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Supplementary Information        
 
The hybrid discrete-continuum mathematical model 
Based on the work of Anderson et al. (2005; 2006) and our previous prostate focused paper 
(Basanta et al., 2009), we developed a hybrid mathematical model of prostate tumor-stromal 
interplay to study how growth, evolution and heterogeneity change both spatially and temporally. 
We consider 6 mathematically abstracted cell types: normal basal (B) and luminal (L) epithelial 
cells; tumor epithelium (C); native stroma (S); reactive stroma (RS); and motile stroma (I) 
representing a generic cell with inflammatory properties.  The physical microenvironment includes 
growth factors (G), basement membrane/extracellular matrix (M) and matrix metalloproteinases 
(E). We use a set of discrete partial differential equations to define migration probabilities for 
tumor and inflammatory cell types that essentially define a biased-random walk. We then use a set 
of life-cycle flowcharts to define cellular interactions and properties (Figure 1C). Combined with 
a system of coupled non-linear partial differential equations that define the microenvironmental 
variables as chemical densities or concentrations (i.e. for Growth Factor [GF], Matrix 
Mettaloproteases [MMP] and Extra-Cellular Matrix/Basement Membrane [ECM/BM]) we have 
the complete hybrid model. To initialize the system we used the normal tissue domain of the 
peripheral zone and anatomically reconstruct a two-dimensional slice on the lattice. 
 
We generate the probabilities of movement for each cell using the five-point finite-difference 
approximation of the tumor and inflammatory equations in response to the concentration of local 
microenvironmental factors. The two dimensional grid coordinates (i,j) are used to define cell 
locations at points on the grid (mesh size h), at discrete time intervals k (with x = ih, y = jh and t 
= qk). The partial differential equation governing tumor migration (in the absence of cell 
proliferation) is: 

𝜕𝐶
𝜕𝑡 = 𝐷&∇( − 𝜌∇. (C∇M) 

 
After discretization (using central finite difference approximation): 

 
 

PMC0 represents the probability of a tumor cell (C) remaining stationary: 
 
 
 
The four equations PMC1-4 represent the probability of a single tumor cell located at the lattice 
coordinates (i,j) migrating to one it four orthogonal neighbors: 
    
 
 
 
 
 
 
where b represents the unbiased migration coefficient (b = kDC/h2, where DC is the random motility 
coefficient) and y  represents the biased migration coefficient (y=rk/4h2) up gradients of 
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ECM/BM (M). These movement probabilities are then scaled to such that they sum to 1 and now 
define the probability of movement to each of a cells orthogonal neighbors or remaining stationary 
(PM0-4, Figure S1) each time step (k).  
 
The partial differential equation governing inflammatory cell motion (in the absence of cell 
proliferation) is: 

𝜕𝐼
𝜕𝑡 = 𝐷1∇(𝐼 − 𝜉∇. (I∇G) 

 
After discretization (using central finite difference approximation): 
 
 
 
This Inflammatory cell (I) equation allows us to define the movement probabilities that consider 
both unbiased migration (of rate w=kDI/h2, where DI is the I random motility coefficient) and 
biased migration (driven by chemotaxis, at a rate of o=xk/4h2) towards higher GF concentrations 
(G). The equation PMI0 represents the probability of no movement: 
 
 
 
The four equations PMI1-4 represent the probability of a single inflammatory cell located at the 
lattice coordinate (i,j) moving to one it four orthogonal neighbors: 
 
 
 
 
 
 
 
 
 
 
These probabilities enable us to describe individual cell movements, but cells also interact and 
have other phenotypic behaviors such as mitosis, apoptosis, production and consumption of 
environmental factors, which define the cells life cycle (Figure 1C).  
 
Discretization of the continuous microenvironmental variables: 
See Experimental Procedures for description of the partial differential equations for the continuous 
variables: GF, MMP and ECM/BM. The discretized form of the GF equation is defined as: 
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Where the subscripts indicate the concentration at the specified lattice coordinate. dG=kDG/h2 is 
the GF diffusion coefficient modulated by the ECM/BM concentration i.e. no diffusion occurs 
when M=m0, where m0 is the highest concentration of M. Also, αB, γ, cRS, rRS, bS , µE, hL, and j 
are positive constants. cRS is the reactive stroma growth factor production rate and is different in 
low and high reactive stroma (see below). 
 
The discretized form of the MMP equation is defined as: 
 

𝐸;,?
@<= = 𝐸;,?

@ + 𝛿R9𝐸;<=,?
@ + 𝐸;A=,?

@ − 4𝐸;,?
@ + 𝐸;,?<=

@ + 𝐸;,?A=
@ B + 𝑘𝜉𝐶;,?

@ − 𝑘𝜅𝐸;,?
@  

 

where dE=kDE/h2 is the GF diffusion coefficient and z, k are positive constants.  
 
The discretized form of the ECM/BM equation is defined as: 
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where nB , tI and s are positive constants. See Basanta et al. (2009) for more details regarding 
these equations and their parameterization. 
 
Cell death probabilities: 
Tumor cell death is modeled as a simple switch dependent on the level of GF (𝐺;,?

@ ) that the current 
cell (𝐶;,?

@ ) under consideration perceives, so the probability of apoptosis is: 
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Where GA is the critical level of GF at which death occurs. Whereas for basal cells, we assume 
that the concentration of MMP (E) enzymatic activity is directly proportional to cell death (scaled 
by y), 
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Finally, for the luminal cells apoptosis is driven more by stress from neighboring tumor cells 
(scaled by u), so for a luminal cell 𝐿;,?

@  at location (i,j) then, 
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Proliferation probabilities: 
Proliferation of tumor cells is dependent on their age (T), the level of GF (G) they perceive and 
the amount of ECM/BM (M) they experience, scaled with the positive constant (ς). For simplicity 
we assume this probability increases with T and G but decreases with M, the reasoning being that 
GF are known to stimulate proliferation and high ECM/BM densities can be inhibitive. So the 
probability of tumor cell 𝐶;,?

@ 	at location (i,j) dividing is given by, 
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The tumor cell proliferation probability is set to 0, when no empty orthogonal grid spaces are 
available for a daughter cell to divide into.  
 
For simplicity we assume that proliferation of basal and luminal cells is space and phenotype 
dependent. Specifically, proliferation only occurs if an empty orthogonal position appears (e.g. 
due to cell death). If that position was previously occupied by a basal (B) or luminal (L) cell, then 
it will be replaced with a new daughter cell of that phenotype. This maintains the integrity of the 
epithelial compartment. See Basanta et al. (2009) for more details regarding these rules and their 
parameterization. 
 
Reactive Stromal activation: 
The switch between stroma (S) and reactive stroma (RS) phenotypes is driven by GF stimulus. 
Reactive stromal cells are activated if the level of GF (G) is above the threshold GRS, and are 
deactivated if the growth factor level G falls below the threshold GRS. Initially, all stromal cells 
are assumed non reactive (S), i.e. have no GF production. After activation, the cell produces GF 
dependent upon the degree of stromal reactivity. For simplicity we consider two reactive 
phenotypes: low stromal reactivity (low SR; stromal cells that upon activation produce low 
amounts of GF and have the baseline production rate of 𝜒LM) and high stromal reactivity (high SR; 
stromal cells that upon activation produce high amounts of GF and produce twice the baseline rate, 
2𝜒LM).  
 
Tumor phenotype variation and selection 
Simulation of PCa pathogenesis is achieved by allowing a single normal luminal cell in a duct near 
the center of the lattice to mutate. Mutation is achieved through modification of two variable 
phenotypes as described in the main text: tumor cell GF production (parameter g), and MMP 
production (parameter z). When a tumor cell in the HCA model divides, the phenotypes of each 
daughter cell are varied by a small random additive factor as follows. For the GF phenotype, a 
random number is chosen between (-∆eG, ∆eG) and is added to the GF phenotype parameter of the 
parent cell, and assigned to both daughter cells. The same process is used for the MMP phenotype, 
using ∆eE as the phenotypic variation parameter, operating on the MMP phenotype parameter. The 
evolution and selection of these phenotypes in time and space is an important consideration of this 
work and significantly differentiate the current model from the original (Basanta et al., 2009). 
 
Simulation process for the hybrid discrete-continuum model 
All the 2D simulations of the HCA model were carried out on a 1000×1000 grid, which is a 
discretization of a unit square, [0,1]×[0,1], with a space step of h = 0.0084mm (approximated 
from the diameter of selected duct since different types of cells have different diameters). Given a 
unit of length of 8.4mm. Wherever possible parameters have biologically significant values as 
based on (Basanta et al., 2009). Each iteration of the simulation process involves solving 
numerically the non-linear partial differential equations representing the microenvironmental 
variables (GF, MMP, ECM/BM) until dynamic equilibrium of the diffusible molecules is reached. 
The probabilities of movement for tumor and inflammatory cells are then calculated taking into 
account changes in the microenvironmental concentrations. The magnitude of these probabilities 
dictates which movement direction is selected, therefore each cell is restricted to migrate to one of 
its four orthogonal neighboring coordinates or remain stationary (when probabilities of movement 
are equal or the probability of no movement is largest, an unbiased random movement will be 



produced). After updating all cells positions, then the individual-based processes for all the cells 
phenotypes (proliferation, apoptosis, mutation, etc.) is updated. This entire process is repeated 
until a tumor cell reaches one of the edges of the lattice. 
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