nature neuroscience

Article

https://doi.org/10.1038/s41593-024-01592-9

$\label{eq:liprin-approx} Liprin-\alpha \, proteins \, are \, master \, regulators \, of \, human \, presynapse \, assembly$

In the format provided by the authors and unedited

Supplementary Table 1 – Summary of statistical results

FIGURE / PANEL	SAMPLE SIZE		STATISTICS	RESULTS
Figure 1d MAP2	Ctrl1 84 fire Ctrl2 94 fire qKO1 94 fire qKO2 80 fire	elds/3 batches elds/3 batches elds/3 batches elds/3 batches	Unpaired two-tailed Student's t-tests	Ctrl ₁ vs. qKO1 p<0.0001 Ctrl ₂ vs. qKO ₂ p<0.0001
Figure 1e Tuj1	Ctrl1 27 fie Ctrl2 17 fie qKO1 20 fie qKO2 21 fie	lds/3 batches lds/3 batches lds/3 batches lds/3 batches	Unpaired two-tailed Student's t-tests	Ctrl ₁ vs. qKO ₁ p= 0.2247, ns Ctrl ₂ vs. qKO ₂ p= 0.6406, ns
Figure 1f Protein levels	Ctrl1 qKO1 Ctrl2 qKO2	3-7 batches 3-4 batches 3-7 batches 3-4 batches	Two-way ANOVA with Holm-Šídák test for multiple comparisons, comparing Ctrl ₁₊₂ vs. qKO ₁₊₂	PTPRS: n=3+3 vs 3+3. adj. p = 0.9875 pan Nrxn: n=4+4 vs. 4+4. adj. p = 0.9001 CASK: n=5+3 vs. 5+3. adj. p = 0.8399 Nlgn1: n=5+3 vs. 5+3. adj. p = 0.9001 Homer: n=6+3 vs. 6+3. adj. p = 0.9001 Homer: n=6+3 vs. 3+3. adj. p = 0.9361 RIM1: n=3+3 vs 3+3. adj. p = 0.9399 RIMBP2: n=4+4 vs. 4+4. adj. p = 0.1334 Munc13-1: n=5+5 vs. 5+5. adj. p = 0.9999 Nint1: n=6+3 vs. 6+3. adj. p = 0.4069 Veli 1: n=5+3 vs. 5+3. adj. p = 0.7908 Veli 2/3: n=5+3 vs. 5+3. adj. p = 0.9001 Synapsin2: n=7+4 vs. 7+4. adj. p = 0.3845 Syntaxin: n=4+3 vs. 4+3. adj. p = 0.967 Synaptotagmin1: n=6+3 vs. 6+3. adj. p = 0.0044 Rab3a: n=4+4 vs. 4+4. adj. p = 0.0179
Figure 1h	Ctrl1 2 Ctrl2 2 qKO1 3 qKO2 2	4 fields/2 batches 2 fields/2 batches 0 fields/2 batches 8 fields/2 batches	Two-tailed Mann- Whitney test	Ctrl ₁ vs. qKO ₁ p < 0.0001 Ctrl ₂ vs. qKO ₂ p < 0.0001
Figure 1i	qKO1 58 qKO1+L1 61 qKO1+L2 66 qKO1+L3 64 qKO1+L4 32	cells/4 batches cells/4 batches cells/4 batches cells/4 batches cells/2 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	qKO1 vs. qKO1 + L1, p < 0.001 qKO1 vs. qKO1 + L2, p < 0.001 qKO1 vs. qKO1 + L3, p < 0.001 qKO1 vs. qKO1 + L4, p < 0.001
Figure 1j Figure 2b	SV2: 28 fie Ctrl1 28 fie qKO1 29 fie Synaptophysin-1: Ctrl1 Ctrl1 54 fiel qKO1 31 fiel Piccolo: Ctrl1 Ctrl1 67 field qKO1 54 fiel RIM1: Ctrl1 Ctrl1 30 fiel qKO1 24 fiel RBP2: Ctrl1 Ctrl1 32 fiel qKO1 20 fiel CaV2.1: Ctrl1 Ctrl1 31 fiel QKO1 26 fiel QKO1 26 fiel QKO1 49 boutons (11 gr qKO1 49 boutons (11 gr qKO1 37 boutons (11 gr	lds/3 batches lds/3 batches ds/2 batch ds/2 batch ds/2 batches ds/2 batches ds/2 batches elds/2 batches	Two-tailed Mann- Whitney tests Kruskal-Wallis test followed by Dunn's multiple	SV2 puncta: $qKO_1 vs. Ctrl_1, p < 0.0001$ Synaptophysin-1 puncta: $qKO_1 vs. Ctrl_1, p < 0.0001$ Piccolo puncta: $qKO_1 vs. Ctrl_1, p < 0.0001$ RIM1 puncta: $qKO_1 vs. Ctrl_1, p < 0.0001$ RBP2 puncta: $qKO_1 vs. Ctrl_1, p < 0.0001$ CaV2.1 puncta: $qKO_1 vs. Ctrl_1, p = 0.0001$ Vesicles per bouton: $qKO_1 vs. Ctrl_1 adj. p < 0.0001$ Vesicles per bouton: $qKO_1 vs. qKO_1+L3 adj. p = 0.0012$
Figure 2c	Total number of vesicles analyzed: Ctrl, 3020 vesicles / qKO, 602 vesicles / qKO,+L 1338 vesicles /	50 active zones 50 active zones 41 active zones	comparisons test (no statistical comparisons made)	

Figure 2f	Ctrl _{1 Nrxn-HA} +Cre qKO _{1 Nrxn-HA} +Cre Ctrl _{1 Nrxn-HA} no cre virus qKO _{1 Nrxn-HA} no cre virus	10 cover slips / 2 batches 9 cover slips / 2 batches 4 cover slips / 2 batches 2 cover slips / 2 batches	(no statistical comparisons made)	
Figure 2h-i	PSD length: Ctrl1 _{Nrxn-HA} +Cre qKO _{1 Nrxn-HA} +Cre NRXN puncta size:	32 boutons /1 batch 25 boutons/1 batch	(no statistical comparisons made)	
	Ctrl1 _{Nrxn-HA} +Cre qKO _{1 Nrxn-HA} +Cre Nanoclusters per PSD	56 PSDs /1 batch 41 PSDs /1 batch		
	Ctrl1 _{Nrxn-HA} +Cre qKO _{1 Nrxn-HA} +Cre	32 boutons /1 batch 25 boutons/1 batch		
Figure 3b mEPSCs	Ctrl ₁ qKO ₁ Ctrl ₂ qKO ₂	49 cells/3 batches 49 cells/3 batches 33 cells/3 batches 34 cells/3 batches	Two-tailed Mann- Whitney test	Ctrl ₁ vs. qKO ₁ p < 0.0001 Ctrl ₂ vs. qKO ₂ p < 0.0001
Figure 3d Evoked EPSCs	Ctrl ₁ qKO ₁ Ctrl ₁ qKO ₁	36 cells/2 batches 35 cells/2 batches 35 cells/2 batches 35 cells/2 batches	Two-tailed Mann- Whitney test	Ctrl₁ vs. qKO₁ p < 0.0001 Ctrl₂ vs. qKO₂ p < 0.0001
Figure 3f mIPSCs	Ctrl ₁ qKO ₁ Ctrl ₂ qKO ₂	41 cells/2 batches 41 cells/2 batches 59 cells/3 batches 61 cells/3 batches	Two-tailed Mann- Whitney test	Ctrl ₁ vs. qKO ₁ p < 0.0001 Ctrl ₂ vs. qKO ₂ p < 0.0001
Figure 3h mEPSC Rescues	qKO1 qKO1+L1 qKO1+L2 qKO1+L3 qKO1+L4	60 cells/3 batches 70 cells/5 batches 70 cells/5 batches 65 cells/5 batches 25 cells/2 batches	One-way ANOVA followed by a Bonferroni test for multiple comparisons	$\begin{array}{ll} qKO_1 vs. \ qKO_1 + L1 & p < 0.0001 \\ qKO_1 vs. \ qKO_1 + L2 & p < 0.0001 \\ qKO_1 vs. \ qKO_1 + L3 & p < 0.0001 \\ qKO_1 vs. \ qKO_1 + L4 & p < 0.0001 \end{array}$
Figure 4a SV2 transport	Ctrl₁ qKO1	14 fields/2 batches 13 fields/2 batches	Two-tailed Student's t-tests	Velocity: qKO_1 vs. Ctrl ₁ , p = 0.54 Movement events: qKO_1 vs. Ctrl ₁ , p = 0.03
Figure 4b ELKS transport	Ctrl₁ qKO₁	10 fields/3 batches 12 fields/3 batches	Two-tailed Student's t-tests	Velocity: qKO_1 vs. Ctrl ₁ , p = 0.55 Movement events: qKO_1 vs. Ctrl ₁ , p = 0.33
Figure 4c CASK recruitment	Ctrl ₁ qKO ₁	158 cells /4 batches 119 cells /4 batches	Two-tailed Mann- Whitney test	Ctrl₁ vs. qKO₁ p < 0.0001
Figure 4d ELKS recruitment	Ctrl ₁ qKO ₁	126 cells/3 batches 94 cells/3 batches	Two-tailed Mann- Whitney test	Ctrl₁ vs. qKO₁ p < 0.0001
Figure 4e RIM recruitment	Ctrl ₁ qKO ₁	123 cells/3 batches 96 cells/3 batches	Two-tailed Mann- Whitney test	Ctrl₁ vs. qKO₁ p < 0.0001
Figure 4f Piccolo recruitment	Ctrl ₁ qKO ₁	143 cells/3 batches 79 cells/3 batches	Two-tailed Mann- Whitney test	Ctrl₁ vs. qKO₁ p < 0.0001
Figure 4g CaV2.1 recruitment	Ctrl ₁ qKO ₁	98 cells/3 batches 86 cells/3 batches	Two-tailed Mann- Whitney test	Ctrl₁ vs. qKO₁ p < 0.0001
Figure 5b Recruitment ASF	qKO ₁ +L3 qKO ₁ +L3ΔCC qKO ₁ +L3ΔRIMBD qKO ₁ +L3ΔELKSBD qKO ₁ +L3ΔSAM qKO ₁ +L3ΔLoop qKO ₁ +L3W921A qKO ₁ +L3W856Q	75 HEK cells/1 batch 52 HEK cells /1 batch 127 HEK cells /1 batch 97 HEK cells /1 batch 50 HEK cells /1 batch 67 HEK cells /1 batch 64 HEK cells /1 batch 71 HEK cells /1 batch	(no statistical comparisons made)	
Figure 5c Synapsin Puncta	qKO ₁ + L3 qKO ₁ + L3 ΔCC qKO ₁ + L3 ΔRIMBD qKO ₁ + L3 ΔELKSBD qKO ₁ + L3 ΔSAM qKO ₁ + L3 ΔLoop qKO ₁ + L3 W971A ΔCAS qKO ₁ + L3 W856Q	35 cells/2 batches 22 cells/2 batches 25 cells/2 batches 29 cells/2 batches 24 cells/2 batches 26 cells/2 batches 30 cells/2 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	L3 ΔCC vs. L3 ΔRIM-BD, p < 0.0001 L3 ΔCC vs. L3 ΔELKS-BD, p=0.1064 L3 ΔSAM vs. L3 ΔLoop, p= 0.0011 L3 ΔSAM vs. L3 W921A, p= 0.0189 L3 ΔSAM vs. L3 W856Q, p= 0.3314
Figure 5d mEPSC	qKO1 + L3 qKO1 + L3 ΔCC qKO1 + L3 ΔRIMBD	66 cells/3 batches 59 cells/3 batches 67 cells/3 batches	Kruskal-Wallis test followed by Dunn's	L3 ΔCC vs. L3 ΔRIM-BD, p < 0.0001 L3 ΔCC vs. L3 ΔELKS-BD, p=0.1375

	qKO1 + L3 ΔELKSBD qKO1 + L3 ΔSAM qKO1 + L3 ΔLoop qKO1 + L3 ΔLoop qKO1 + L3 W931A ΔCAS qKO1 + L3 W856Q	71 cells/3 batches 70 cells/3 batches 68 cells/3 batches K 71 cells/3 batches 68 cells/3 batches	multiple comparisons test	L3 ΔSAM vs. L3 ΔLoop, p < 0.0001 L3 ΔSAM vs. L3 W921A, p < 0.0001 L3 ΔSAM vs. L3 W856Q, p < 0.0001
Figure 5e Sucrose	$\begin{array}{l} qKO_1 + L3 \\ qKO_1 + L3 \; \Delta CC \\ qKO_1 + L3 \; \Delta RIMBD \\ qKO_1 + L3 \; \Delta ELKSBD \\ qKO_1 + L3 \; \Delta ELKSBD \\ qKO_1 + L3 \; \Delta SAM123 \\ qKO_1 + L3 \; \Delta Loop \\ qKO_1 + L3 \; W971A \; \Delta CAS \\ qKO_1 + L3 \; W856Q \end{array}$	33 cells/3 batches 27 cells/3 batches 33 cells/3 batches 48 cells/3 batches 30 cells/3 batches 32 cells/3 batches K 32 cells/3 batches 41 cells/3 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	L3 ΔCC vs. L3 ΔRIM-BD, p < 0.0001 L3 ΔCC vs. L3 ΔELKS-BD, p=0.3405 L3 ΔSAM vs. L3 ΔLoop, p < 0.0001 L3 ΔSAM vs. L3 W921A, p < 0.0001 L3 ΔSAM vs. L3 W856Q, p=0.0103
Figure 6b QA recruitment	Ctrl1 + L3 Ctrl1 + QA qKO1 + L3 qKO1 + QA	73 HEK cells/2 batches 188 HEK cells/3 batches 78 HEK cells/3 batches 156 HEK cells/3 batches	Two-tailed Mann- Whitney test	qKO1 + L3 vs. qKO1 + QA p < 0.0001
Figure 6c Synapsin puncta QA rescue	qKO1 qKO1 + L3 qKO1 + L3W921A; W8560	26 cells/2 batches 32 cells/2 batches Q 34 cells/2 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	qKO1+L3 vs. qKO1+L3 QA, p < 0.0001 qKO1 vs. qKO1+L3 QA, p = 0.8373
Figure 6d mEPSCs QA rescue	qKO1 qKO1 + L3 qKO1 + L3 QA	67 cells/5 batches 49 cells/5 batches 83 Cells/5 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	qKO1+L3 vs. qKO1+L3 QA, p < 0.0001 qKO1 vs. qKO1+L3 QA, p = 0.107
Figure 6e Sucrose QA mutant	qKO1 qKO1 + L3 qKO1 + L3 QA	35 cells/2 batches 40 cells/2 batches 33 cells/2 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	qKO1+L3 vs. qKO1+L3 QA, p = 0.0002 qKO1 vs. qKO1+L3 QA, p > 0.9999
Figure 6f Active zone markers	ELKS signal: qKO ₁ qKO ₁ + L3 qKO ₁ + L3 QA RIM1 signal: qKO ₁	26 ROIs/2 batches 33 ROIs/2 batches 16 ROIs/2 batches 26 ROIs/2 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	ELKS signal: qKO1 vs. qKO1+L3 QA, p =0.5314 qKO1+L3 vs. qKO1+L3 QA, p< 0.0001 RIM1 signal: qKO1 vs. qKO1+L3 QA, p =0.0432
	$qKO_1 + L3$ $qKO_1 + L3 QA$ Piccolo signal: qKO_1 $qKO_1 + L3$ $qKO_1 + L3 QA$	40 ROIs/2 batches 34 ROIs/2 batches 22 ROIs/2 batches 29 ROIs/2 batches 22 ROIs/2 batches		qKO ₁ +L3 vs. qKO ₁ +L3 QA, p< 0.0001 Piccolo signal: qKO ₁ vs. qKO ₁ +L3 QA, p =0.0896 qKO ₁ +L3 vs. qKO ₁ +L3 QA, p< 0.0001
Ext Data Figure 1d Conversion	Ctrl ₁ Ctrl ₂ qKO ₁ qKO ₂	20 batches 10 batches 20 batches 11 batches	Two-tailed Mann- Whitney test	$Ctrl_1 vs. qKO_1 p = 0.6157, ns$ $Ctrl_2 vs. qKO_2 p = 0.6047, ns$
Ext Data Figure 1e AP properties	Ctrl ₁ qKO ₁ Ctrl ₂ qKO ₂	24 Cells/2 batches 23 Cells/2 batches 22 Cells/2 batches 23 Cells/2 batches	Two-tailed Mann- Whitney test	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Ext Data Figure 1g Rheobase and Capacitance	Rheobase: Ctrl ₁ qKO ₁ Ctrl ₂ qKO ₂	40 cells/3 batches 37 cells/3 batches 31 cells/3 batches 40 cells/3 batches	Unpaired two-tailed Student's t-test with Welch's correction	Rheobase: Ctrl ₁ vs. qKO ₁ p<0.0001 Ctrl ₂ vs. qKO ₂ p<0.0028
	Capacitance: Ctrl ₁ qKO ₁ Ctrl ₂ qKO ₂	45 cells/3 batches 40 cells/3 batches 30 cells/3 batches 31 cells/3 batches		Capacitance: Ctrl ₁ vs. qKO ₁ p<0.0001 Ctrl ₂ vs. qKO ₂ p<0.0001
Ext Data Figure 2b	Ctrl, 1035 qKO1 202 qKO,+L3 505	vesicles / 50 active zones vesicles / 50 active zones vesicles / 43 active zones	(no statistical comparisons made)	

Ext Data Figure 2c	Vesicle size: Ctrl ₁ qKO ₁ qKO ₁ +L3	3124 vesicles 732 vesicles 1460 vesicles	Kruskal-Wallis test followed by Dunn's multiple comparisons test	Vesicle size: qKO_1 vs. $Ctrl_1$ adj. p = 0.8129, ns qKO_1 vs. qKO_1+L3 adj. p > 0.9999, ns
	PSD length: Ctrl ₁ qKO1 qKO1+L3	49 PSDs / 2 batches 53 PDSs / 2 batches 41 PSDs / 1 batch		PSD length: qKO ₁ vs. Ctrl ₁ adj. p = 0.7933, ns qKO ₁ vs. qKO ₁ +L3 adj. p > 0.9999, ns
Ext Data Figure 2d Sucrose response	Ctrl₁ qKO1	48 cells/3 batches 57 cells/3 batches	Two-tailed Mann- Whitney test	qKO ₁ vs. Ctrl ₁ , p<0.0001
Ext Data Figure 3a Artificial synapse formation	GFP: Ctrl1 qKO1 NLGN1: Ctrl1 qKO1 LRRTM2: Ctrl1 qKO1 TrkC: Ctrl1 qKO1 ILRAPL1: Ctrl1 qKO1 NGL3:	70 HEK cells/1 batch 59 HEK cells/1 batch 76 HEK cells/1 batch 77 HEK cells/1 batch 86 HEK cells/1 batch 80 HEK cells/1 batch 93 HEK cells/1 batch 130 HEK cells/1 batch 122 HEK cells/1 batch	Kruskal-Wallis test followed by Dunn's multiple comparisons test	GFP: qKO1 vs. Ctrl1 ns, adj. p > 0.999 NLGN1: qKO1 vs. Ctrl1, adj. p < 0.0001 LRRTM2 qKO1 vs. Ctrl1, adj. p < 0.0001 TrkC qKO1 vs. Ctrl1, adj. p < 0.0001 ILRAPL1 qKO1 vs. Ctrl1, adj. p < 0.0001 NGL3 qKO1 vs. Ctrl1, adj. p < 0.0001
Ext Data Figure 3b Nrxn1α-HA overexpressed	Ctrl1 qKO1 Nrxn-HA Nlgn1: Ctrl1 qKO1 Nrxn-HA TrkC: Ctrl1 gKO2	84 HEK cells/1 batch 44 HEK cells/1 batch 164 HEK cells/4 batches 45 HEK cells/2 batches 43 HEK cells /2 batches 23 HEK cells /2 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	qKO1 + Nlgn1 vs. qKO1+TrkC p < 0.0001
Ext Data Figure 3c PTPσ-HA overexpressed	PTPRS-HA Nlgn1: Ctrl1 qKO1 PTPRS-HA TrkC: Ctrl1 qKO1	161 HEK cells /4 batches 85 HEK cells /4 batches 80 HEK cells /3 batches 90 HEK cells /3 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	qKO₁+TrkC vs. qKO₁+Nlgn1 p < 0.0001
Ext Data Figure 3f	Ctrl _{1 Nrxn-HA} +Cre qKO _{1 Nrxn-HA} +Cre Ctrl _{1 Nrxn-HA} -Cre qKO _{1 Nrxn-HA} -Cre	281 dendrites/2 batches 240 dendrites/2 batches 126 dendrites/2 batches 86 dendrites/2 batches	(no statistical comparisons made)	
Ext Data Figure 3g NRXN1-HA endogenous	Nlgn1: Ctrl1 qKO1 TrkC: Ctrl1 qKO1	239 HEK cells /3 batches 233 HEK cells /3 batches 107 HEK cells /2 batches 90 HEK cells /2 batches	Kruskal-Wallis test followed by Dunn's multiple comparisons test	qKO₁ NrxnHA+Nlgn1 vs. qKO₁ NrxnHA+TrkC adj. p < 0.0001
Ext Data Figure 4a mEPSCs (4 mM Ca)	Ctrl ₁ qKO ₁ Ctrl ₂ qKO ₂	51 cells/3 batches 55 cells/3 batches 40 cells/3 batches 37 cells/3 batches	Two-tailed Mann- Whitney test	Ctrl ₁ vs. qKO ₁ p < 0.0001 Ctrl ₂ vs. qKO ₂ p < 0.0001
Ext Data Figure 4c iGABA Synapsin puncta	Ctrl ₁ qKO ₁ Ctrl ₂ qKO ₂	25 cells/1 batch 26 cells/1 batch 36 cells/2 batches 35 cells/2 batches	Unpaired two-tailed Student's t-tests	Ctrl ₁ vs. qKO ₁ $p < 0.0001$ Ctrl ₂ vs. qKO ₂ $p < 0.0001$
Ext Data Figure 5a Munc13 recruitment	Ctrl ₁ qKO ₁	101 HEK cells/3 batches 80 HEK cells/3 batches	Two-tailed Mann- Whitney test	Ctrl ₁ vs. qKO ₁ p < 0.0001
Ext Data Figure 5b RIMBP recruitment	Ctrl₁ qKO₁	78 HEK cells/3 batches 69 HEK cells/3 batches	Two-tailed Mann- Whitney test	Ctrl ₁ vs. qKO ₁ p < 0.0001
Ext Data Figure 5c Bassoon recruitment	Ctrl ₁ qKO ₁	108 HEK cells/3 batches 99 HEK cells/3 batches	Two-tailed Mann- Whitney test	Ctrl ₁ vs. qKO ₁ p < 0.0001

Ext Data Figure 6b Pearson co- localization	GFP-Liprin-α3 + Scarlet-ELKS GFP-ΔELKSBD + Scarlet-ELKS	56 cells/4 batches 46 cells/4 batches	Two-tailed Mann- Whitney test	L3 vs ΔELKSBD, p < 0.001
Ext Data Figure 6c Active zone markers	ELKS signal: qKO_1 $qKO_1 + L3$ $qKO_1 + L3 \Delta ELKSBD$ RIM1 signal: qKO_1 $qKO_1 + L3$ $qKO_1 + L3 \Delta ELKSBD$ Piccolo signal: qKO_1 $qKO_1 + L3$ $qKO_1 + L3$ $qKO_1 + L3 \Delta ELKSBD$	26 ROIs/2 batches 33 ROIs/2 batches 31 ROIs/2 batches 26 ROIs/2 batches 40 ROIs/2 batches 33 ROIs/2 batches 22 ROIs/2 batches 29 ROIs/2 batches 26 ROIs/2 batches	One-way ANOVA followed by a Tukey's multiple comparison test	ELKS signal: qKO ₁ vs. qKO ₁ +L3 ΔELKSBD, p =0.2357 qKO ₁ +L3 vs. qKO ₁ +L3 ΔELKSBD, p< 0.0001 RIM1 signal: qKO ₁ vs. qKO ₁ +L3 ΔELKSBD, p =0.0417 qKO ₁ +L3 vs. qKO ₁ +L3 ΔELKSBD, p< 0.0001 Piccolo signal: qKO ₁ vs. qKO ₁ +L3 ΔELKSBD, p =0.3073 qKO ₁ +L3 vs. qKO ₁ +L3 ΔELKSBD, p< 0.0001
Ext Data Figure 7a	L3 + PTPơ L3 W856Q + PTPơ	30 cells/3 batches 30 cells/3 batches	Unpaired two-tailed Student t-test	L3 vs. L3 Q856Q p < 0.0001
Ext Data Figure 7b	L3 + Nrxn1α L3 + CASK + Nrxn1α L3 W921A + CASK + Nrxn1α	30 cells/3 batches 30 cells/3 batches 30 cells/3 batches	One-way ANOVA with Holm-Šídák test for multiple comparisons	L3 + Nrxn1α vs. L3 + CASK + Nrxn1α p = 0.0014 L3 + CASK + Nrxn1α vs. L3 W921A + CASK + Nrxn1α p = 0.0040

Supplementary Table 2 – Plasmids

PLASMID	SOURCE
pSpCas9(BB)-2A-GFP (PX458)	RRID: Addgene_48138
LentiCRISPR-v2	RRID: Addgene_52961
PX458-sgRNA-PPFIA1_exon17	This paper
PX458-sgRNA-PPFIA2_exon20	This paper
LentiCRISPR-v2-sgRNA-PPFIA3_exon11	This paper
LentiCRISPR-v2-sgRNA-PPFIA4_exon16	This paper
pFU-EGFP-Liprin-a1	This paper
pFU-EGFP-Liprin-a2	This paper
pFU-EGFP-Liprin-a3	This paper
pFU-EGFP-Liprin-a4	This paper
pFU-EGFP-PPFIA3 (W921A)	This paper
pFU-EGFP-Liprin-α3 (ΔLoop)	This paper
pFU-EGFP-Liprin-α3 (ΔSAM123)	This paper
pFU-EGFP-Liprin-a3 (W856Q)	This paper
pFU-EGFP-Liprin-a3 (W856Q/W921A) 'QA'	This paper
pFU-EGFP-Liprin-α3 (ΔRIMBD)	This paper
pFU-EGFP-Liprin-α3 (ΔELKSBD)	This paper
pFU-EGFP- Liprin-α3 (ΔCoiled-coil)	This paper
pFS-Nrx1α-HA (based on NM_001403321)	Ref ²
pCMV-Nrx1α-HA (based on NM_001403321)	Ref ²
pFS-HA-PTPRS (based on NM_130853)	This paper
pCMV-FLAG-PTPRS (based on NM_130853)	This paper
pFU-EGFP-SV2	Ref ³
pFU-Venus-ELKS1	This paper
pFU-mScarlet-ELKS1	This paper
pmCherry-N1	Clontech Laboratories # 632523
pCMV-Nlgn1[-A -B]-Cherry	This paper
pCMV-TrkC-Cherry	This paper
pEGFP-N1	Clontech Laboratories #6085-1
pCMV-Nlgn1[-A -B]-Venus	Ref ⁴
pCMV-TrkC-YFP	Ref ²
pCMV-LRRTM2-GFP	This paper
pCMV-IL1RAPL1-GFP	This paper
pCMV-NGL3-GFP	This paper
pFU-NLS-GFP-Cre	This paper

pAAV-NRXN1-cTr	Ref ⁵
pRC-DJ for AAV	Ref ⁶
pHelper for AAV	Ref ⁶
pAAV-MCS	RRID: Addgene_46954
pMDLg/pRRE	RRID: Addgene_12251
pRSV-REV	RRID: Addgene_12253
pVSVG	RRID: Addgene_35616
pFU-M2rtTA	RRID: Addgene_20342
pTet-O-Ngn2-puromycin	RRID: Addgene_52047
pTet-O-AScl1-puromycin	RRID: Addgene_97329
pTet-O-Dlx2-hygromycin	RRID: Addgene_97330
pTet-O-Sox9-puromycin	RRID: Addgene_117269
pTet-O-Nfib-hygromycin	RRID: Addgene_117271
pFU-oChIEF-tdTomato	This paper
pFU-NLS-EGFP	This paper

Supplementary Table 3 – Antibodies

ANTIBODY	SOURCE	IDENTIFIER / RRID	USE/DILUTION WB, western blot ICC, immunocytochemistry
Mouse anti-β-actin	Sigma	Cat #: A5441 RRID: AB_476744	WB: 1:1000
Rabbit anti-Bassoon	Sigma	Cat #: SAB5200101	ICC: 1:200
Mouse anti-CASK	NeuroMab	Cat #: 75-000 RRID: AB_2068730	WB: 1:1000 ICC: 1:200
Rabbit anti-Ca ²⁺ channel P/Q-type alpha-1A	Synaptic Systems	Cat #: 152 203 RRID: AB_2619841	ICC: 1:200
Rabbit anti-ERC1/2	Synaptic Systems	Cat #: 143003 RRID: AB_887715	WB: 1:1000 ICC: 1:200
Mouse anti-GFP	DSHB	Cat #: DSHB-GFP-4C9-b RRID: AB_2617422	ICC: 1:500
Rabbit anti-GFP	Thermo Fisher Scientific	Cat #: A11122 RRID: AB_221569	WB: 1:1000
Mouse anti-FLAG	Sigma	Cat #: F1804 RRID: AB_262044	ICC: 1:200
Mouse anti-HA (HA.11)	BioLegend	Cat #: 901513 RRID: AB_2565335	ICC: 1:200
Mouse anti-HA (HA.11) Alexa-488-conjugated	BioLegend	Cat #: 901509 RRID: AB_2565072	ICC: 1:200
Rabbit anti-HA (C29F4)	Cell Signalling	Cat #: 3724 RRID: AB_1549585	ICC: 1:200
Rabbit anti-Homer1	Synaptic Systems	Cat #: 160003 RRID: AB_887730	WB: 1:1000
Rabbit anti-Liprin-α1	Gift from S. Schoch ¹	A121	WB: 1:200
Rabbit anti-Liprin-α2	Gift from S. Schoch ¹	A13	WB: 1:200
Rabbit anti-Liprin-α3	Gift from S. Schoch ¹	A115	WB: 1:200
Rabbit anti-Liprin-α4	Gift from S. Schoch ¹	A2	WB: 1:200
Chicken anti-MAP2	Encor	Cat #: CPCA-MAP2 RRID: AB_2138173	ICC: 1:1000
Rabbit anti-Mint1	Synaptic Systems	Cat #: 144103 RRID: AB_10635158	WB: 1:1000 ICC: 1:200
Rabbit anti-Munc13-1	Synaptic Systems	Cat #: 126103 RRID: AB_887733	WB: 1:1000 ICC: 1:200
Rabbit anti-Neuroligin-1	NeuroMab	Cat #: 75-160 RRID: AB_2235964	WB: 1:500
Rabbit anti-panNeurexin-1	Millipore	Cat #: ABN161-I RRID: AB_10917110	WB: 1:1000
Rabbit anti-Piccolo	Synaptic Systems	Cat # 142 003 RRID: AB_2160182	ICC: 1:200
Mouse anti-PSD95	Thermo Fisher Scientific	Cat #: MA1-046 RRID: AB_2092361	WB: 1:500

Mouse anti-PSD95	NeuroMab	Cat #: 75-028(K28/43) RRID: AB_2877189	ICC: 1:100
Rabbit anti-PSD95	Addgene	Cat #: 196561(K28/43) RRID: AB_2928071	ICC: 1:100
Mouse anti-PTPRS	MediMabs	Cat #: MM-0020 RRID: AB_1808357	WB: 1:1000
Rabbit anti-RIM1	Synaptic Systems	Cat #: 140003 RRID: AB_887774	WB: 1:1000
Rabbit anti-RIM1/2	Synaptic Systems	Cat #: 140213 RRID: AB_2832237	ICC: 1:200
Rabbit anti-RIM-BP2	Synaptic Systems	Cat #: 316103 RRID: AB_2619739	WB: 1:1000 ICC: 1:200
Rabbit anti-Rab3a	Synaptic Systems	Cat #: 107 111 RRID: AB_887770	WB: 1:1000
Rabbit anti-SNAP25	Sigma	Cat #: S9684 RRID: AB_261576	WB: 1:2000
Rabbit anti-Synapsin	This paper	nc30-1 Custom-made by	WB: 1:1000 ICC: 1:1000
Rabbit anti-Synapsin	Gift from T. Südhof	E028 RRID: AB_2315400	ICC: 1:1000
Mouse anti-Synapsin 2	Sigma	Cat #: MABN1584	WB: 1:1000
Mouse anti-Synaptophysin1	Synaptic Systems	Cat #: 101 011 RRID: AB_887824	ICC: 1:200
Chicken anti- Synaptotagmin1	Aves Labs	Cat #: STG RRID: AB_2313562	WB: 1:1000
Mouse anti-Syntaxin1A	Synaptic Systems	Cat #: 110 111 RRID: AB_887848	WB: 1:1000
Mouse anti-SV2	DSHB	Cat #: SV2-c RRID: AB_2315387	ICC: 1:500
Mouse anti-Tuj1 (α-βIII- Tubulin)	BioLegend	Cat #: 801201 RRID: AB_2313773	WB: 1:5000 ICC: 1:1000
Rabbit anti-Veli1/2/3	Synaptic Systems	Cat #: 184002 RRID: AB_2281173	WB: 1:1000
Goat anti-Mouse Alexa Fluor 488	Thermo Fisher Scientific	Cat #: A-11001 RRID: AB_2534069	ICC: 1:1000
Goat anti-Mouse Alexa Fluor 568	Thermo Fisher Scientific	Cat #: A-11004 RRID: AB_2534072	ICC: 1:1000
Goat anti-Mouse Alexa Fluor 633	Thermo Fisher Scientific	Cat #: A-21052 RRID: AB_2535719	ICC: 1:600
Goat anti-Rabbit Alexa Fluor 405	Thermo Fisher Scientific	Cat #: A-31556 RRID: AB_221605	ICC: 1:1000
Goat anti-Rabbit Alexa Fluor 488	Thermo Fisher Scientific	Cat #: A-32731 RRID: AB_2633280	ICC: 1:1000
Goat anti-Rabbit Alexa Fluor 568	Thermo Fisher Scientific	Cat #: A-11011 RRID: AB_143157	ICC: 1:1000
Goat anti-Mouse Alexa Fluor 594	Thermo Fisher Scientific	Cat #: A-11032 RRID: AB_2534091	ICC: 1:1000
Goat anti-Rabbit Alexa Fluor 633	Thermo Fisher Scientific	Cat #: A-21071 RRID: AB_2535732	ICC: 1:600

Goat anti-Rabbit Alexa Fluor 647	Thermo Fisher Scientific	Cat #: A-21245 RRID: AB_2535813	ICC: 1:600
Goat anti-Chicken-CF405M	Sigma	Cat #: SAB4600466	ICC: 1:1000
Goat anti-Chicken Alexa Fluor 633	Thermo Fisher Scientific	Cat #: A-21103 RRID: AB_2535756	ICC: 1:600
Goat anti-Mouse 680RD	LI-COR	Cat #: 925-68070 RRID: AB_2651128	WB: 1:10,000
Goat anti-Mouse 800CW	LI-COR	Cat #: 925-32210 RRID: AB_2687825	WB: 1:10,000
Goat anti-Rabbit 680RD	LI-COR	Cat #: 925-68071 RRID: AB_2721181	WB: 1:10,000
Goat anti-Rabbit 800CW	LI-COR	Cat #: 925-32211 RRID: AB_621843	WB: 1:10,000
Donkey anti-Chicken 680RD	LI-COR	Cat #: 926-68075 RRID: AB_10974977	WB: 1:10,000

SUPPLEMENTARY INFORMATION REFERENCES

1. Zürner, M., Mittelstaedt, T., tom Dieck, S., Becker, A. & Schoch, S. Analyses of the spatiotemporal expression and subcellular localization of liprin- α proteins. *The Journal of Comparative Neurology* **519**, 3019-3039 (2011).

2. Montoliu-Gaya, L., *et al.* CA10 regulates neurexin heparan sulfate addition via a direct binding in the secretory pathway. *EMBO Rep* **22**, e51349 (2021).

3. Maas, C., *et al.* Formation of Golgi-Derived Active Zone Precursor Vesicles. *Journal of Neuroscience* **32**, 11095-11108 (2012).

4. Gokce, O. & Südhof, T.C. Membrane-tethered monomeric neurexin LNSdomain triggers synapse formation. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **33**, 14617-14628 (2013).

5. Pak, C., *et al.* Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. *Cell Stem Cell* **17**, 316-328 (2015).

6. Grimm, D., *et al.* In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. *J Virol* **82**, 5887-5911 (2008).