37788	26261	-	1652023	5619	2.1	28.5
16	500 nM	1-344	280 µM	32923	1428807	20947	-	-	1482676	12	0	1.6
16	32.5 nM	L300G	280 µM	676744	1097879	17546	-	-	1792168	3253	0.6	38.6
16	32.5 nM	D297N	280 µM	936327	819680	21794	-	-	1777802	4538	1.1	43
29	32.5 nM	R431A	280 µM	-	12064	506230	279574		797868	8485*	23.2*	-
29	32.5 nM	S429A	280 µM	1316148	7336	95074	44703	-	1463262	7749	179	14
29	32.5 nM	Y428A	280 µM	1139426	15322	99508	78596		1332852	7365	74	11.5
29	500 nM	1-344	280 µM	15295	546699	54107	-	-	616101	14	0	0.3
29	32.5 nM	L300G	280 µM	831196	626389	41292	-	-	1498876	4778	1.3	20.1
29	32.5 nM	D297N	280 µM	1013803	379441	111736	-	-	1504979	5804	2.7	9.1
30	32.5 nM	R431A	280 µM	17557	43403	535460	98024	313789	1008232	150	0.4	0.02
30	32.5 nM	S429A	280 µM	283097	12587	183397	206969	-	686050	3555	22.5	1.5
30	32.5 nM	Y428A	280 µM	295075	11015	280007	122283	-	708380	3589	26.8	1.1
30	500 nM	1-344	280 µM	22817	1153654	58062	-	-	1234532	10	0	0.4
30	32.5 nM	L300G	280 µM	501905	13196	246999	76568	-	838668	5156	38	2
30	32.5 nM	D297N	280 µM	127879	11739	380677	78431	74063	672789	1638	11	0.3

Supplementary Table 3: Crystallography Table

Ulm16 12-440 8FEK							
Data	Collection						
Beamline	SSRL BL 12-2						
Wavelength (Å)	0.98						
Resolution range (Å)	32.8-2.058 (2.132-2.058)						
Space group	P 1 21 1						
Cell dimensions							
a, b, c (Å)	48.822, 67.871, 56.779						
α, β, γ (°)	90.0, 102.505, 90.0						
Total reflections	1987820						
Unique reflections	22120 (2171)						
Redundancy (%)	5.9 (6.0)						
Completeness (%)	97.74 (95.59)						
Rmerge	0.141 (0.710)						
Rmeas	0.156 (0.785)						
Rpim	0.065 (0.328)						
l/σ(l)	15.11 (4.31)						
CC1/2	0.984 (0.505)						
Wilson B (Å2)	28.42						
Ref	inement						
Copies/A.S.U.	1						
Resolution (Å)	2.07						
Rwork / Rfree	0.186 / 0.219						
No. nonhydrogen atoms	3176						
Protein	2981						
Water	195						
B factors (A2)	40.67						
Protein	40.65						
Water	40.92						
R.m.s.d							
Bond lengths (A)	0.004						
Bond angles (°)	0.66						
Ramachandran	97,75,2,25,0						
(favored/allowed/outliers)	57.10, 2.20, 0						
Rotamer outliers (%)	0.0						
Clash score	3.07						

Supplementary Table 4: Primers used for site directed mutagenesis

Primer Name	Oligonucleotide Sequence (5'-3')
BamHI-UIm16 12 Fwd	CATCATGGATCCGGCGCCGGTGACGGCG
Ulm16 440-Xhol Rev	ATGATGATGCTCGAGTCAGGACTCTCCCGCTTCCCGC
pGEX6p1 Ulm16 FL Fwd	CAGGGGCCCCTGGGATCCGGCGCCGGTGACGGCG
pGEX6p1 Ulm16 FL Rev	GCGCGAGGCAGATCGTCAGGACTCTCCCGCTTCCCGC
5GEX Fwd	GGGCTGGCAAGCCACGTTTGGTG
3GEX Rev	CCGGGAGCTGCATGTGTCAGAGG
Ulm16 D297N Fwd	TGGCTCGGCCACAACGGCACCCTG
Ulm16 D297N Rev	CAGGGTGCCGTTGTGGCCGAGCCA
Ulm16 L300A Fwd	CCACGACGGCACCGCCGACGGCGCCACCTG
Ulm16 L300A Rev	CAGGTGGCGCCGTCGGCGGTGCCGTCGTGG
Ulm16 L300G Fwd	CCACGACGGCACCGGCGACGGCGCCACCTG
Ulm16 L300G Rev	CAGGTGGCGCCGTCGCCGGTGCCGTCGTGG
Ulm16 R431A Fwd	CTCCAGTACAGCGGAGCCACCCTCCTGCGGGAAG
Ulm16 R431A Rev	CTTCCCGCAGGAGGGTGGCTCCGCTGTACTGGAG
Ulm16 Y428A Fwd	CGCCCTCCAGGCCAGCGGACGCACCC
Ulm16 Y428A Rev	GGGTGCGTCCGCTGGCCTGGAGGGCG
Ulm16 S429A Fwd	CGCCCTCCAGTACGCCGGACGCACCCTCCT
Ulm16 S429A Rev	AGGAGGGTGCGTCCGGCGTACTGGAGGGCG

	10	20	30	40	50	60
1-Ulm16 1 M H G 2-WalJ 1 - - - 3-DsaJ 1 M L G 4-Lon18 1 - - - 5-PenA 1 - - - 6-CppA 1 - - - 7-SurE 1 - - - 8-MppK 1 - - -	D Y A D P A D C G A I A E E K V S - - - - - - - - - -	G D G A P V G L D L D M S A E A G R G R G R J L D - G A P F S L P L D - A G A P F S L P L D - A I H G E L P T E S D - M G A E G A P F S L P L S D - A I H G E L P T E S D - M G A F S L P L S S D - M G A F S S S S S S S S S S S S S S S S S S	R - - - L A F I S L P L D R L A F I S L P L D R L A F R L C L S S E I V C M S A L L R R L A F V S A L L R R A F V S A L F E L A F V S A L F E L A F V G A L F E L A F L H S T L T E L A	R D C D V V G G Q L A V K E H S V V G G Q L A V K E H S V V G A Q L A V V V V Q A A C C V V Q A Q L A V V Q A Q L A V V V V Q A Q L A V V Q A Q L A V V Q A Q V V Q A Q L V V Q A Q L V V Q A Q L V V Q A Q L V V Q A Q L V V Q Q L V V </td <td>H H Q G T L T T W H H Q G T L R T W Y H R C G T L R T W Y H R G G F L L L D Y H R G G E V R T F Y R R G G E V R T F Q G G G E V R T F Y R R G G G E R F L V H H E G G G E R L L V H H G G G G E V V V V V V V V V V V V V</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	H H Q G T L T T W H H Q G T L R T W Y H R C G T L R T W Y H R G G F L L L D Y H R G G E V R T F Y R R G G E V R T F Q G G G E V R T F Y R R G G G E R F L V H H E G G G E R L L V H H G G G G E V V V V V V V V V V V V V	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1-UIm16 61 V H V 2-WalJ 54 V S V 3-DsaJ 63 V R 4-Lon18 41 D T A 5-PenA 43 V T A 6-CppA 59 V T A 7-SurE 53 V T P 8-MppK 48 V E R	70 G S A F P Y G S V T G T A F A L G S T T A L R F P Y G S V T A L R F P F A S V T D T L F P L G S T T T L F P L G S T T R T G F P Y G S V T	80 90<	$ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	p0 110 7 P V R L L P E R G A S D V K T W L L E E R G A S D V K T W L D R G A L V K T W L D R G A A V L L P L L C C A P L G S V V E E L A E L A C D L L C C L L D L L C D L L C D L L C D L L C D L <td>120 A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - G - - - - - - -</td> <td>130 S G T G A R A D S G H P 126 A D H P 103 S N H P 112 S G G P 90 P G P 91 P G P 107 A G P P 102 A G P 90 A G P 91</td>	120 A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - A - - - - - - - G - - - - - - -	130 S G T G A R A D S G H P 126 A D H P 103 S N H P 112 S G G P 90 P G P 91 P G P 107 A G P P 102 A G P 90 A G P 91
1-UIm16 127 A L A 2-WolJ 104 A L N 3-DsaJ 113 G L G 4-Lon18 91 G A L R 5-PenA 92 L R E 6-CppA 108 L R E 6-CppA 108 L R E 7-SurE 103 L G E L 8-MppK 94 - E L N L N L L R L R E L R E L R L R E L R E L R L R L R L R L R L R L R L R L R L R L L L L L L L L L L L </td <td>140 A T L R Q L L S H T A T L R Q L L S H T A T L R Q L L S H T A T L R Q L L S H T V T L R Q L L S H T V T L R Q L L S H T V T L R Q L L S H T</td> <td>150 A G L P S - - D H A G L P S - - D H A G L P S - - D H A G L P S - - D H A G L P S - - D H A G L P D M P A T E H A G L P D M P A T E H A G L P D M P A T E H A G L P D S U V P E G S S G L P S D V P E G S</td> <td>160 D D E R A P S L R F D D E C A P S L R F D D G D A T S L R F D D G Q G P S L R A D P S L R A D P S L R A D C P S L R A D C P S L R A D P S L R A D P S L R A</td> <td>170 R W L T G F L A L P V G W L A G F L T - S G W L T G F L A T G V V A D A C V A A A C V A A C V</td> <td>180 P</td> <td>190 * * A P G S F S Y S N V G Y 182 T P G S F S Y S N V G Y 163 A P G S F S Y S N V G Y 163 A P G S F S Y S N V G Y 172 P G S Y F S Y S N L G Y 146 P G R V F S Y S N L G Y 162 P G T V F S Y S N I G Y 152 P G T V</td>	140 A T L R Q L L S H T A T L R Q L L S H T A T L R Q L L S H T A T L R Q L L S H T V T L R Q L L S H T V T L R Q L L S H T V T L R Q L L S H T	150 A G L P S - - D H A G L P S - - D H A G L P S - - D H A G L P S - - D H A G L P S - - D H A G L P D M P A T E H A G L P D M P A T E H A G L P D M P A T E H A G L P D S U V P E G S S G L P S D V P E G S	160 D D E R A P S L R F D D E C A P S L R F D D G D A T S L R F D D G Q G P S L R A D P S L R A D P S L R A D C P S L R A D C P S L R A D P S L R A D P S L R A	170 R W L T G F L A L P V G W L A G F L T - S G W L T G F L A T G V V A D A C V A A A C V A A C V	180 P	190 * * A P G S F S Y S N V G Y 182 T P G S F S Y S N V G Y 163 A P G S F S Y S N V G Y 163 A P G S F S Y S N V G Y 172 P G S Y F S Y S N L G Y 146 P G R V F S Y S N L G Y 162 P G T V F S Y S N I G Y 152 P G T V
200 1-UIIII 164 A V A 3-D8aJ 173 G I A 4-Lon18 145 A L A 5-PenA 147 T V A 6-CppA 163 T V A 6-CppA 163 C L L 8-MppK 153 V V V	20 C R V V E A V T G L C R V V E A T G L C R V V E A T G L C R L I E S V T G L C R L I E A V T G L G R L I E A V T G L G R L I E A V T G M G R L I E A V T G M G R L I E A V T G M	T W K A V R D F L L P W W A V R D Y L L T W W A V R D Y L L T W W A V R D Y L L P W W A M N S F L L S W W A A R S F V L S W W A A R S F V L D W W A A R S C L L S W Q E A I S A I L L	230 H P L G T A I T V A A P L G T G I G L L A P L G T G I G L L H P L G T G I G L L Q P L G V P S G F L Q P L G V P S G F L Q P L G V P S G F L E P L G T R P A F V	240 P G A P Q - D G R P L P G A P Q - D G R P L C A P G - P G P S V G A A P D A P G G L A G A A P D A P G G L A H - D P R - P G Q G G V G A P	250 T A A P G H T A H P G P P V A G H T T H P G P P V A G H T A Q H G P A P Q T A Q H G A R P Q T A Q H A A R P V A G H A T R P V A G H	- - - - - - 246 T T P G R T V V H V 228 T T P G G R V V H V 228 T V A G - - A V V 234 T V T A G - - A V V 234 A V H L T S V H V 241 A V H L T S S V H V 228 A L R G G R R H H 228 A L R G G R N H H 1 211
1-Ulm16 218 - - 2-WolJ 229 - Q S 3-DsaJ 238 - R C 4-Lon18 205 - E L 5-PenA 213 E E P 6-CppA 229 E D H 7-Sure 224 - D H 8-MppK 212 P D Q	- T D P G S L P A G T D D A G S L P A G K D A G F T P A G R V P A L P A G G L P A G G L P K A L V P A G G L P K A L V P A G G L P K A L V P A G D L P E S L A A G	280 G I A G S A D L V R G I A G S A A D L V R G I A G S A A D L V R G I A G S A A D L V R A L A G S A A D L V R A L A G S A A D L V R A L V T S A A C L R G L V T S A A C L R G L V T S A C L V R G	290 L G R L H L D E P G F A R L H L E E P G F A R L H L D D P G F A R L H T E A R G S G P H H G A D G L S G P H H G A D G A R P H L A D C K F A R L Y F A G C F	300 G D P D L A R L A D P D G D L D R S A V A D P S S D L D R G A V A D P S S D L D R G A V A D P S S D L D R D R D A V A D P S S D L D R D R D A V A L D S S D L D R D R D A V A V A D P S S D L D R D R D A V A V A D P S S P D V L E P E S P D V L E P E S T F A Q H D L V P E N E P D P Q P L D R A T A D	310 A L R E M A R P T V L R E M A R P T T L R E M A R P V T L R E M A R P V L L E E M R P V L L E E M R P V L L E E M R P A A A A M R C A A M R C S D Q L A S	320 A G A D P F G L A D W 279 T G A E P F G L A D G W 293 A G A E P F G L A D G W 293 A G A E P F G L A D G W 203 P G A P Y G L A D G W 203 T D A P L H G L A E G W 240 T D A P L H G L A G W 240 P D A E P F G L A D
1-Ulm16 280 G P G 2-WolJ 294 G L G 3-DsaJ 303 G L G 4-Lon18 269 G L G 5-PenA 275 G L G 6-CppA 291 G L G 7-Sure 289 G L G 8-MppK 278 G L G	340 L G R F G P A G N - L G H F G P A G C R - L G H F G P A G D R - W A T Y G R G D R - L A V H T D G A G R L A V H T D G A G C W A R F D D G A A -	R W L G H D G T L D G R W L G H D G T L D G R W L G H D G T L D G P W L G H D G T L D G P W L G H D G N T G G R W Y G H D G N T G G R W Y G H D G N T G G Q W Y G H D G N V G G Q V Y G H N G T G D G	340 A T C H L R I E P F S T C H L R I E P F T T C H L R I E P F T T C H L R I H P K A T C A L R F H P E A T C A L R F H P E A T C A L R F H P E T S C H L R F D P A	370 G R G T V V A L T T N S Q G T V V A L T T N S Q G T V V A L T T N S Q G T V V A L T N S Q G T V V A L T N S G G T V L L T T N S S G T A V A L T N A S G T A A L M T N A C R S A L A T A N A C R S A L A L T A N A	P T G Q A L W D A S S G L A L W D S A S G Q G L W E A T A G R C M G N Q T S G R C M G N Q T S G R C M G N Q T S G R C M G N Q T A G N L W D A N T G A Q L W D A	390 V V A L R C G L V 9 44 V V E L R C G L D 358 V V E L R S A G L D 358 V L R E L R S A G L D 367 L T G W L R A L G W L 361 L F E L A A G W L 342 L F E L A A G W L 342 L V R L R A M G L A Y L V A L R A M G L A Y 342
	400 R P A P P S V A P P S V V P P A P G E E P L A P A P A G E E P L A P A P A G E E P L A P A P A G E E P L A P A P A G E E P L A	410 420 P A A A A F A D C L A A A A F A D C S P A A A F F D C S P G S T A G F A D C G A L R A A D E V G A L R A A D E V G A L R A A D E V G S A L R A A D E V G S A L R A A D C U D C D C D D C D D C D <td>43 T G T Y R N G D L A A G T Y R N G D L A A G T Y R N G D L A A G T Y R N G D L A C G A Y S S G A E T C G A Y S S G G E T C G A Y S S G G E T E G R Y T N G D T E P G R Y T N G D T</td> <td>30 440 A V T V G I D - G P V L A V T V G I D - G P V L A V T V S L D - D Q N I A V T V S L D - D Q N I A I A V N N I A I A V T V S L D C N I I A I A V N N I A I A V N N I A A I A I A V N N I A A I A I A I A I A I A I I I I A A D I <t< td=""><td>450 V L G L P G G A R L L E L P N G A R H L E L P N G A R H L E D D T G A R V L D R P Q L P P V L D R P Q L P P V L D R R S Y S D L L S F G G A P H</td><td>H H H H T F S 401 L A Q P L A H T F F S 401 D S V A P H T G F F S 401 D S A A P H T G F F S 401 V R L D V D S U U S U U S U U S U U S U U S U</td></t<></td>	43 T G T Y R N G D L A A G T Y R N G D L A A G T Y R N G D L A A G T Y R N G D L A C G A Y S S G A E T C G A Y S S G G E T C G A Y S S G G E T E G R Y T N G D T E P G R Y T N G D T	30 440 A V T V G I D - G P V L A V T V G I D - G P V L A V T V S L D - D Q N I A V T V S L D - D Q N I A I A V N N I A I A V T V S L D C N I I A I A V N N I A I A V N N I A A I A I A V N N I A A I A I A I A I A I A I I I I A A D I <t< td=""><td>450 V L G L P G G A R L L E L P N G A R H L E L P N G A R H L E D D T G A R V L D R P Q L P P V L D R P Q L P P V L D R R S Y S D L L S F G G A P H</td><td>H H H H T F S 401 L A Q P L A H T F F S 401 D S V A P H T G F F S 401 D S A A P H T G F F S 401 V R L D V D S U U S U U S U U S U U S U U S U</td></t<>	450 V L G L P G G A R L L E L P N G A R H L E L P N G A R H L E D D T G A R V L D R P Q L P P V L D R P Q L P P V L D R R S Y S D L L S F G G A P H	H H H H T F S 401 L A Q P L A H T F F S 401 D S V A P H T G F F S 401 D S A A P H T G F F S 401 V R L D V D S U U S U U S U U S U U S U U S U
1-UIm16 405 S R G 2-WolJ 419 G R P 3-DsaJ 428 S R P 4-Lon18 396 A H R 5-PenA 407 L R T 6-CppA 423 L R T 7-Sure 415 A R S 8-MppK 404 M R E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	480 R	490 F V T D A R S D A V F V K D V A T G E I F L K D A T I G N G F V R D S R T G R V F V R D S R T G R V F V R D S R T G R V F V R D S R A G R I F V R D S R T G R V	500 V H A L Q Y S G R T L L R A L Q Y S G R T L L V R V L Q Y S G R T L L V G G M Y L S G R V L R V G G M Y L S G G R L Q V G G M Y L S G G R A M V A L L Q Y G G R A A V A L Q Y G G R A A V A A L Q Y G G R A A V A A L Q Y G G R A A V A A L Q Y G G R A A V A A L Q Y G G R A A V A A A A A A A A A A A A A A A A A A A	510 R E A G E S R R A R E A L T A R N A R E A L T A R N A R E A G T G R L G V R E G T G R L G V R E G T G R L G R R	R S H 446 - - 459 Q P H 469 - - 434 - - 460 - - 461 - - 476 - - 476 - - 439

Supplementary Fig. 1: Multiple sequence alignment of predicted and validated PBP-TEs. Residues in the conserved catalytic tetrad are highlighted with a red star. The loop regions that were identified in the alpha fold structure are also highlighted in the multiple sequence alignment, with red being the loop region, which is truncated in Ulm16, yellow being the lipocalin domain loop, and orange being the insertion in Ulm16. Note: the numbering of the amino acids is off compared to the numbering in the paper due to the alignment. The orange loop is residues 113-128.

Supplementary Fig. 2 Phylogenetic tree of PBP-TEs. The top 500 hits to Ulm16 from NCBI along with the known PBP-TEs are shown. PBP-TEs belonging to known biosynthetic gene clusters are labeled in the figure. Including the outlier AmpC, which is a beta-lactamase from *E. coli*.

Supplementary Fig. 3: Zoom in of Phylogenetic tree the PBP-TEs most similar to Ulm16. Homologs to Ulm16 that lack the loop region are indicated. Numbers at nodes represent bootstrap values.

Supplementary Fig. 4: Cyclic peptides identified by MS/MS analysis. For cyclic peptides belonging to the UIm16 alanine scan (Cyc 5-10) residues which differ from the original structure (Cyc1) are colored in red. For all peptides point of cyclization is colored in maroon. Actual MS/MS data can be found on pages S76-S104.

Supplementary Fig. 5: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with UIm-SMMP (2). The enzyme and substrate concentrations are indicated in Supplementary Table 1 and above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). The UPLC trace is representative of three individual replicates, while the TTN, product to hydrolysis/starting material ratios are averages of three replicates. UPLC was taken on a 0 to 70% gradient (See methods section for more details).

Supplementary Fig. 6: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with UIm-SMMP where L-Orn replaced by L-Gln (6). The enzyme and substrate concentrations are indicated in Supplementary Table 1 and above the trace. The substrates are labeled with their corresponding numbers from S45

the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). The UPLC trace is representative of three individual replicates, while the TTN, product to hydrolysis/starting material ratios are averages of three replicates. UPLC was taken on a 0 to 70% gradient (See methods section for more details).

Supplementary Fig. 7: In vitro reaction of UIm16 with UIm-SBMP (3). Enzyme and substrate concentrations are indicated above each reaction in the figure. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). All UPLC UV traces (214 nm) are representative of three individual replicates.

Supplementary Fig. 8: In vitro reaction of UIm16 with UIm-SBMP where D-GIn was replaced by L-GIn (4). Enzyme and substrate concentrations are indicated above each reaction in the figure. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to

extended incubation periods in the absence of enzyme (-UIm16). All UPLC UV traces (214 nm) are representative of three individual replicates.

Supplementary Fig. 9: *In vitro* reaction of UIm16 with UIm-SBMP where D-GIn was replaced by D-Ala (5). Enzyme and substrate concentrations are indicated above each reaction in the figure. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). All UPLC UV traces (214 nm) are representative of three individual replicates.

Supplementary Fig. 10: *In vitro* reaction of UIm16 with UIm-SBMP where L-IIe was replaced by L-Ala (7). Enzyme and substrate concentrations are indicated above each reaction in the figure. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). All UPLC UV traces (214 nm) are representative of three individual replicates.

Supplementary Fig. 11: *In vitro* reaction of UIm16 with UIm-SBMP where D-Leu was replaced by D-Ala (8). Enzyme and substrate concentrations are indicated above each reaction in the figure. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). All UPLC UV traces (214 nm) are representative of three individual replicates.

Supplementary Fig. 12: In vitro reaction of UIm16 with UIm-SBMP where D-Val was replaced by D-Ala (9).

Enzyme and substrate concentrations are indicated above each reaction in the figure. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). All UPLC UV traces (214 nm) are representative

Supplementary Fig. 13: *In vitro* reaction of UIm16 with UIm-SBMP where L-Trp was replaced by L-Ala (10). Enzyme and substrate concentrations are indicated above each reaction in the figure. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'G' represents non-enzymatic glutaramide formation, which can occur due to extended incubation periods in the absence of enzyme (-UIm16). All UPLC UV traces (214 nm) are representative

Supplementary Fig. 14: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of UIm16 with substrate 11. The enzyme and substrate concentrations are noted in Supplementary Table 1 and above the trace, and the substrates are labeled with their corresponding numbers from the paper. The nomenclatures 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace represents three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates. It is important to note that in the case of these specific substrates, the no enzyme control (-UIm16) showed more hydrolysis, and thus it was not possible to determine an exact product/hydrolysis ratio.

Supplementary Fig. 15: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of Ulm16 with substrate 12-SNAC. The enzyme and substrate concentrations are noted in Supplementary Table 1 and above the trace, and the substrates are labeled with their corresponding numbers from the paper. The nomenclatures 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace represents three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates. It is important to note that in the case of these specific substrates, the no enzyme control (-UIm16) showed more hydrolysis, and thus it was not possible to determine an exact product/hydrolysis ratio.

Supplementary Fig. 16: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of UIm16 with substrate 12-SMMP. The enzyme and substrate concentrations are noted in Supplementary Table 1 and above the trace, and the substrates are labeled with their corresponding numbers from the paper. The nomenclatures 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds,

respectively. The UPLC trace represents three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates. It is important to note that in the case of these specific substrates, the no enzyme control (-UIm16) showed more hydrolysis, and thus it was not possible to determine an exact product/hydrolysis ratio. The reaction was analyzed with a 0 to 70% (Acetontirile 0.1% Formic acid) gradient instead of the typical 0 to 40%

Supplementary Fig. 17: The UPLC UV trace (214 nm) displays the total turnover number (TTN) assay results of SurE with substrate 12-SNAC. The enzyme and substrate concentrations are noted in Supplementary Table 1 and above the trace, and the substrates are labeled with their corresponding numbers from the paper. The nomenclatures 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace represents three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates. It is important to note that in the case of these specific substrates, the no enzyme control (-UIm16) showed more hydrolysis, and thus it was not possible to determine an exact product/hydrolysis ratio. No significant difference was observed between the +/- SurE Samples. The reaction was analyzed with a 0 to 70% (Acetontirile 0.1% Formic acid) gradient instead of the typical 0 to 40%

Supplementary Fig. 18: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with a substrate of a known PBP-TE PenA (13). The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 19: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of SurE with a substrate of a known PBP-TE PenA (13). The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 20: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrate 14. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'HD' and 'CD' represent hydrolyzed dimer and cyclic dimer, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 21: Spiking with synthetic standard to confirm cyclic tetrapeptide. UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with substrate 14, which was previously seen in Supplementary Fig. 26. To confirm the identity of the cyclic product, a purified cyclic standard from a previous publication² was used.

Supplementary Fig. 22: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrate 15. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'HD' and 'CD' represent hydrolyzed dimer and cyclic dimer, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 23: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrate 16. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. 'HD' and 'CD' represent hydrolyzed dimer and cyclic dimer, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 24: Spiking with synthetic standard to confirm cyclic tetrapeptide. UPLC UV trace (214 nm) for the total turnover number (TTN) assay of Ulm16 with substrates 16, which was previously seen in Supplementary Fig. 27. To confirm the identity of the cyclic product, cyclic tetrapeptide standards and a cyclic octapeptide standard, which would be the head-to-tail cyclic dimerized product of substrate 16, were used. The cyclic tetrapeptide of substrate 16 matched in retention time but could not be isolated during purification (top panel). The cyclic octapeptide (CD) matched in retention time with a peak observed at ~9 minutes in the enzyme reaction, but not enough was produced to accurately determine a ratio.

Supplementary Fig. 25: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrate 17. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 26: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrate 18. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 27: UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 19. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 28: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 20. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively.

Supplementary Fig. 29: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 21. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively.

Supplementary Fig. 30: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 22. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. Rapid asparamide formation at the C-terminus resulted in both epimerization and deprotection of the N-Terminal aspartate. This phenomenon was also observed in an

allyl glycine-protected variant (data not shown), but no cyclic product corresponding to the deprotected peptide with an N-Terminal aspartate was observed. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 31: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 23. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 32: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 24. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Sup Supplementary Fig. 33: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 25. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 34: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 26. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 35: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 27. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 36: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 28. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 37: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 29. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. While CD and HD represent head-to-tail cyclized dimerized product and hydrolyzed dimerized product, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 38: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 30. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. While CD and HD represent head-to-tail cyclized dimerized product and hydrolyzed dimerized product, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 39: UPLC UV trace (214 nm) for the total turnover number (TTN) assay of UIm16 with tetrapeptide substrates 31. The enzyme and substrate concentrations are indicated above the trace. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. While CD and HD represent head-to-tail cyclized dimerized product and hydrolyzed dimerized product, respectively. The UPLC trace is representative of three individual replicates, while the TTN and product to hydrolysis/starting material ratios are averages of three replicates.

Supplementary Fig. 40: Expression of Ulm16 and SurE. A) Heterologous expression of Ulm16 and B) SurE. 1/10 indicates a 1/10 dilution of the initial protein stock used in the Ulm16 or SurE lane.

Supplementary Fig. 41: Covalent docking of tetrapeptides to the Ulm16 crystal structure. (A-D) Representative poses of peptide **29** (pink, A), peptide **16** (dark green, B), and peptide **30** (dark green or yellow, C-D) docked to Ulm16. Hydrogen bonding residues are labeled and shown in stick representation, while lipocalin domain residues involved in possible hydrophobic interactions are also displayed as sticks. Panels (A) and (B) show the lowest MMGBSA and dock score poses for peptides **29** and **16**, respectively. Panels (C) and (D) show the lowest dock score and MMGBSA score poses for peptide **30**, respectively. (E) Overlay of the lowest MMGBSA scoring poses for peptides **16**, **29**, and **30** in the Ulm16 active site, highlighting the different initial orientation of peptide **30**.

Supplementary Fig. 42: Covalent docking of hexapeptides to the UIm16 crystal structure. (A-C) Representative poses of peptide 1 (light blue) and peptide 11 (tan) covalently docked to UIm16. Hydrogen bonding residues are labeled and shown in stick representation, while lipocalin domain residues involved in possible hydrophobic interactions are also displayed as sticks. Panels (A) and (C) show the lowest MMGBSA and dock score poses for Peptides 1 and 2, respectively. Panel (B) shows the C-terminal D-Gln of the UIm16 peptide overlayed with the C-terminal D-Tyrosine of peptide 16.

Supplementary Fig. 43: Residues mutated in SDM studies A) Close-up of mutated residues (L300 and D297) within Domain 1, highlighting their proximity and interactions with the covalently docked peptide 29. **B)** Close-up of mutated residues (Y428, S429, and R431) located in Domain 2, highlighting their proximity and interactions with the covalently docked peptide 29

Supplementary Fig. 44. Purification gels for GST tagged Ulm16 FL, Ulm16 FL mutants, and Ulm16 12-440. Purification gels as described in the following: HRV3C protease used to cleave GST-Ulm16 WT to GST and Ulm16 WT individually along with the purification of Ulm16 12-440 and FL constructs (topUlm16 FL mutants Y428A, 1-344, S429, R431A (middle); and Ulm16 D297N, L300G (bottom) . The fusion protein appears in the lysate elution at ~70 kDa and is cleaved by the HRV3C protease into fragments of Ulm16 (~45 kDa) and GST (two bands that appear near the 25 kDa marker). Tag subtraction and concentration lead to highly pure samples that are then used for assays.

Supplementary Fig. 45. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 12-MMP. The enzyme and substrate concentrations can be found in Supplementary Table 2. Each UPLC trace is labeled with the UIm16 Mutant tested. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. Other side reactions included dimerization followed by hydrolysis (HD) and addition of Tris to the C-terminus of the peptide (+Tris) The UPLC trace is representative of three individual replicates.

Supplementary Fig. 46. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 14. The enzyme and substrate concentrations can be found in

Supplementary Table 2. Each UPLC trace is labeled with the UIm16 Mutant tested. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively.

Supplementary Fig. 47. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 16. The enzyme and substrate concentrations can be found in Supplementary Table 2. Each UPLC trace is labeled with the UIm16 Mutant tested. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. Other side reactions included dimerization followed by hydrolysis (HD). The UPLC trace is representative of three individual replicates.

Supplementary Fig. 48. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 29. The enzyme and substrate concentrations can be found in Supplementary Table 2. Each UPLC trace is labeled with the UIm16 Mutant tested. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. Other side reactions included dimerization followed by hydrolysis (HD) and addition of Tris to the C-terminus of the peptide (+Tris). The UPLC trace is representative of three individual replicates.

Supplementary Fig. 49. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16 mutant reactions with peptide 30. The enzyme and substrate concentrations can be found in

Supplementary Table 2. Each UPLC trace is labeled with the UIm16 Mutant tested. The substrates are labeled with their corresponding numbers from the paper, while 'Cyc' and 'H' represent head-to-tail cyclic and hydrolyzed linear compounds, respectively. Other side reactions included dimerization followed by hydrolysis (HD) and addition of Tris to the C-terminus of the peptide (+Tris) The UPLC trace is representative of three individual replicates.

Supplementary Fig. 50. UPLC UV trace (214 nm) is shown for the total turnover number (TTN) assay of UIm16^{D297N} mutant reaction with peptide 19. A concentration of 70 nM UIm16 and 280 µM of substrate was used however like with the wild type reaction no cyclic peptide or hydrolyzed peptide was observed. The UPLC trace is representative of three individual replicates.

Supplementary note 1: Gene sequence for Ulm16

ATGCACGGGGACTATGCGGATCCAGCGGATTGCGGCGCCGGTGACGGCGCCCCGTCGGCCTCGACCT GGACCGCCTCGCCCGTGACTGCGACGTCGTCGGCGGGCAGCTGGCCCTCCATCACCAAGGCACCCTGA CCACCTGGGAGTTCGGCACCGAGGAGCACGCCGGCGGCGTCCGGTACACGTCGGGTCGGCGTTCCC GTACGGGTCGGTGACCAAGGCGTTCACCGCCACCGCCGTTCTGCAACTGGCCGGTGACGGGGGACCTGG ACCTCGACCGACCGGTACGGGAACTGCTCCCCGAGGCCGAGGCCGAGGCCGAGATCGAGGTCGAGGCA GGGTCCGGGACCGGTGCGCGCGCGGCGGCGGCCACCCGGCCCTCGCCGCCACCCCCGCCAACTCC TCAGCCACACCGCCGGACTCCCGTCCGACCACGACGACGAGCGCGCCCCCTCGCTGCGCCGCTGGCTC ACCGGCTTCCTGGCACTGCCGGTCGGCCCCTGGCCCGCACCCGGCTCCTTCTCCTACTCCAACGTCGGC TACGGCATCGCGGGCCGCGTCGTGGAGGCCGTCACCGGACTGACCTGGTCCGAGGCGGTACGGGACTT CCTGCTGCACCCGCTGGGCACCGCCATCACCGTGCTGCCCACCGACCCCGGCTCGCTGCCCGCGGGCG GTCTCGCGGGCAGCGCCGACCTGGTACGGCTGGGCCGGCTGCATCTGGACGAGCCCGGTGACCC GGACCTGGCCCGCCTCGCCGACCCCGGACGCCCTGCGGGAGATGGCCCGGCCCACCGCCGGCCCGAC CCCTTCGGGCTGGCGGACGGCTGGGGACCGGGCCTGGGCCGGTTCGGCCCCGCCGGCAACCGCTGGC GTCGCGCTGACCACCAACTCCCCGACCGGGCAGGCCCTGTGGGACGCCGTGGTCGACGCACTGCGGGA CGCGGACATCGACGTCGGCGTCCACCGCCCCGCGCCCCCGCCTGCCATCGCCGCGGCGGCCTTCGCG GACTGTACGGGTACCTACCGCAACGGCGACCTGGCGGTGACGGTCGGCATCGACGGCCCGTACCTCGT ACTTGAACTCCCCGGCGCGCACGGGAGTTGGCGCAGCCACTGGCTCACCGGACGTTCTCCTCGCGGG GGGCCGGCTTCCTCGGGCGCTTTGTCACCGACGCGCGCTCCGACGCCGTCCACGCCCTCCAGTACAGC GGACGCACCCTCCTGCGGGAAGCGGGAGAGTCCCGCCGCGCACGGTCGCACTGA

Supplementary note 2: Gene sequence for SurE

GGGTCACCGGGGCGCAGCTGGCCGTCTACCGCGACGGCGCCCTCAGCGAGTACGCCACCGGCCTCGC CTCGGTCCGCACCGGTGAACCGGTCACCCCCGGACGGGTTTCCCCTTCGGCTCGGTGACCAAGTTCCT CACCGCCGAGCTGGTCATGCAGTTCGTCTGCGACGGCGACCTGGACCTCGACGACCCCCTCGCCGGGC TCCTCCCCGACCTGGGGCGCGCCGGCCCGGCCCTCGGCACCGCCACCGTCCGCCAGCTCCTCAG CCACACCGCCGGCGTGGTGGACAGCATCGAGTACGACGAGATGCGCGGTCCCTCCTACCGGCGGTTCG CCGCGACGTGCGCCCGGCAGCCCGCGCTCTTCCCGCCGGGCCTCGCCTTCTCCTACTCCAACACCGGC TACTGCCTGCTGGGCGCGGTGATCGAGGCGGCGTCGGGGGATGGACTGGTGGACGGCGATGGACAGTTG CCTGCTGCGTCCGCTCGGCATCGAGCCGGCCTTCCTGCACGACCCGCGCCCCGGCCAGGGCGGCGCCC GCCCGGCCGGTGGCCGAAGGCCACGCGCGCGCGCGGCGAGCGGGCCGAGCGCGTCGACCAC ATGGCCTCGCTCGCCGCCGCCGGCGGGCTGGTCGGCAGCGCCACCGACCTGGTCACCGCGG CCCGCCCGCACCTGGCCGACCGGAAGACCTTCGCCCAGCACCGACCTGCTCCCCGAGGACGCCGTCCTC GCCATGCGCACCTGCGTGCCGGACGCCGAGCCGTTCGGCCTGGCCGACGGCTGGGGGCTGGGCCTGA CCTCCGTATCCACCCGGACCGTTCGCTGGCGCTGGCGCTGACCGCCAACTCCACCGCCGGGCCGAAGC TGTGGGAGGCGCTGGTCGCGGCGGCTGCCGGAGGCCGGGCTCGACGTGGGCCACTACGCGCTGCCCGT CCCCGACTCCGCGCCGCTGGCCCCGGACGTCGGCCACCTCGGCACCTACGCCAACGGCGACCTGGAGC TGATGGTGACCCACGATGCCGCCGGCGACCTCTTCCTGACCCGCGAGAGCTACTCCGACTACCGCCTCT CCCTGCACGAGGACGACCTCTTCGTGGCCCGGAGCGGCGAGCCCGGCGCGCCCCGATCACCGGCCG CTTCGTCCGGGAGCACCCGGCCGGGCCGGTCGCCCTGCTCCAGTACGGCGGCCGGGCCATGCACCGG **CTCTGA**

Supplementary Fig. 51: MS2 spectrum for Cyclic peptide 1 (Cyc1)

Supplementary Fig. 53: MS2 spectrum for Cyclic Peptide 6 (Cyc 6)

Supplementary Fig. 54: MS2 spectrum for Cyclic Peptide 7 (Cyc 7)

Supplementary Fig. 55: MS2 spectrum for Cyclic Peptide 8 (Cyc 8)

Supplementary Fig. 57: MS2 spectrum for Cyclic Peptide 10 (Cyc 10)

Supplementary Fig. 58: MS2 spectrum for Cyclic Peptide 11 (Cyc11)

Supplementary Fig. 59: MS2 spectrum for Cyclic Peptide 12 (Cyc12)

Chemical Formula: C₃₇H₅₁N₉O₆ Expected Neutral Mass: 717.3962 Observed Neutral Mass: 717.3969 Mass Error (ppm): 1.0

Chemical Formula: $C_{36}H_{52}N_9{O_5}^+$ Expected m/z: 690.409 Observed m/z: 690.409 Mass Error (mDa): < 1.0

Chemical Formula: $C_{32}H_{40}N_7{O_5}^+$ Expected m/z: 602.309 Observed m/z: 602.309 Mass Error (mDa): 1.0

 $\begin{array}{l} \mbox{Chemical Formula: $C_{31}H_{40}N_5O_5^+$} \\ \mbox{Expected } m/z: 562.302 \\ \mbox{Observed } m/z: 562.304 \\ \mbox{Mass Error (mDa): 2.0} \end{array}$

Chemical Formula: $C_{21}H_{30}N_5O_4^+$ Expected m/z: 416.229 Observed m/z: 416.230 Mass Error (mDa): 1.0

 $\begin{array}{c} {\rm 5} \\ {\rm Chemical \ Formula: \ C_{20}H_{30}N_5O_3}^+ \\ {\rm Expected \ m/z: \ 388.234} \\ {\rm Observed \ m/z: \ 388.234} \\ {\rm Mass \ Error \ (mDa): < 1.0} \end{array}$

 $\begin{array}{c} \textbf{6} \\ \text{Chemical Formula: } C_{20}H_{30}N_{3}O_{4}^{+} \\ \text{Expected m/z: } 376.223 \\ \text{Observed m/z: } 376.223 \\ \text{Mass Error (mDa): } < 1.0 \end{array}$

Supplementary Fig. 61: MS2 spectrum for Cyclic Peptide 14 (Cyc14)

Supplementary Fig. 62: MS2 spectrum for Cyclic Peptide 15 (Cyc15)

Supplementary Fig. 65: MS2 spectrum for Cyclic Peptide 18 (Cyc18)

S87

Supplementary Fig. 66: MS2 spectrum for Cyclic Peptide 20 (Cyc20)

Supplementary Fig. 71: MS2 spectrum for Cyclic Peptide 25 (Cyc25)

Supplementary Fig. 72: MS2 spectrum for Cyclic Peptide 26 (Cyc26))

 $\begin{array}{l} \mbox{Chemical Formula:} C_{22} H_{32} N_6 O_5 \\ \mbox{Expected Neutral Mass: } 460.2434 \\ \mbox{Observed Neutral Mass: } 460.2423 \\ \mbox{Mass Error (ppm): } 2.3 \end{array}$

 $\label{eq:characteristic} \begin{array}{c} \mbox{4} \\ \mbox{Chemical Formula: } C_{14}H_{19}N_2O_2^+ \\ \mbox{Expected m/z: } 247.144 \\ \mbox{Observed m/z: } 247.144 \\ \mbox{Mass Error (mDa): } > 1.0 \\ \end{array}$

Chemical Formula: $C_{21}H_{33}N_6O_4^+$ Expected m/z: 433.256 Observed m/z: 433.255 Mass Error (mDa): 1.0

Chemical Formula: $C_{19}H_{27}N_4O_4^+$ Expected m/z: 375.203 Observed m/z: 375.202 Mass Error (mDa): 1.0

Chemical Formula: $C_{10}H_{18}N_3O_3^+$ Expected m/z: 228.134 Observed m/z: 228.134 Mass Error (mDa): > 1.0

6

Chemical Formula: $C_{13}H_{24}N_5O_4^+$ Expected m/z: 314.182 Observed m/z: 314.183 Mass Error (mDa): 1.0

7 Chemical Formula: $C_8H_{15}N_4O_3^+$ Expected m/z: 215.114 Observed m/z: 215.114 Mass Error (mDa): < 1.0

Chemical Formula: C₂₅H₃₃N₇O₅ Expected Neutral Mass: 511.2543 Observed Neutral Mass: 511.2544 Mass Error (ppm): 0.2

4

Expected m/z : 285.135

. Observed m/z: 285.133

Mass Error (mDa): 2.0

Chemical Formula: C₁₅H₁₇N₄O₂⁺

ŃН нΝ H_2N NH₂

1 Chemical Formula: C₂₄H₃₄N₇O₄⁺ Expected m/z: 484.267 Observed m/z: 484.266 Mass Error (mDa): 1.0

5

Expected m/z: 266.125

Observed m/z: 266.123

Mass Error (mDa): 1.0

Chemical Formula: C₁₁H₁₆N₅O₃⁺

Chemical Formula: C₁₉H₂₇N₄O₄⁺ Expected m/z: 375.203 Observed m/z: 375.202 Mass Error (mDa): 1.0

ō#

 H_2

2

o

NH₂

6

Expected m/z: 247.144

Observed m/z: 247.144

Mass Error (mDa): < 1.0

Chemical Formula: C14H19N2O2+

o[:] 3 Chemical Formula: C₁₆H₂₅N₆O₄⁺ Expected m/z: 365.193

NH.

Observed m/z: 365.192 Mass Error (mDa): 1.0

NH₂

7 Chemical Formula: C₁₀H₁₈N₃O₃⁺ Expected m/z: 228.134 Observed m/z: 228.135 Mass Error (mDa): 1.0

 $\begin{array}{l} Chemical \ Formula: \ C_{29}H_{39}N_7O_5\\ Expected \ Neutral \ Mass: \ 565.3012\\ Observed \ Neutral \ Mass: \ 565.3016\\ Mass \ Error \ (ppm): \ 0.5 \end{array}$

4

Expected m/z: 320.172

Observed m/z: 320.170

Mass Error (mDa): 2.0

Chemical Formula: C₁₅H₂₂N₅O₃⁺

ΗN

H₂N

0

III-

Chemical Formula: C₁₅H₁₉N₄O₂⁺

5

Expected m/z: 287.150

Observed m/z: 287.149

Mass Error (mDa): 1.0

ŃН

NH₂

^{hn}≈_{C≈Ņ}

Chemical Formula: $C_{23}H_{28}N_3O_4^+$ Expected m/z: 410.207 Observed m/z: 410.205 Mass Error (mDa): 2.0

 $\label{eq:constraint} \begin{array}{l} \textbf{6} \\ \text{Chemical Formula: } {C_{14}}{H_{19}}{N_2}{O_3}^{*} \\ \text{Expected } m/z: 263.139 \\ \text{Observed } m/z: 263.138 \\ \text{Mass Error (mDa): } 1.0 \end{array}$

Chemical Formula: $C_{20}H_{28}N_5O_4^*$ Expected m/z: 402.214 Observed m/z: 402.214 Mass Error (mDa): < 1.0

7 Chemical Formula : $C_{14}H_{19}N_2O_2^+$ Expected m/z: 247.144 Observed m/z: 247.142 Mass Error (mDa): 2.0

Supplementary Fig. 78: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of UIm-SMMP (2) in DMSO-d6

Supplementary Fig. 79: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of UIm-SBMP (3) in DMSO-d6

Supplementary Fig. 80: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 4 in DMSO-d6

Supplementary Fig. 81:13C (201 MHz) and 1H (800 MHz) NMR spectrum of 5 in DMSO-d6

Supplementary Fig. 82:13C (201 MHz) and 1H (800 MHz) NMR spectrum of 6 in DMSO-d6

Supplementary Fig. 83: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 7 in DMSO-d6

Supplementary Fig. 84: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 8 in DMSO-d6

Supplementary Fig. 87: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 12-SMMP in DMSO-d6

Supplementary Fig. 88: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 13 in DMSO-d6

Supplementary Fig. 89: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 14 in DMSO-d6

Supplementary Fig. 90: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 15 in DMSO-d6

Supplementary Fig. 91: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 16 in DMSO-d6

Supplementary Fig. 92: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 17 in DMSO-d6

Supplementary Fig. 93: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 18 in DMSO-d6

Supplementary Fig. 94: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 19 in DMSO-d6

Supplementary Fig. 95: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 20 in DMSO-d6

Supplementary Fig. 97: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 22 in DMSO-d6

Supplementary Fig. 98: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 23 in DMSO-d6

Supplementary Fig. 99: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 24 in DMSO-d6

Supplementary Fig. 100: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 25 in DMSO-d6

Supplementary Fig. 101: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 26 in DMSO-d6

Supplementary Fig. 102: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 27 in DMSO-d6

f1 (ppm)

Supplementary Fig. 103: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 28 in DMSO-d6

Supplementary Fig. 104: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 29 in DMSO-d6

Supplementary Fig. 106: 13C (201 MHz) and 1H (800 MHz) NMR spectrum of 31 in DMSO-d6

References

1. Matsuda, K. *et al.* Heterochiral coupling in non-ribosomal peptide macrolactamization. *Nat. Catal.* **3**, 507–515 (2020).

2. Hostetler, M. A. *et al.* Synthetic Natural Product Inspired Cyclic Peptides. *ACS Chem. Biol.* **16**, 2604–2611 (2021).