iScience, Volume 27

Supplemental information

Anoxia-induced hippocampal LTP is regeneratively

produced by glutamate and nitric oxide

from the neuro-glial-endothelial axis

Han-Ying Wang, Hiroshi Takagi, Patrick N. Stoney, Anai Echeverria, Bernd Kuhn, Kuei-Sen Hsu, and Tomoyuki Takahashi

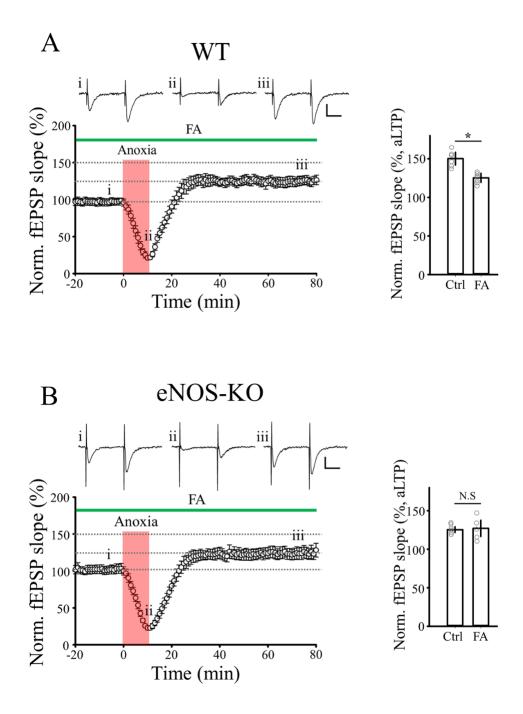
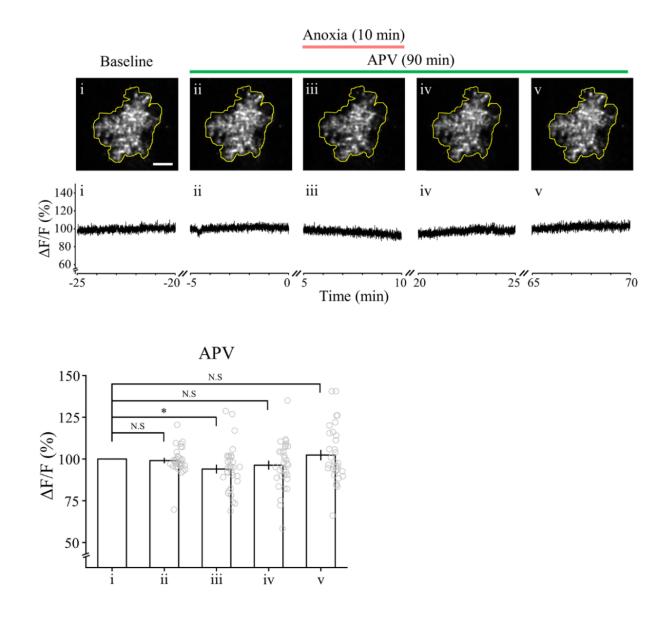



Fig S1. FA selectively blocks eNOS-dependent LTP. Related to Figure 5.

(A) In slices from WT mice, FA (10 mM) reduced aLTP of fEPSPs to $125.3 \pm 6\%$ (n = 7) in comparison to controls ($150 \pm 8\%$, n = 7, p < 0.05, Student's *t*-test). (B) FA had no effect on aLTP in slices from eNOS-KO mice (Ctrl $125 \pm 4\%$, n = 6, FA $127 \pm 10\%$, n = 5, Student's *t*-test). *p < 0.05, N.S, no significance. Bar graphs (A, B) indicate aLTP magnitude in the presence of FA and control (contr) in the absence of FA. Scale bars: 0.2 mV, 20 ms.

Fig S2. APV blocks anoxia-induced Ca²⁺ elevation in astrocytes. Related to Figure 6.

Two-photon Ca²⁺ imaging of GCaMP6f-expressing astrocytes. Bath-application of APV alone (100 μ M for 90 min from 20 min before anoxia) had no effect on the astrocytic Ca²⁺ signal (ii). Anoxic insult (10 min from time 0) caused a transient reduction of Ca²⁺ signal (iii), but it recovered to the baseline within 10 min (iv) without showing Ca²⁺ signal potentiation (v) in the presence of APV. Bar graphs for astrocytic Ca²⁺ signal quantification in APV application experiments. APV significantly reduced astrocytic Ca²⁺ signal after anoxia (iii, 91.41 ± 2.2%, 11 slices, n = 33, one-way repeated-measures ANOVA: *F*_(4, 160) = 9.95) with no potentiation thereafter (iv, see below). **p* < 0.05, N.S, not significance. Ca²⁺ signals from 1-3 astrocytes are simultaneously monitored and quantified.